Global Correlations:
What You Don't Know Will Hurt You

Ziad S Saad, PhD

SSCC / NIMH & NINDS / NIH / DHHS / USA /
EARTH

_.‘--:'_‘;-\\" ,NS} d\?x\%.,eg\i\CESvUSd
St SPRNIE
1 8 & \O c h
L g I~ — |z
oyl m e —
i Q) M —
i |
A n s

% National Institute

§| of Mental Health ONHEA\'SQ‘ h
- v g

/[ NATIONAL INSTITUTE OF

A NEUROLOGICAL
JUORD[RS AND STROKE

v HEAL 7,
&0 ¢

N

Z.S.S 16/06/13



Resting state

BOLD signal fluctuations during undirected brain activity

rest_=sub00440.BEZ_rh_S3SSM.std.60.niml.dset, node 2056

1148.273

rest_=ub00440.BEZ_1h SSM.std.60.niml.dset, node 2205
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TR (2.00s) step
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Resting state

BOLD signal fluctuations during undirected brain activity

There is no model for signal, such as expected response
In task FMRI
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Resting state

BOLD signal fluctuations during undirected brain activity

There is no model for signal, such as expected response
In task FMRI

Resort to describing relationships between brain regions
Correlation matrices, graph theory, functional/effective/* connectivity

Factoring data into space®time components in statistically interesting
ways (PCA, ICA)
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Resting state

Resort to describing relationships between brain regions

rest_=ub00440.BEZ_rh SSM.std.60.niml.dset, node 2056

11468.273

rest_=ub00440.BEZ_1h SSM.std.60.niml.dset, node 2205

TR {2.00s) step

Correlation Seed
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Resting state

Interpret correlation strength as proxy for brain function
coupling between regions

rest_=ub00440.BEZ_rh SSM.std.60.niml.dset, node 2056

11468.273

rest_=ub00440.BEZ_1h SSM.std.60.niml.dset, node 2205

TR {2.00s) step

Correlation Seed
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The magic of resting state @iswal %)

Magnitude

G. 3. (Left) FMRI task-activation response to bilateral left and right finger movement, su

ictuation response using the methods of this paper. See text for assignment of labeled regions. Red is positive comrelation, and yellow
negative.

perimposad on a GRASS anatomic image. (Right)
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Resting state PROBLEM

Neuronally driven BOLD fluctuations of interest i

AND

Fluctuations from respiration, heart beat, motion |
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The fount of our troubles

We have no model for signal
Nothing like the expected response (regressors) of task FMRI

We have no good models for noise
We have some, but they're far from perfect

Effect size (as correlation) is a spatially varying function of noise

(fluctuations of no interest)
* Noise can bias correlations up, or down depending on the

noise’s spatial covariance
* |ntask FMRI by contrast, noise affects variance of effect

size estimate |’ u'|

ool
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The fount of our troubles
Difficult to attach meaning to effect size in RS-FMRI

Effect is like an SNR measure, affected by changes in
both signal (hnumerator) and noise (denominator)

For example more motion > more noise - more
correlation (bias) = group differences

Weak but consistent bias = significant difference

Some sources have brain-wide (global) effects on
correlation distribution (e.g. ETCO, , motion, etc.)
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Sources of bias

Head motion (van Dijk, 2012) (Power, 2012)
Physiological "Noise”
 Respiratory or cardiac cycles (Glover, 2002)

* Non-stationarity of breathing and cardiac rhythms
(Birn, 2006) ( Shmueli, 2007) (Chang, 2009)

Hardware instability (Jo, 2010)
Anatomical bias
Pre-processing
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Adjusting brain-wide nuisances
* Model noise effect on time series and project
* Motion estimates

* Retroicor/RVT/etc requires simultaneous
recordings of cardiac and respiratory cycles

(Glover 2002; Birn 2006; Shmueli 2007; Chang 2009)
* Nuisance signals estimates from dataset
* Tissue-based nuisance regressors

(Beckmann 2004; Fox 2009; Behzadi 2007; Beall 2007, 2010;
Jo 2010, 2013; Kundu 2012; Bright 2013; Boubela 2013)

* Group level adjustments

 (Covariates for motion, brainwide levels of
correlation
(Van Dijk 2012; Satterthwaite 2012; Saad 2013; Yan 2013)
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Tissue-based nuisance regressors

* Avoid Projecting Fluctuations of Interest

* OK to sample nuisance signals from regions
whose fluctuations are not correlated with the
fluctuations of interest in the regions of interest

« Should not project time series containing
aggregates of fluctuations of interest, even if

they contain contribution from noise

Sagittal sinus voxels might allow sampling of aliased heart
rate, HOWEVER they also exhibit BOLD fluctuations of
interest from the regions being modeled (Jo, 2010)
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And why not?

» Because you end up differentially biasing the
correlation matrices of your groups, and
considerably distorting group differences

* Best explained with GSReg because math is
straight forward.

« What follows applies whether or not noise exists or
differs between groups
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ANATIcor — Tissue Based but not GM

Eroded WM
mask (Wme)

“ i
\

Average over

WMe voxels

inside 25mm
radius
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Why not GSReq ?

Original (R) After GSReg (5) S-R

- 1.000

0.750 0.720 0.695

0.750

0.720

0.695

1.000

1.000

Bias will vary by region pair
AND

Entirely dependent on initial covariance matrix P

(therefore your grouping variable)
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Why not GSReq ?

Original (R) After GSReg (5) S-R

B 1.000 0.750 0.720 0.695

Al 0750 1.000

A2 0720 1.000

A3 0695 1.000

B A1l A2 A3 B Al A2 A3 B Al A2 A3

For any FMRI time series (not just simulations)
S—R=(P-(P11'P)/(1'P1)) * 0p0," - P * OpOp"
S-R is constant for group with same cov. matrix P
(Q is also a sole function of P) (Saad, 2013)

Z.S.S 16/06/13



Are biased estimates useful?
Region pair dependent biasing is OK if:

Not interpreting correlations between regions as those between
the sampled BOLD signals and by extension neuronal signals

Not just about interpretability of negative correlations (Murphy, 2008;
Weissenbacher, 2009; Cole, 2010)

Two strongly correlated regions after GSReg DOES NOT imply regions were

strongly correlated before GSReg

Using correlations after GSReg as some feature space for
parcellation, classification, etc
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Are biased estimates useful?
Region pair dependent biasing is OK if:

Not interpreting correlations between regions as those between
the sampled BOLD signals and by extension neuronal signals

Not just about interpretability of negative correlations (Murphy, 2008;
Weissenbacher, 2009; Cole, 2010)

Two strongly correlated regions after GSReg DOES NOT imply regions were

strongly correlated before GSReg

Using correlations after GSReg as some feature space for
parcellation, classification, etc

Region pair dependent biasing is problematic if:

Comparing two groups with different signal covariance structures
S—R=(P-(P11'P)/(1'P1)) * 0p0," - P * OpOp"
S-R is constant for group with same cov. matrix P
S-R will differ between groups with different P
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An illustrative model

G Frou P LI) ; Observed signal from region 4:

y,=Vw,+e=0.36v,+0.66v;+036v,+0.54dv;+e

Wy [W; |W, [W; |W, | W,
F--
1.00 | 0.56 | 0.48 | 0.39 |o.3: 0.48
P!
0.56 | 0.73 : :_//> w,
: Ir connection
0.61 | 0.48 : | weights for
: 1 region 4
0.39 |0.66: 0.64
|
0.63 [}0.361| 0.35
I |
I |
0.54 |0_54: 0.48 Connection Weight
I--- I

In simulations 9 regions + background were used

0.3 1.0
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Comparing Groups

Increased connection
between regions 1 and 2 only
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Comparing Groups

Difference confined
B to two regions

1

9 7 5 3

13 57 9
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Comparing Groups

~ \LL v oase Difference confined
ma- < to two regions
(o]

~ Ends up all

® over the place

13 57 9



Distortion of long/short range correlations

Contrast of correlations between groups A and B
‘long-range’ correlations in Group B only

05
04
#80.3

0.2
0.1
0

- 4-0.1

#-0.2

Pre-GSReg  Post-GSReg Post-GSReg
r*.-r*
B A
Group A A=+.056
Local Corr. Only
GCOR,=.166 A=-.059 A=-.061
| E— |
Group B l A=-.126
Local and Long A=-.224 / A=-.230
Range Corr.
GCOR,=.273
"local" " "
, long-range , ,
correlations el 3 " Distortion (A) of

Group Differences by
GS Regression

(Saad, 2012, Gotts 201 3)
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0.4

05
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Comparing Groups with GSReg

One seeks and hopes for differences in covariance/
correlation structures between groups.

Using GSReg means each group will be biased
DIFFERENTLY for different region pairs.

- Even in the absence of noise difference, you can find group
correlation differences in places where none existed before.

- OK if you're teaching a classifier to differentiate between the two groups.

- NOT OK if interpreting correlation differences to evoke correlation
differences of neuronally induced BOLD signal between these regions.

With noise previous problems remain

- However bias now depends on the covariance structures
of noise and signals of interest though we can't tell them
apart.

- Interaction between GSReg projection effects and
grouping variable remains
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SAME holds with empirical data

+ GS Regression ANATICOR (Jo,2010)

t-val (N=60)

II241)

TD>ASD

— 2.0

—-2.0

ASD>TD
<-4.0

(Gotts, 2013)
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SAME holds W|th empmcal data

Basic Model + GS Regression . ANATICOR

Group t-tests

TD > ASD

e

ASD>TD

Partial r>0

Partial r<0

Ip< .005

p<.05

p<.05

Ip<.005

Correlation with SRS
(ASD Group)

Ip< 005

p<.05

p<.05

Ip< .005

(Gotts, 2013)

Z.S.S 16/06/13



It is not just GSR

* Nuisance regressors correlated with fluctuations
of interest in regions of interest (not the noise)

will cause the same problems.

* Non-gray matter averages may be comparable to

GSReg (partial voluming with grey matter)

* Averaging over small regions of eroded non-gray
matter tissue are advantageous (Jo, 2010, 2013)

 Decomposition methods that cannot separate
BOLD (fluctuations of interest) from noise also

problematic.
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The Siren’s Song

What of results being more stable after GSR?

There is a denoising component to the approach and bias is
consistent for consistent covariance structure
« However, interpretation of correlations is now difficult (Cole, 2010)
« Interaction effect with grouping variable completely ignored
« Differences can get spread in unknown ways

« Tests of processing methods should always consider group
comparisons

What of GSReg for motion compensation?

Some denoising effect = reducing residual variance and
motion-based group differences

However, caveats from above remain
AND are we actually compensating for motion?
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Grouping Based on Motion

FCON 1000: Cambridge_Buckner

Mean Motion Mean Motion
Small Movers

i J Big Movers

"0.02 0.04 006 008 0.1
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Grouping Based on Motion

FCON 1000: Cambridge_Buckner
B Base

Largest 4 Clusters
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Grouping Based on Motion

FCON 1000: Cambridge_Buckner
B, Base By GSReg

Largest 4 Clusters

3 clusters

002 004 006 008 01
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Grouping Based on Motion

FCON 1000: Cambridge_Buckner

FCON 1000: Beijing Zang

B Base B1 GSReg B Base B1 GSReg

Ole

m

Small > Big ~ Small < Big jla
H
'l:] | cluster 0 clusters
[ I‘ Group leference p<0.01, @=0.05 M Or@ M @@ﬁ On

‘ EI‘ More Motion Difference
: ak. -"r. Much less group difference!

Em 25 um/TR 29 um/TR

Largest 4 Clusters
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0.5 ; 0.5
4 | @ X o4l
% 04 ’ X 04
8 NP Q s
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002 0.04 006 008 0.1 002 004 006 008 0.1 (Saad 201 3)
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The average correlation of
every voxel with every other

voxel in the brain

Grouping Based on Motion

Mean Motion
Small Movers

Mean Motion

I J Big Movers

0.6}
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0.1 : . :
0.02 004 006 0.08 0.1
motion

Note weak correlation between motion and
GCOR (R?=11% Cambridge, 4.3% Beijing)

FCON 1000: Cambridge Buckner

0.02

0.04

0.06 0.08

motion

FCON 1000: Beijing_Zang

0.1
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Can GSReqg help with motion?

Censoring (scrubbing) high motion samples changes inter-
regional correlations in distance dependent manner.

—> suggests effect of motion on correlations depends on distance

between regions (Power et al. 2012)
—> importance of censoring high motion

Data generously made public by Power & Coauthors 2012

(A) GS+MO

Pearson Correlation
Difference

20 50 100 150
Seed-Pair Distance (mm) Z.S.S 16/06/13



Can GSReqg help with motion?

Censoring (scrubbing) samples of high motion changes
inter-regional correlations in a distance manner.
—> suggests effect of motion on correlations depends on

distance between regions (Power et al. 2012)
—> importance of censoring high motion

Less dependence without GSReg
(A) GS+MO MO+WMe, ..

Pearson Correlation
Difference

0 50 100 150 0 50 100 150
Seed-Pair Distance (mm) Z.S.S 16/06/13



Can GSReqg help with motion?

Censoring (scrubbing) samples of high motion changes
Inter-regional correlations in a distance manner.
—> suggests effect of motion on correlations depends on

distance between regions (Power et al. 2012)
—> importance of censoring high motion

Least dependence

LOCAL

(A) GS+MO MO+WMe Despike+MO+WMe, .

Pearson Correlation
Difference

0 50 100 150 0 50 100 150 0 50 100 150
Seed-Pair Distance (mm) 7.5.S 16/06/13



Pearson Correlation
Difference

o C.> = o

2 & o & =

Can GSReg help with motion?

GSReg > Correlation more sensitive to motion
- Correlation more sensitive to censoring

(Jo,2013)

Improved denoising largely eliminates distance dependent bias
(A) GS+MO Despike+MO+WMe

0.2

LOCAL

0.15

-0.15

-0.20 50 100 150 0 50 100 150
Seed-Pair Distance (mm) 7.5.S 16/06/13



Sampling nuisance TS regressors

« Sample noise without aggregating over regions with
fluctuations of interest

* Erode white matter masks to avoid partial voluming

* Avoiding regions with fluctuations of interest  (Anderson 2011)

* Local eroded white matter masks improve denoising without
increasing DOFs (Jo,2010,2013)

« Use decomposition methods that can separate BOLD

from non BOLD fluctuations of interest
(Kundu, 2012, Bright, 2013)

or attempt to identify noise components
(Beckmann 2004, Beall 2010, Boubela, 201 3)

* Use noise models RICOR/RVT/etc.
(Glover 2000; Shmueli 2007; Birn 2008; Chang 2009)
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Brain-wide correlation adjustments?

 |f subject to subject variations in brain-wide
correlations exist, why not correct for them?

* Consider GCOR, the average over the entire
correlation matrix of every voxel with every
other voxel (Saad, 2013)

 Measure would be costly to compute if one had to
estimate the entire correlation matrix first.

 However estimating GCOR is trivial:

Y = 1/(M2 ]\]) lT UT U1l g, 1s the average of all

(M) unit variance time

=1/N guT S series of length N in

matrix U
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GCOR as group level covariate

* Using models described earlier, we consider
group level correlation (differences) from three
models:

No adjustment: rij=Pot+ P1x
GSReg atlevel I:  §;;,=Po+ 1 x
GCOR as covariate: 1;; =Bo + P1x+ P2y +Psxy
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Less bias than with GSReq for 1
sample tests

Mean Correlations with Region 1

I

Q 70 .
£ 0 GSReg
g T X GCOR 3
= o 6

|

o 7

]
- c. _ 8

o
X 1) 9 -
. region

| | | | |
0.8 0.9 1.0 1.1 1.2

Level-1l Base (Bg)
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Comparing Groups

Cowbell
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Group Contrast, Only Local Change

v —\ Base vy -y GCOR v — v GSReg
™ ™ O')!ld-Ei:_T
(o] O (o)
N~ N~ N~
(o)) (o)) (o))

1357 9 1357 9 1357 9

50°
&

o GSReg, p<0.01

op x GCOR, p< 0.01
I I I I

-0.1 0.0 0.1 0.2 0.3
Y-y [ Base

B+
-0.3 0 0.3

B1 Adj. v —v
-0.2 0.0 0.2
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1

9 7 5 3

Group Contrast, Local & Backg. Change

YpL— VY Base YL~V GCOR YL~V GSReg
m g
(g (g
N N
[ 7] o o
13 57 9 13 57 9 13 57 9
X XX o
000 o
B |
o GSReg, p<0.01 ™
x GCOR, p<0.01 <

| | |
-0.1 0.0 0.1 0.2 0.3

Y-y P4 Base
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Largest 4 Clusters

GCOR and Motion Grouping

FCON 1000: Cambridge Buckner FCON 1000: Beijing_Zang
B¢ Base By GSReg B4 GCOR B Base B1 GSReg B4 GCOR

E m (none)  (none)
E m m 1 cluster 0 cluster 0 cluster
B

Small >Big  Small < Big

Group Difference, p<0.01, a=0.05

4 clusters 3 clusters 6 clusters
Mean Motion 3 Mean Motion
A=25 um/TR Small Movers N A=29 Mm/TR / Big Movers
06! |e—s 0.6}
- 05 ¢ 3 Mean GCOR
Big Movers
goa| il goat g " 4
Q st &:‘ : 8 X ot
O 0.3 A:“i.:"‘o h 0.3 2 :} ‘:’A A ]
‘}.&.:?’ .0‘ ~:. : N - i. . '0’ ‘0..’: ::" :".:‘.0’ ..0‘ * v, \
0.2-‘*:.' [ e o 5 | 02} - 1: “eqs +++] Mean GCOR
; ‘ ~ Small Movers
0.1 ' : ' 0.1 ; ; '
0.02 0.04 006 008 0.1 002 004 006 008 01
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GCOR as Group Level Covariate

Correlations less biased with GCOR, than GSReg.

 when GCOR has low correlation with grouping variable

Level-ll tests conservative

« Less likely to detect difference as grouping variable and
covariate correlation increases

Adjustment outside of level |l testis NOT recommended

* There is always potential for interaction effect with group

« GCOR (and other params. (Yan 2013)) depend on noise AND/
OR inter-regional correlations of interest

—>contrast results very likely depend on covariate centering
*Centering at overall mean makes sense if GCOR is driven by noise.
What if it is also driven by correlations of interest?

-> contrast sign might even get reversed
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Conclusions

Stay away from regions with Fluctuations of Interest
GSReg and its variants are bad for group comparisons
One MUST consider interactions of method with grouping variable

®* Generative models clarify matters since there is no base truth

GCOR is very simple to compute and is useful to assess global
correlation levels
Use of GCOR and comparable measures is better than GSReg

 However, their interaction with grouping variable can confound
interpretation

Use should be as last resort
 Use them as covariates and consider interaction terms
« Separate covariate modeling prior to level-1l not recommended
* Risks of false negatives

« Centering issues
Z.5.S 16/06/13



Conclusions

The best approach remains with careful denoising
* motion parameter estimates
« physiological measurements
* |ocal estimates of nuisance signals from eroded white matter

* denoising decompositions in as far as they can dissociate
nuisance estimates from signal fluctuations of interest

Look at your data
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