Got ROIs?

Efficient Modeling through Information Pooling

afni26_ROI-based-modeling.pdf

Gang Chen

Scientific and Statistical Computing Core National Institute of Mental Health National Institutes of Health, USA

Preview

Efficient modeling through information pooling

o How to effectively avoid multiplicity penalty?

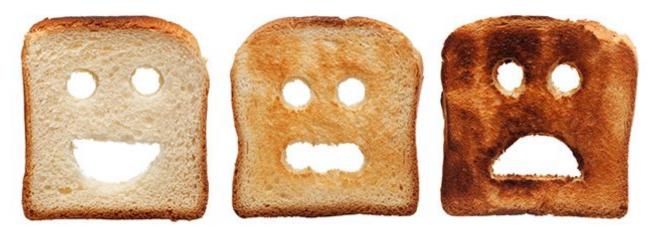
Demo dataset #1

- Resting state: seed-based correlation analysis
- Handling multiple testing through ROI-based group analysis
 - How to avoid penalty of modeling across voxels or ROIs?
- Program available in AFNI: BayesianGroupAna.py

• Demo dataset #2

- Group analysis with correlation matrices among ROIs
- Handling multiple testing for inter-region data (IRD) analysis
 - How to avoid penalty of modeling across voxels or ROIs?
- More applications
 - DTI data: white matter connectivity network
 - Naturalistic data analysis

Are you eating acrylamide for breakfast?



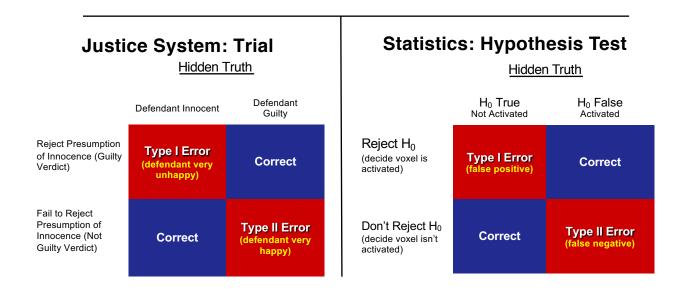
Both sides good One side BURNT Both sides BURNT

- Conditional probability
- Knowledge updating

Conventional Statistical Framework: NHST

• Two types of errors: null hypothesis significance testing (NHST)

- What is **H**₀ in FMRI studies? **H**₀ = no effect (activation, difference, ...) at a voxel
- <u>Type I error</u> = Prob(reject H₀ when H₀ is true) = false positive = p value
 <u>Type II error</u> = Prob(accept H₀ when H₁ is true) = false negative = b
 power = 1-b = probability of detecting true activation
- Goal: control type I error rate while increasing power (decreasing type II errors)
- Significance level α (magic number 0.05) : $p < \alpha$



Problems with NHST

- World is not always discretely YES or NO
 - Dichotomous: Guilt vs. Innocence (mostly)
 - Not dichotomous ("activate" vs. "inactivate") in a brain region
 - Real data for effect estimates are not 0s in the brain
 - Practical goal: what is strength of evidence for a claim?
- Straw man: null hypothesis witch hunt
 - \circ H_0 : scientifically uninteresting; unrealistic characterization of brain regions (especially *en masse*)
 - "False positive": dichotomous misnomer for real data
- Interpretation: conditional probability P (evidence | H_0)
 - p (evidence | H₀) ≠ p (H0 | data) ! $\stackrel{!}{\ominus}$
- Abusive interpretation
 - o Statistically insignificant = Non-existing effect?
 - Choose a voxelwise threshold (e.g., 0.001) and be "done"

Problems with NHST

- Thresholding under NHST: dichotomized decision
 - *p*-value of 0.05 vs 0.051, or cluster size of 54 vs 53 voxels
 - Difference between "significant" & "insignificant" results
 - Selection bias about effect estimates in results reporting
 - Power analysis based on literature: not very useful
 - One source of reproducibility problem
 - Unreliable meta analyses (many effects get lost)
- Cluster thresholding "iceberg above water" approach
 - Using spatial extent as a leverage to control false positives
 - o Cluster threshold of 54 voxels: cannot report 53 voxels?
 - Penalizing anatomically small regions: discrimination!
 - Unfair: 2 regions with same signal strength: 1 large and 1 small size
 - 2 regions with same signal strength: 1 case (distant) and 1 case (contiguous)
 - Sidedness for whole brain: one- or two-sided?

Appetizer #1. everybody loves GLM!

• Dataset #1

- Subjects: *n* = 124 children; resting-state data
- Individual subjects: seed-based correlation for each subject
 - 3D correlation between seed and whole brain ("functional connectivity")
- Explanatory variable (behavior data): Theory of Mind Index x_i

• Voxel-based group analysis: GLMs

- Focus: association between and seed-based correlation (*z*-score)
- Pretense: voxels unrelated
- GLMs: mass univariate
- $m = 100,000 \text{ voxels} \rightarrow$
- *m* = 100,000 models

1st voxel: $\boldsymbol{z}_1 = a_1 + b_1 \boldsymbol{x} + \boldsymbol{\epsilon}_1$ 2nd voxel: $\boldsymbol{z}_2 = a_2 + b_2 \boldsymbol{x} + \boldsymbol{\epsilon}_2$

mth voxel:
$$\boldsymbol{z}_m = a_m + b_m \boldsymbol{x} + \boldsymbol{\epsilon}_m$$

GLMs: dealing with multiplicity!

• Voxel-based group analysis: GLMs

- Penalty time for pretense: multiple testing (m = 100,000), magic 0.05
- Show time for various correction methods
 - Voxel-wise *p*, FWE, FDR, spatial smoothness, clusters, ...
 - Simulations, random field theory, permutations, ...
 - How would dataset turn out under GLM? 4 lucky clusters manage to survive

voxel p	cluster threshold	surviving ROIs	ROIs
0.001	28	2	R PCC, PCC/PrC
0.005	66	4	R PCC, PCC/PrC., L IPL, L TPJ
0.01	106	4	R PCC, PCC/PrC., L IPL, L TPJ
0.05	467	4	R PCC, PCC/PrC., L IPL, L TPJ

Switching from voxels to ROIs: motivations

Motivations of ROI-based approach

- Avoiding arbitrary thresholding and clustering
- No discrimination against small regions
- $_{\circ}$ All regions judged by their strength, not physical size

ROI definitions

- Anatomical atlases
- Functional parcellations
- Previous studies
- Split current data
 - Part for localization and ROI definition, part for ROI-based analysis

Switching from voxels to ROIs: still GLMs

• ROI-based group analysis : GLMs

- Focus: association between and seed-based correlation (*z*-score)
- Pretense: ROIs unrelated
- GLMs: mass univariate
- $m = 100 \text{ ROIs} \rightarrow$
- m = 100 models
- Penalty time for pretense:
 multiple testing what to do?
 - Bonferroni? Unbearable
 - What else?

1st ROI: $\boldsymbol{z}_1 = a_1 + b_1 \boldsymbol{x} + \boldsymbol{\epsilon}_1$ 2nd ROI: $\boldsymbol{z}_2 = a_2 + b_2 \boldsymbol{x} + \boldsymbol{\epsilon}_2$

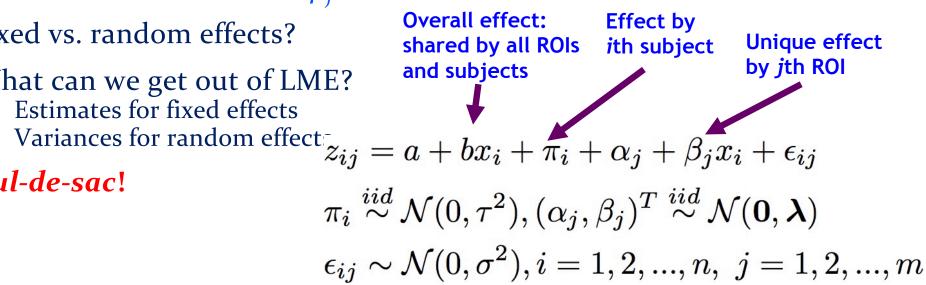
...

mth ROI: $\boldsymbol{z}_m = a_m + b_m \boldsymbol{x} + \boldsymbol{\epsilon}_m$

Switching from GLMs to LME

• ROI-based group analysis : Linear Mixed-Effects modeling

- One model integrates all ROIs
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: Is it far-fetched?
 - Similar to cross-subject variability
- Goal: effect of interest $b + \beta_i$
- Fixed vs. random effects?
- What can we get out of LME?
 - Estimates for fixed effects
- Cul-de-sac!

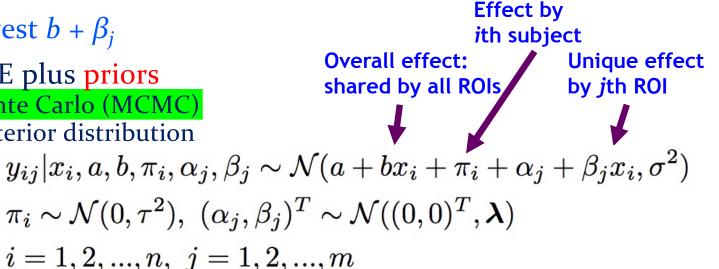


One more jump from LME to BML

• ROI-based group analysis : Bayesian Multi-Level modeling

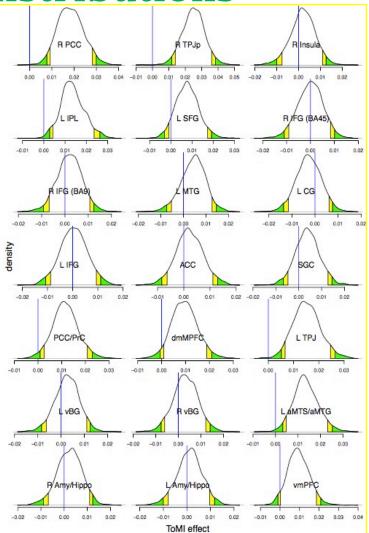
- One model integrates all ROIs: same as LME, but under Bayesian
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: is it far-fetched?
 - Similar to cross-subject variability
- Goal: effect of interest $b + \beta_j$
- Same model as LME plus priors
 - Markov chain Monte Carlo (MCMC)
 - Inferences via posterior distribution

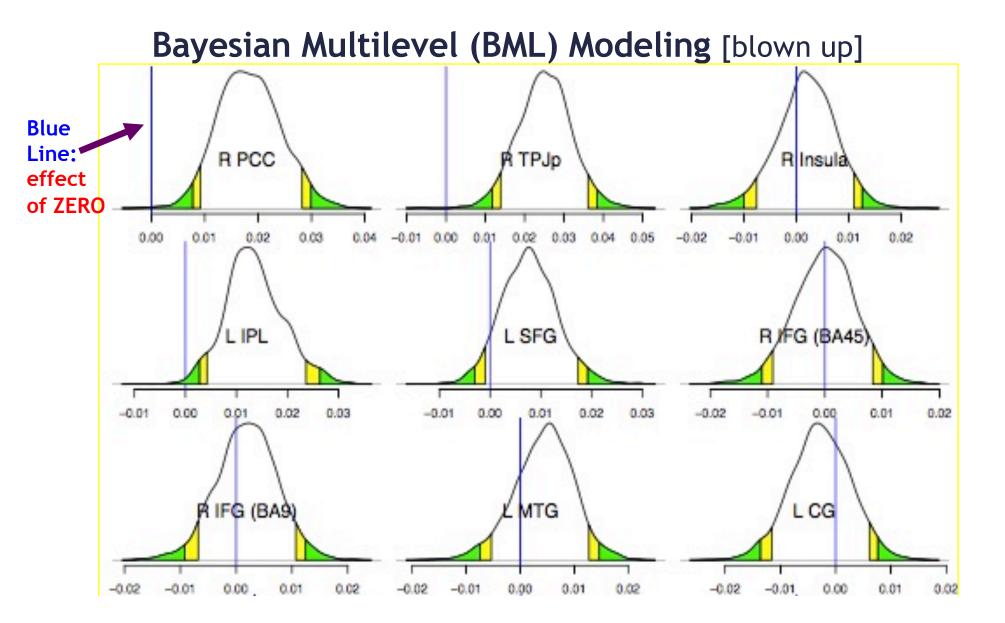
• Ka-ching!



Inferences from BML: full distributions

- ROI-based BML: 21 ROIs
- Full report with richer information: posterior distributions for each ROI
 - No dichotomization
 - No results hiding
 - No discrimination against small regions
- 8 ROIs with strong evidence of effect compared to
 - ROI-wise GLM with Bonferroni
 - Voxel-wise GLM at cluster level





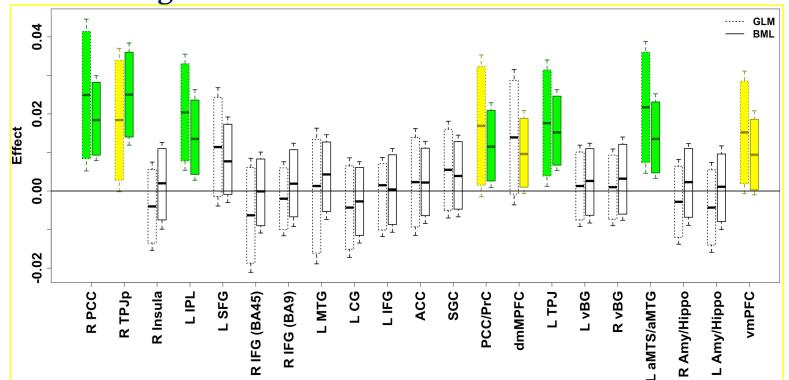
Inferences from BML: quantile interval

- ROI-based BML: 21 ROIs
- full report with a table of quantile intervals
- **8 ROIs** with strong evidence for effect of interest

result			standard error		2.5%		5%		95%		97.5%	
ROI	GLM	BML	GLM	BML	GLM	BML	GLM	BML	GLM	BML	GLM	BML
R PCC	0.025	0.018	0.010	0.006	0.005	0.008	0.008	0.009	0.041	0.028	0.045	0.030
R TPJp	0.018	0.025	0.009	0.007	-0.000	0.012	0.003	0.014	0.034	0.036	0.037	0.038
R Insula	-0.004	0.002	0.006	0.006	-0.015	-0.010	-0.014	-0.008	0.006	0.011	0.007	0.013
L IPL	0.020	0.014	0.008	0.006	0.005	0.003	0.008	0.004	0.033	0.024	0.035	0.026
L SFG	0.011	0.008	0.008	0.006	-0.004	-0.003	-0.001	-0.001	0.024	0.017	0.027	0.019
R IFG (BA45)	-0.006	0.000	0.007	0.005	-0.021	-0.011	-0.019	-0.009	0.006	0.008	0.008	0.010
R IFG (BA9)	-0.002	0.002	0.005	0.005	-0.012	-0.009	-0.010	-0.007	0.006	0.011	0.008	0.012
L MTG	-0.001	0.004	0.009	0.005	-0.019	-0.007	-0.016	-0.005	0.013	0.013	0.016	0.015
L CG	-0.004	-0.003	0.007	0.005	-0.017	-0.014	-0.015	-0.011	0.007	0.006	0.009	0.008
L IFG	-0.002	0.000	0.005	0.005	-0.012	-0.011	-0.010	-0.009	0.007	0.009	0.009	0.011
ACC	0.002	0.002	0.007	0.005	-0.012	-0.008	-0.009	-0.006	0.014	0.011	0.016	0.013
SGC	0.006	0.004	0.006	0.005	-0.007	-0.007	-0.005	-0.005	0.016	0.013	0.018	0.014
$\mathrm{PCC/PrC}$	0.017	0.012	0.009	0.005	-0.001	0.001	0.002	0.003	0.032	0.021	0.035	0.023
dmMPFC	0.014	0.010	0.009	0.005	-0.004	-0.001	-0.001	0.001	0.029	0.019	0.032	0.021
L TPJ	0.018	0.015	0.008	0.005	0.001	0.005	0.004	0.007	0.031	0.025	0.034	0.026
L vBG	0.001	0.003	0.005	0.005	-0.009	-0.008	-0.007	-0.006	0.010	0.011	0.012	0.012
R vBG	0.001	0.003	0.005	0.005	-0.009	-0.008	-0.007	-0.006	0.009	0.012	0.011	0.014
L $aMTS/aMTG$	0.022	0.013	0.009	0.006	0.005	0.003	0.007	0.005	0.036	0.023	0.039	0.025
R Amy/Hippo	-0.003	0.002	0.006	0.005	-0.014	-0.009	-0.012	-0.007	0.006	0.011	0.008	0.012
L Amy/Hippo	-0.004	0.001	0.006	0.005	-0.016	-0.010	-0.014	-0.008	0.005	0.010	0.007	0.012
vmPFC	0.015	0.009	0.008	0.006	-0.001	-0.001	0.002	0.000	0.029	0.019	0.031	0.021

Inferences from BML: standard error

- ROI-based BML: 21 ROIs
- full report with bar graph quantile intervals (better visualization)
 Nothing hidden under sea level
- 8 ROIs with strong evidence for effect of interest



BML: model validations

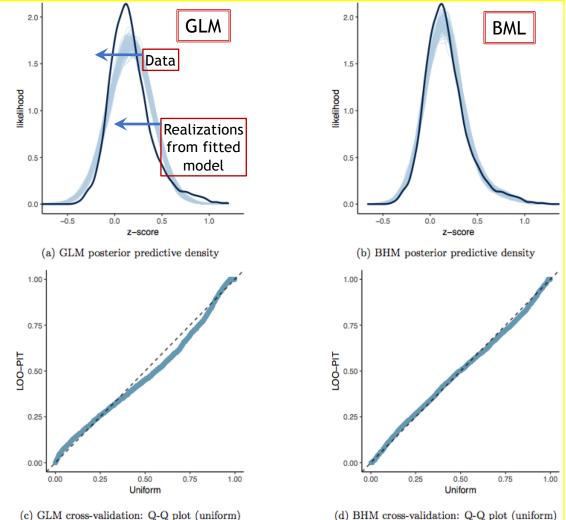
- ROI-based BML with 21 ROIs: cross-validation
 - Leave-one-out information
 criterion (LOOIC)
 Cross-validation

			LOOIC	SE	
GLM			-300.39	98.25	
BML			-2247.06	86.42	
GLM	_	BML	1946.67	96.35	

Posterior predictive checking

• Effects of BML

- Regularizing ROIs: don't fully trust individual ROI data
- Sacrificing fit at each ROI; achieving better overall fit



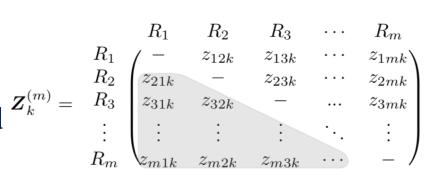
Appetizer #2. more love for GLM!

Dataset #2: correlation matrix

- Subjects: *n* = 41 children; response-conflict task
- Individual subjects: correlation matrix among $m = \frac{16 \text{ ROIs}}{16 \text{ ROIs}}$
- How to go about group analysis?
 - GLM for each element in correlation matrix
 - Binarization approach: graph theory
- More broadly: matrix-based analysis (MBA) ("network modeling")
 - Inter-region correlation (IRC)
 - Structural attribute matrix (SAM)

• Focus on GLM

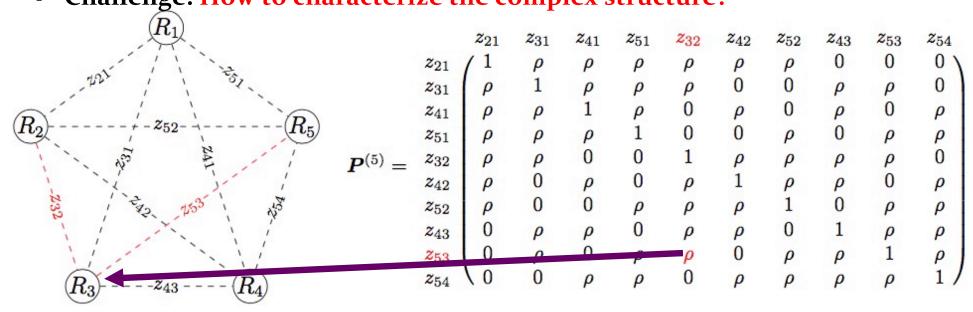
- Student *t*-test or GLM on each element
 - *M* = 120 mass univariate models
- Pretense again: all elements are unrelated
- o Penalty time again: permutations?



Dealing with inter-region data (IRD)

Complexities of IRD

- Some of them are unrelated, but others are correlated
- Correlation structure is intricate
- $_{\circ}$ 0 \leq ρ \leq 0.5
- Can we do a better job than GLMs or dichotomization?
 - Challenge: How to characterize the complex structure?



$IRD_{:}\ switching\ from\ GLM\ to\ LME$

• IRD analysis through linear mixed-effects modeling

- One model integrates all ROIs: LME
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: Is it far-fetched?
 - Similar to cross-subject variability
- Goal: effects of interest
 - Each region pair (RP): $b_0 + \xi_i + \xi_j$
 - Each region: $b_0 + \xi_i$ Overall effect:
- Shared by all
 LME wouldn't work! and subjects
 Cul-de-sac!

hared by all ROIs
nd subjects
$$z_{ijk} = b_0 + \xi_i + \xi_j + \pi_k + \epsilon_{ijk},$$
$$\xi_i, \xi_j \stackrel{iid}{\sim} \mathcal{N}(0, \lambda^2), \pi_k \stackrel{iid}{\sim} \mathcal{N}(0, \tau^2), \epsilon_{ijk} \sim \mathcal{N}(0, \sigma^2)$$
$$i, j = 1, 2, ..., m \ (i > j), k = 1, 2, ..., n,$$

Effect by

Effect by

$IRD_{:} \ one \ more \ jump - from \ LME \ to \ BML$

• IRD analysis through Bayesian multilevel (BML) modeling

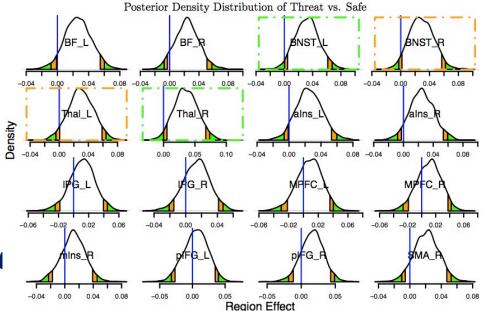
- One model integrates all ROIs: BML (essentially same as LME)
- ROIs loosely constrained
 - Gaussian distribution: Is it far-fetched?
 - Similar to cross-subject variability
- Goal: effects of interest
 - Each region pair (RP): $b_0 + \xi_i + \xi_j$
 - Each region: $b_0 + \xi_i$
- LME plus priors
 - MCMC
 - Posterior distribution

• Ka-ching!

$$\begin{split} & \underset{i}{\overset{\text{KP}}{\underset{i}{i}}: b_{0} + \zeta_{i} + \zeta_{j}}{\underset{\text{shared by all ROIs}}{\overset{\text{Overall effect:}}{\underset{\text{shared by all ROIs}}{\underset{\text{and subjects}}{\overset{\text{ith ROI}}{\underset{i}{j}}: \frac{\underset{\text{Effect by}}{\underset{j}{\text{th ROI}}}{\underset{j}{\underset{j}{\text{th subject}}}} \underset{k}{\overset{\text{Effect by}}{\underset{k}{\underset{k}{\text{th subject}}}}{\underset{k}{\underset{j}{\text{th subject}}}} \\ & \underset{i}{\overset{\text{ion}}{\underset{i}{\underset{i}{j}}} z_{ijk} | b_{0}, \xi_{i}, \xi_{j}, \pi_{k} \sim \mathcal{N}(b_{0} + \xi_{i} + \xi_{j} + \pi_{k}, \sigma^{2}), \\ & \underset{i}{\underset{i}{\underset{i}{j}} = 1, 2, ..., m (i > j), k = 1, 2, ..., n.} \\ \end{split}$$

IRD – ROI effect from BML: full distributions

- ROI-based BML: 16 ROIs
- Full report with richer information:
 posterior distributions for each ROI
 - No dichotomization
 - Nothing hidden under sea level
- 4 ROIs with strong evidence of effect compared to
 - Region effect inferences: unavailable from GLM and graph theory
 - Hubness?



IRD-ROI effect from BML: quantile interval

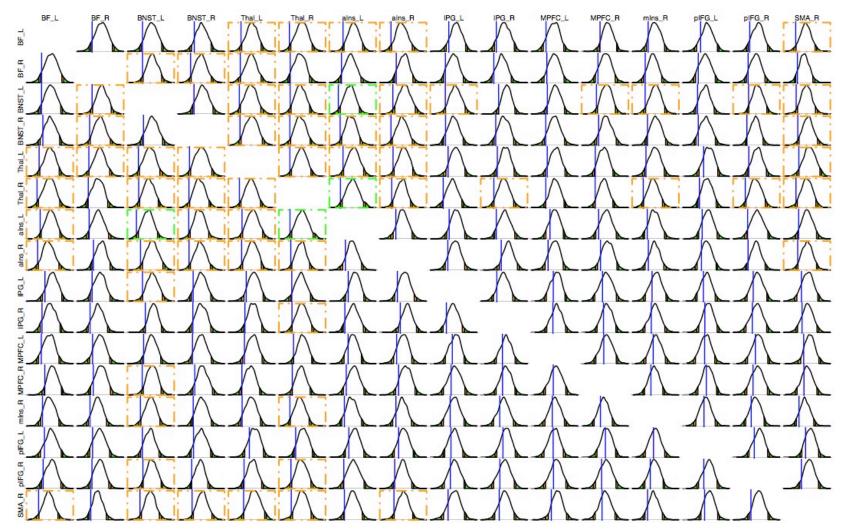
• ROI-based BML: 16 ROIs

• **full report with quantile intervals**

• **4 ROIs** with strong evidence for region effect

			0					
ROI	mean	std err	2.5%	5%	50%	95%	97.5%	
BF_L	0.026	0.017	-0.008	-0.001	0.026	0.055	0.060	
BF_R	0.024	0.016	-0.007	-0.003	0.024	0.051	0.057	
BNST_L	0.032	0.017	0.001	0.005	0.032	0.061	0.067	
BNST_R	0.029	0.017	-0.002	0.002	0.028	0.057	0.062	
$\mathrm{Thal}_{\mathrm{L}}$	0.030	0.017	-0.004	0.001	0.029	0.059	0.064	
$Thal_R$	0.036	0.019	0.000	0.006	0.035	0.067	0.073	
aIns_L	0.025	0.017	-0.006	-0.001	0.025	0.053	0.060	
$aIns_R$	0.025	0.017	-0.008	-0.003	0.025	0.054	0.059	
IPG_L	0.011	0.017	-0.024	-0.018	0.012	0.039	0.045	
IPG_R	0.014	0.017	-0.021	-0.015	0.014	0.041	0.047	
MPFC_L	0.008	0.017	-0.030	-0.021	0.009	0.036	0.040	
MPFC_R	0.010	0.017	-0.026	-0.019	0.011	0.038	0.042	
mIns_R	0.012	0.017	-0.023	-0.017	0.012	0.039	0.045	
pIFG_L	0.005	0.019	-0.032	-0.026	0.006	0.035	0.039	
pIFG_R	0.016	0.017	-0.018	-0.011	0.017	0.043	0.049	
SMA_R	0.021	0.016	-0.010	-0.006	0.021	0.047	0.052	

IRD – RP effect from BML: full distributions

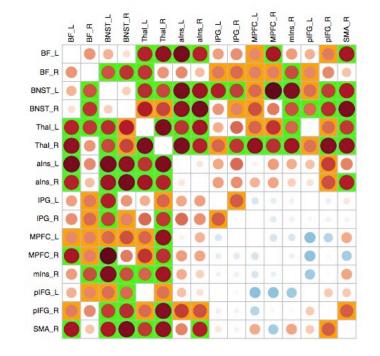


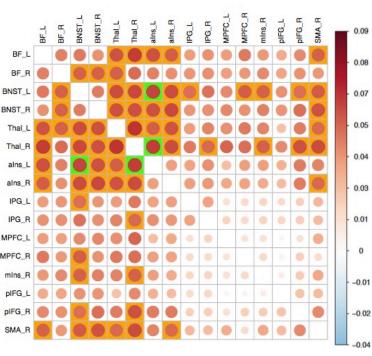
IRD-RP effect from BML

- ROI-based BML: 16 ROIs
- full report for all region pairs (RPs)
- Comparisons with GLMs: nothing hidden under sea level
 - <u>63</u> RPs identified by GLMs with *p* of 0.05: none survived after correction with NBS via permutations
 - 33 RPs with strong evidence under BML

GLM

BML





BML: model validations

• ROI-based BML with IRD of 16 ROIs: cross-validation

• Leave-one-out information

<mark>criterion</mark> (LOOIC)

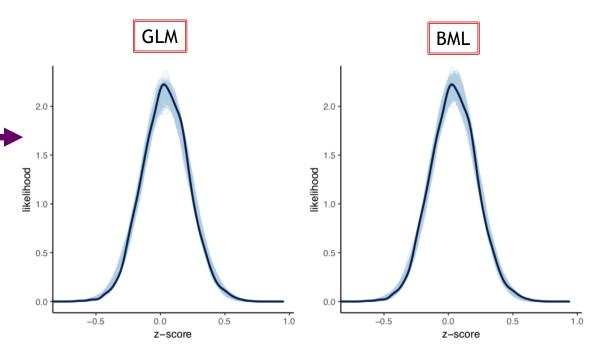
Cross-validation

Model	LOOIC	SE
GLM	-2808.31	101.65
BMLO	-4543.77	102.97

Posterior predictive checking

• Effects of BML

- Regularizing ROIs: don't fully trust individual ROI data
- Sacrificing fit at each ROI; achieving better overall fit



Summary

Efficient modeling through information pooling

o How to effectively avoid multiplicity penalty?

Demo dataset #1

- Resting state: seed-based correlation analysis
- Handling multiple testing through ROI-based group analysis
 - How to avoid penalty of modeling across voxels or ROIs?
- Program available in AFNI: BayesianGroupAna.py

• Demo dataset #2

- Group analysis with correlation matrices among ROIs
- Handling multiple testing for inter-region data (IRD) analysis
 - How to avoid penalty of modeling across voxels or ROIs?
- More applications
 - DTI data: white matter connectivity network
 - Naturalistic data analysis (1:20PM, Sept. 25)

Acknowledgements

- Paul-Christian Bürkner (Department of Psychology, University of Münster)
- Yaqiong Xiao, Elizabeth Redcay, Luiz Pessoa, Joshua Kinnison (Depart of Psychology, University of Maryland)
- Zhihao Li (School of Psychology and Sociology, Shenzhen University, China)
- Lijun Yin (Department of Psychology, Sun Yat-sen University, China)
- Paul A. Taylor, Daniel R. Glen, Justin K. Rajendra, Richard C. Reynolds, Robert W. Cox (SSCC/NIMH, National Institutes of Health)