TEMPLATES AND ATLASES

Abbrevs used here

abbrev	= abbreviation
AKA	= also known as
anat	= anatomical
corr	= correlation
diff	= difference
dset	= dataset
e.g.	= exempli gratia (= "for example")
EPI	= echo planar image
Ex	= example
FOV	= field of view
i.e.	= id est (= "that is")
ijk	= coordinate indices (integer)
NB	= nota bene (= "note well")
phys	= physics or physical
ref	= reference
ROI	= region of interest
subj	= subject
vol	= volume
VOX	= voxel(s)
xyz	= physical coordinates (units of mm)

Template

A reference dataset (typically whole brain) used for matching shapes, reporting coordinates of results, etc. *Ex*: TT_N27+tlrc, MNI_EPI+tlrc, TT_ICBM452+tlrc.

TT_N27+tlrc

Template Space

An (x, y, z) coordinate system shared by many datasets in alignment with a template.

Ex: TLRC (Talairach-Tourneaux), MNI, MNI_ANAT, ORIG.

To see what "space" a dset is in, type: 3dinfo -space DSET_NAME

A note on AFNI usage of "tlrc":

The "+tlrc" extension in a dataset's name is used to denote that the volume in question is in <u>a</u> standardized space; it does not always mean that the standard space in question is the Talairach-Tournoux one, specifically-- it could be MNI, pediatric template, macaque, ...

Hopefully the context makes things clear.

(Typically, there are so many templates for a given space now-- MNI, for example, has several templates-- that one really has to specify the full file name of a template to be able to refer to it unambiguously, anyways.)

Atlas

A dset containing segmentation or parcellation information. It can be considered a "map" of ROIs: each ROI is defined as a set of voxels with a certain integer value (and a string label can be attached to each ROI). *Ex*: TTatlas+tlrc, TT_N27_EZ_ML+tlrc, my_roidset+orig.

TT_N27_EZ_ML+tlrc

See more description about templates+atlases (including making your own) on the AFNI website: https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/template_atlas/framework.html

Definitions

Atlas (or general ROI) label in GUI

Templates included with AFNI

After default AFNI installation, these templates (and others) would be in ~/abin/:

TT_N27

MNI152_T1_2009c

TT_avg152T1 TT_avg152T2

And a quick question: what important properties does each dset here have?

Templates included with AFNI

A helpful note on viewing templates (or any dsets) **each time** you open up the AFNI GUI, regardless of directory!

Set the AFNI_GLOBAL_SESSION variable in your ~/.afnirc file, e.g.,:

AFNI_GLOBAL_SESSION = /home/nmandela/abin

All dsets there will appear in your "Underlay" or "Overlay" menu in the AFNI GUI. (Use full path of directory, no "~" or "\$HOME".)

Templates included with AFNI

A helpful note on viewing templates (or any dsets) **each time** you open up the AFNI GUI, regardless of directory!

Standard spaces

Reasons to use a standard template space:

- Compare across subjects and groups easily for every voxel in the brain
- Standardize coordinates with others
- Know where a voxel is automatically from an atlas
- Mostly automated and no specific ROI drawing required

Reasons not to use a standard template space:

- Inconsistency among subjects
- Inconsistency among groups elderly versus younger
- Use consistent anatomical ROIs with good anatomical knowledge
- Lower threshold for multiple comparison adjustments

Template spaces differ in origin

TLRC, MNI, and MNI-Anat

Template spaces differ in size

The MNI brain is larger than the TLRC brain.

From space to space

For going between TLRC and MNI: Approximate equation

→ used by whereami and 3dWarp A manual TLRC transformation of MNI template to TLRC space

→ used by whereami (as precursor to MNI Anat.), based on N27 template Multiple space coordinates reported in whereami output

(AFNI_ATLAS_TEMPLATE_SPACE_LIST)

For going between MNI and MNI Anat (Eickhoff et al., 2005):

MNI + (0, 4, 5) = MNI Anat. (in RAI coordinate system)

Going between TLRC and MNI Anat (as practiced in whereami): Go from TLRC (TT_N27) to MNI via manual transform of N27 template Add (0, 4, 5) Try to pick a template that...

- is similar to the subject group: neonates, pediatric, young adults, elderly, macaque, rabbit...
- is of the same modality and coverage as your data sets
- has a relevant atlas segmentation.

Try to pick a template that...

- is similar to the subject group: neonates, pediatric, young adults, elderly, macaque, rabbit...
- is of the same modality and coverage as your data sets
- has a relevant atlas segmentation.

You can also make your own template (and maybe an atlas too):

- Individual or group template
 - Group: average or iterative (discussed more later)
- Scripts/commands exist in AFNI
 - Ex. Haskins pediatric atlas
 - several methods tested
 - ¹ best approach: *iterative nonlinear alignment*
 - ♀ @toMNI_Awarp, @toMNI_Qwarpar
 - And now/soon make_template_dask.py

How to transform data to a standard template space

- **@SSwarper** skullstrip and align data to some select standard spaces
- **auto_warp.py** -combination affine and nonlinear alignment to a template
- @auto_tlrc affine alignment to a template
- Manual talairach

Trading Spaces

```
afni_proc.py options
tlrc block before volreg!
-volreg tlrc warp
-tlrc base $tpath/$btemplate
                                   (runs @auto_tlrc)
-tlrc NL warp (runs auto_warp.py)
For @SSwarper output, add these:
-copy anat anatSS.${subj}.nii
-anat has skull no
-tlrc NL warp
-tlrc NL warped dsets
           anatQQ.${subj}.nii
           anatQQ.${subj}.aff12.1D
           anatQQ.${subj} WARP.nii
```

-18-

Registration To Standard Spaces

Transforming Datasets to Talairach-Tournoux Coordinates

- The original purpose of AFNI (circa 1994 A.D.) was to perform the transformation of datasets to Talairach-Tournoux (stereotaxic) coordinates
 Co-Planar Stereotaxic
- The transformation can be manual, or automatic
- In manual mode, you must mark various anatomical locations, defined in

Jean Talairach and Pierre Tournoux

"Co-Planar Stereotaxic Atlas of the Human Brain"

Thieme Medical Publishers, New York, 1988

- Marking is best done on a high-resolution T1-weighted structural MRI volume
- In automatic mode, you need to choose a template to which your data are aligned. Different templates are made available with AFNI's distribution. You can also use your own templates.
- Transformation carries over to all other (follower) datasets in the same directory
 - This is where the importance of getting the relative spatial placement of datasets done correctly in to3d really matters
 - You can then write follower datasets, typically functional or EPI timeseries, to disk in Talairach coordinates
 - ➡ Purpose: voxel-wise comparison with other subjects
 - May want to blur volumes a little before comparisons, to allow for residual anatomic variability: AFNI programs <u>3dmerge</u> or <u>3dBlurToFWHM</u>

Automatic Talairach transform (affine) with @auto_tlrc

- In the olden days, people would spend a lot of time transforming data to standard space by hand (see Supplement slides for how to perform the Manual TLRC transform using the AFNI GUI by setting AC-PC landmarks).
- Here, we describe how to perform a TLRC transform *automatically* using AFNI's
 <u>auto_tlrc</u> (used by *afni_proc.py* for linear affine alignment to standard space).
 - Differences from Manual Transformation:
 - Instead of setting AC-PC landmarks and volume boundaries by hand, the anatomical volume is warped (using 12-parameter affine transform) to a template volume in TLRC space.
 - ¹ The Anterior Commisure (AC) center is no longer at xyz = (0,0,0), and the size of brain box is that of the template you use.
 - For various reasons, some good and some bad, templates adopted by the neuroimaging community are not all of the same size. Be mindful when using various atlases or comparing standard-space coordinates.
 - ¹ You, the user, can choose from various templates for reference (just be consistent in your group analysis).
 - It is easy + automatic. Just check final results to make sure nothing went seriously awry.

-20-

• To run in AFNI_data6/afni/

Transform the subj anat to a template space (output: anat_TT+tlrc):

```
@auto_tlrc
   -base TT_N27+tlrc
   -suffix _TT
   -input anat+orig
```

 Then apply the transform stored in anat_TT+tlrc's header to a "follower dset" (here, func data), specifying output resolution at 3 mm (output: func_slim_TT+tlrc):

```
@auto_tlrc \
    -apar anat_TT+tlrc \
    -input func_slim+orig \
    -suffix _TT \
    -dxyz 3
```

Instead of TT_N27, you could also use the icbm452, or the mni's avg152T1 template, or any other template you like (see @auto_tlrc -help for a few good words on templates)

Nonlinear alignment to template

3dQwarp, through multiple levels of refinement \rightarrow

Nonlinear alignment to template

Multiple nonlinear alignment tools in AFNI 3dQwarp: the standard nonlinear workhorse

auto_warp.py: wrapper for alignment functionality, ~simpler syntax
 (@auto_tlrc + 3dQwarp together)
Ex: auto_warp.py -base MNI152_T1_2009c+tlrc. \
 -suffix _awarp -input strip+orig.

@SSwarper: skull stripping and alignment in one-- and bonus automatic QC images ______

+ @SSwarper uses a multi-volume base; several exist for standard templates already, and more can be made-- see full description for these online:

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/ template_atlas/sswarper_base.html

Can compare: nonlinear alignment vs affine alignment

- + Estimate warp from subject anat to template for a group of subjects
- + Apply warp when processing FMRI data (here, resting state)
- + Check changes in seed-based correlation maps between results
 - better method would have higher corr in GM networks and lower corr in WM.

-24-

Can compare: nonlinear alignment vs affine alignment

- + Estimate warp from subject anat to template for a group of subjects
- + Apply warp when processing FMRI data (here, resting state)
- + Check changes in seed-based correlation maps between results
 - better method would have higher corr in GM networks and lower corr in WM.

red: [0.066, 0.100] corr
increase for 3dQwarp results

blue: [0.066, 0.100] corr *decrease* for 3dQwarp results

- ◆ 3dQwarp → align 188 Cambridge datasets from FCON-1000
- Underlay = template-ized T_1 anats
- Overlay = difference in mean seed-based correlation maps when using 3dQwarp alignment to detailed template versus
 - ✤ [upper] affine alignment to MNI-152

-25-

Can compare: using detailed vs non-detailed template for nonlinear alignment

- + Estimate warp from subject anat to template for a group of subjects
- + Apply warp when processing FMRI data (here, resting state)
- + Check changes in seed-based correlation maps between results
 - better method would have higher corr in GM networks and lower corr in WM.

-26-

Can compare: using detailed vs non-detailed template for nonlinear alignment

- + Estimate warp from subject anat to template for a group of subjects
- + Apply warp when processing FMRI data (here, resting state)
- + Check changes in seed-based correlation maps between results
 - better method would have higher corr in GM networks and lower corr in WM.

red: [0.066, 0.100] corr
increase for 3dQwarp results

blue: [0.066, 0.100] corr *decrease* for 3dQwarp results

⁽Cox & Glen, 2013, OHBM)

-27-

Can compare 3dQwarp with other available nonlinear alignment tools
+ For a group of subjects, estimate warp from anat to template
+ Apply warp to labeled ROIs, and measure % overlap in results.

ANTS, DARTEL and FNIRT run with default settings

(Cox & Glen, 2013, OHBM)

<u>Can compare 3dQwarp with other available nonlinear alignment tools</u>
+ For a group of subjects, estimate warp from anat to template
+ Apply warp to labeled ROIs, and measure % overlap in results. (Yellow: >90% overlap)

ANTS, DARTEL and FNIRT run with default settings

(Cox & Glen, 2013, OHBM)

-29-

Nonlinear alignment to standard space

<u>Advantages</u>

• Better spatial correspondence across data

 \rightarrow consistent data reinforces across group

• Final data matches template (reporting coordinates, etc.)

Disadvantages

- Individual data is distorted
- Aligned data matches template. Choose template carefully
- Skullstripping must be done much more carefully

→ note that **@SSwarper** actually *combines* nonlinear warping with skullstripping, so benefit now!

 Processing time much slower (but... such is life)

(Cox & Glen, 2013, OHBM)

AFNI binary directory for datasets and configuration AFNI_atlas_spaces.niml describe the distributed atlases CustomAtlases.niml and SessionAtlases.niml allow for more atlases and templates

Saving the Environment

AFNI_ATLAS_LIST "CA_ML_18_MNI,DKD_Desai_MPM" "ALL"

AFNI_TEMPLATE_SPACE_LIST "MNI,TLRC" AFNI_ATLAS_COLORS CA_ML_18_MNI AFNI_SUPP_ATLAS_DIR ~/MyAtlases AFNI_WHEREAMI_DEC_PLACES 2 AFNI_WHEREAMI_MAX_SEARCH_RAD 3

Atlases distributed with AFNI: TT_Daemon

- TT_Daemon : Created by tracing Talairach and Tournoux brain illustrations.
 - Generously contributed by Jack Lancaster and Peter Fox of RIC UTHSCSA)

-32-

Caution: Talairach Daemon (TT_Daemon) problems

This piece is labeled as BA 6, but is really another part.

Atlases distributed with AFNI: "Anatomy Toolbox"

- CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with some created from cytoarchitectonic studies of 10 human post-mortem brains
 - Probabilistic maps and max. probability maps generously contributed by K. Amunts, S. Eickhoff, and K. Zilles of IME, Julich, Germany

○ ○ ○ 🛛 [A] AFNI: ziad/abin/TT_N27+tlrc & TT_N27_CA_EZ_PMaps+tlrc

-34-

Atlases distributed with AFNI: "Anatomy Toolbox"

- CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with some created from cytoarchitectonic studies of 10 human post-mortem brains
 - Probabilistic maps and max. probability maps generously contributed by K. Amunts, S. Eickhoff, and K. Zilles of IME, Julich, Germany

'OLADEIS!	QUIT		
Atlas CA_ML_18_MNIA: N	Macro Labels (N27)		
Focus point: Left SupraMarginal Gyrus			
Within 4 mm: Left Superior Temporal Gyrus			
Within 6 mm: Left Middle Temporal Gyrus			
Atlas CA_MPM_18_MNIA: Cytoarch. Max. Prob. Maps			
Focus point: IPC (PF)			
Within 2 mm: IPC (PFm)			
Within 3 mm: IPC (PFcm)			
Within 5 mm: IPC ((PGa)		
Within 7 mm: TE 3			
Atlas CA_PM_18_MNIA: (Cytoarch. Probabilistic Maps		
Focus point: IPC (PFm)			
(p = 0.40)			
-AND- IPC (PFcm)			
(p = 0.20)			
-AND- IPC (PF)			
(p = 0.60)			
Atlas CA_LR_18_MNIA: L	.eft/Right (N27)		
Focus point: Left	Brain		

Atlases distributed with AFNI: Desai PMaps and MPMs

 Atlases generated with typical AFNI pipeline using @auto_tlrc and FreeSurfer segmentation across multiple subjects

Using atlases in AFNI GUI

- Some fun and useful things to do with +tlrc datasets are on the 2D slice viewer. Ex: can be run in ~/AFNI_data6/afni/
 - 1) Right click to get menu:
 - \diamond [Go to Atlas Location]

Lets you jump to centroid of regions to current default atlas (set by AFNI_ATLAS_COLORS) Works in +orig, too.

11.

-37-

Atlas colors]

Lets you show atlas regions over your own data (works only in +tlrc).

[Where am I?]

Shows you where you are in various atlases and spaces

(works in +orig too, if you have a transformed parent)

For atlas installation, and much, much more, see help in command line version:

whereami -help

Quit

AFNI whereami

+++++ nearby Atlas structures ++++++ Original input data coordinates in TT_N27 space

Focus point (LPI)=

-54 mm [L], -43 mm [P], 25 mm [S] {TLRC}

-58 mm [L], -44 mm [P], 27 mm [S] {MNI} NeuroSynth SumsDB

-58 mm [L], -48 mm [P], 32 mm [S] {MNI_ANAT}

Atlas HaskinsPeds_NL_atlas1.0: session atlas

Focus point: ctx-lh-superiortemporal

Within 4 mm: ctx-lh-supramarginal

Within 5 mm: ctx-lh-bankssts

Within 7 mm: ctx-lh-inferiorparietal

Atlas TT_Daemon: Talairach-Tournoux Atlas

Focus point: Left Inferior Parietal Lobule

-AND- Left Brodmann area 40

Within 2 mm: Left Supramarginal Gyrus

Within 3 mm: Left Brodmann area 13

Within 4 mm: Left Superior Temporal Gyrus

Within 5 mm: Left Brodmann area 22

Within 6 mm: Left Insula

whereami can combine usefully with 3dClusterize:

- 1) 3dClusterize finds cluster volumes, and
- 2) whereami provides detailed info like overlap with atlas regions

```
Ex: can be run in ~/AFNI_data6/afni/
```

```
# Threshold the index-0 vol (an F-stat) at >9.5 and
# find clusters with >=1000 voxels
3dClusterize -1sided RIGHT 9.5
    -clust_nvox 1000 -NN 1
    -inset func_slim+orig -ithr 0 -idat 0
    > clusts.1D
```

Use the center of mass coords in # cols [1,2,3] to show location according # to several atlases (TT, MNI, etc.); also # shows nearby structures whereami

-coord_file \
clusts.1D'[1,2,3]' \
-tab | more

Input coord	linates or	ientation set by	default rules to RA	I			
+++++ nearby Atlas structures ++++++							
iginal input	: data coo	ordinates in TLRC	space				
cus point (L	PI)		Coord.Space				
0 mm [L].	0 mm [P). 0 mm [S]	{Unknown}				
2 mm [R].	-60 mm [P	9 mm [S]	{TT N27}				
2 mm [R].	-60 mm [P	9 mm [S]	$\{TT avg\}$				
las	Within	Label	[]	Prob.	Code		
Daemon	0.0	Right Posterior	Cinqulate	MPM	20		
Daemon	2.0	Right Cuneus	etilgetete	МРМ	40		
	3.0	Left Posterior	Cinculate	мрм	220		
	4.0	Left Cupeus	Cligatate	мрм	240		
		Picht Lingual C		мрм	270		
	0.0	Dicht Colcocioo		nen	22 A A		
	0.0		Gyrus		44		
	1.0		Gyrus		43		
_NZ7_ML	1.0	Left Lingual Gy	rus		47		
_N27_ML	2.0	Right Lingual G	yrus		48		
_N27_ML	5.0	Cerebellar Verm	is (4/5)		111		
_N27_MPM	0.0	Area 17			181		
_N27_MPM	3.0	Area 18			240		
_N27_PM	0.0	Агеа 17		0.60	38		
N27 PM	0.0	Area 18		0.30	67		

-40-

whereami can also report the overlap of ROIs with atlases *Ex:* can be run in ~/AFNI_data6/afni/

```
# Quick way to make test ROI a sphere at a given location)
echo -14 66 23 > tmp.txt
3dUndump
  -xyz
  -prefix tmproi.nii.gz
  -master anat+tlrc
                                        ++ Input coordinates orientation set by default rules to RAI
  -datum byte
                                        ++ In ordered mode ...
                                         ++ Have 2 unique values of:
  -srad 9.5
                                           0
                                              1
                                         ++ Skipping unique value of 0
   tmp.txt
                                           _____
                                          + Processing unique value of 1
                                             3695 voxels in ROI
# report overlap
                                              3695 voxels in atlas-resampled mask
whereami \
                                        Intersection of ROI (valued 1) with atlas TT Daemon (sb0):
                                           63.3 % overlap with Right Precuneus, code 45
      -omask tmproi.nii.gz
                                           17.6 % overlap with Right Cuneus, code 40
                                           7.9 % overlap with Right Posterior Cingulate, code 20
                                           88.8 % of cluster accounted for.
                                         Intersection of ROI (valued 1) with atlas TT Daemon (sb1):
                                           29.7 % overlap with Right Brodmann area 31, code 107
                                           10.2 % overlap with Right Brodmann area 18, code 95
                                           3.2 % overlap with Right Brodmann area 7. code 87
```

-41-

Make your own template

Make your own template - faster, easier!

make_template_dask.py - Dask parallelization - 10, 100 or 1000 subjects on a cluster, server or PC

Make your own atlas!

• New atlases - easy and fun. Make your own!

* make available in AFNI GUI and whereami and to other user

@AfniEnv -set AFNI_SUPP_ATLAS_DIR ~/MyCustomAtlases/

Then:

```
@Atlasize -space MNI -dset atlas_for_all.nii \
        -lab_file keys.txt 1 0 -atlas_type G
```

In ~/MyCustomAtlases/ you will now find atlas_for_all.nii along along with a modified CustomAtlases.niml file.

Haskins Pediatric Atlas

- Pediatric brain atlas and templates (7-12 years old) - Peter Molfese, (formerly Haskins Labs, now at NIH - woohoo!)
- Manually corrected segmentation from Freesurfer.
- Probabilistic, MPM and template
- ~75 subjects → 500 (ages 6-13)
- Affine, nonlinear averages, ideal/typical subjects, outliers

Haskins Pediatric Atlas: the templates

🔿 🔿 🔿 🔀 [A]u AFNI: molfese 🔿 🔿 🖓 [A]u AFNI: molfese_peds/Affine 🔿 🔿 🐼 [A]u AFNI: molfese_ped.

Affine Group

Nonlinear Group I iterative

ALTERNATIVE ATLAS CREATION TECHNIQUES: ITERATIVE AND TYPICAL METHODS

Iterative nonlinear alignment to affine template with progressively smaller patch sizes

"Typical" Brain

Haskins Pediatric Atlas

Templates and Atlases across Species in AFNI

Atlases and Templates Available!

 Infant brain atlas and templates – neonate, 1-year, 2-year. Contributed by Feng Shi, UNC

 Cerebellum atlas and templates – Jorn Diedrichsen,UCL,UK contribution

More Atlases and Templates Available!

Ventromedial Prefrontral Cortex (vmPFC, Scott Mackey)

Waxholm Rat Atlas - Papp, et al. Rat brain templates in Paxinos space – Karolinska Institute, Woo Hyun Shim MGH contributions

BNST – Torrisi, NIMH

All of these are user requests or contributions! What do you need?

-51-

Even More Atlases and Templates Available!

Brainnetome

Allen Mouse Brain

All of these are user requests or contributions! What do you need?

-52-

Saleem macaque atlas – MRI, surfaces, connections, supplemental webpages

-53-

Saleem macaque atlas – MRI, surfaces, connections, supplemental webpages (in development)

-54-

15R 0:46v

Mapping the digital atlas onto different macaques MRI D99 - Digital atlas

Reveley, Gruslys, Ye, Samaha, Glen, Saad, Seth, Leopold, and Saleem (in preparation)

12.25R 0:46v medium female

NMT (NIH Macaque Template)

Group template from 31 macaques (+ surfaces, GM/WM/CSF segmentation)

(Seidlitz, et al., 2017)

-56-

NIH Marmoset Template

Individual marmoset template - 150um resolution

(Liu, Ye, Yen, Newman, Glen, Leopold, Silva, 2018)

2018: *improved* NIH Marmoset Template

Better Data

Detailed labels

Support with tracing data, connectome and atlas utilities

(Liu et al., 2018, SfN)

Individual Subjects

@SUMA_MakeSpecFS - atlasizes too!

Overlay panel shows structure name. Now FreeSurfer segmentation can also be used in **whereami.**

In Development

- New templates and template spaces fully supported in AFNI
 - * macaque
 - * rat, mouse, (zebrafish?)
 - human
 - toddler, elderly, Indian
- Extra information about atlas structures long names, web links,
- HAWG standardized format atlases for everyone!

HCP Atlas -Glasser → Megan Robinson and Mike Beauchamp

18S	18S	18S	18S	18S	18S	18S
		Parameter a				
18P	18P	18P		18P	18P	18P
4L	4L	4L	4L	4L	4L	4L

Indian Brain Template C2: IBT

Dask Template task graph

Upcoming atlases

• Eickhoff-Zilles 2.2 cytoarchitectonic atlas

Version 2.2 vs Version 1.8

Upcoming atlases

 Jurgen Mai Human Brain Atlas -Brodmann Areas!

Zebrafish atlas 2 micron data! Harold Burgess, NIH

Supplements

extra stuff

Reading/creating labeltables

The text or string description of each ROI can be added to a dset by creating a "labeltable" that is either added to a file's header or is a

separate file pointed to in the header.

To view a labeltable on a dset:

3dinfo -labeltable DSET_NAME

<VALUE_LABEL_DTABLE ni_type="2*String" ni_dimen="118" > "4" "Left-Inf-Lat-Vent" "10" "Left-Pallidum" "79" "ctx-lh-transversetemporal" "88" "ctx-rh-inferiorparietal" "97" "ctx-rh-paracentral" "5" "Left-Cerebellum-White-Matter" "11" "3rd-Ventricle" "20" "Left-choroid-plexus" "89" "ctx-rh-inferiortemporal" "98" "ctx-rh-parsopercularis"

Reading/creating labeltables

The text or string description of each ROI can be added to a dset by creating a "labeltable" that is either added to a file's header or is a

separate file pointed to in the header.

-dset

```
To view a labeltable on a dset:

3dinfo -labeltable DSET_NAME

To make a labeltable and attach it to a file:

@MakeLabelTable \

-lab_file LABEL_FILE 1 0 \

-labeltable OUTPUT LT \
```

DSET NAME

ni_dimen="118" >
"4" "Left-Inf-Lat-Vent"
"10" "Left-Pallidum"
"79" "ctx-lh-transversetemporal"
"88" "ctx-rh-inferiorparietal"
"97" "ctx-rh-paracentral"
"5" "Left-Cerebellum-White-Matter"
"11" "3rd-Ventricle"
"20" "Left-choroid-plexus"
"89" "ctx-rh-inferiortemporal"
"98" "ctx-rh-parsopercularis"

<VALUE_LABEL_DTABLE ____i_type="2*String"

where LABEL_FILE contains one column of integer keys and one column of string values; OUTPUT_LT is the name for the created new table; and DSET NAME is the dset it gets attached to.

S2: Manual transform to Talairach space using AFNI GUI

To start, right click on "DataDir" in the GUI or set AFNI_ENABLE_MARKERS to YES in ~/.afnirc.

Manual Transformation proceeds in two stages:

1) Alignment of AC-PC and I-S axes (to +acpc coordinates)

2) Scaling to Talairach-Tournoux Atlas brain size (to +tlrc coordinates)

- Stage 1: Alignment to **+acpc** coordinates: ۲
 - Anterior commissure (AC) and posterior commissure (PC) are aligned to be the \diamond y-axis
 - The longitudinal (inter-hemispheric or mid-sagittal) fissure is aligned to be the \diamond yz-plane, thus defining the z-axis
 - The axis perpendicular to these is the x-axis (right-left) \diamond
 - Five markers that you must place using the **[Define Markers]** control panel: \diamond

AC superior edge	= top middle of anterior commissure
<u>AC posterior margin</u>	= rear middle of anterior commissure
PC inferior edge	= bottom middle of posterior commissure

- = bottom middle of posterior commissure
- First mid-sag point = some point in the mid-sagittal plane

<u>Another mid-sag point</u> = some other point in the mid-sagittal plane

- This procedure tries to follow the Atlas as precisely as possible \diamond
 - \rightarrow Even at the cost of confusion to the user (e.g., you)

-69-

• <u>Stage 2: Scaling to Talairach-Tournoux (+tlrc)</u> <u>coordinates</u>:

 Once the AC-PC landmarks are set and we are in ACPC view, we now stretch/shrink the brain to fit the Talairach-Tournoux Atlas brain size (sample TT Atlas pages shown below, just for fun)

• <u>Selecting the Talairach-Tournoux markers for the bounding box</u>:

- There are 12 sub-regions to be scaled (3 A-P x 2 I-S x 2 L-R)
- * To enable this, the transformed +acpc dataset gets its own set of markers
 - Click on the [<u>AC-PC Aligned</u>] button to view our volume in ac-pc coordinates
 - ^I Select the [Define Markers] control panel
- A new set of six Talairach markers will appear and the user now sets the bounding box markers (see Appendix C for details):

- Once all the markers are set, and the quality tests passed. Pressing [<u>Transform Data</u>] will write new *header* containing the Talairach transformations (see Appendix C for details)
 - ^I Recall: With AFNI, spatial transformations are stored in the header of the output
@auto_tlrc Results are Comparable to Manual TLRCing

Comparison of results from "follower" func dsets: similar reduction in spurious voxels with high correlation.

@auto_tlrc

Manual