Group Analysis

File: afni24_GroupAna.pdf

Gang Chen

SSCC/NIMH/NIH/DHHS/USA/Earth

Program List

- **3dttest++** (GLM: one-, two-sample, paired *t*, between-subjects variables)
- **3dMVM** (generic AN(C)OVA)
- **3dLME** (sophisticated cases: missing data, within-subject covariates)
- **3dMEMA** (similar to 3dttest++: measurement errors)
- **3dANOVA** (one-way between-subject)
- **3dANOVA2** (one-way within-subject, 2-way between-subjects)
- **3dANOVA3** (2-way within-subject and mixed, 3-way between-subjects)
- **3dttest** (obsolete: one-sample, two-sample and paired *t*)
- **3dRegAna** (obsolete: regression/correlation, covariates)
- **GroupAna** (obsolete: up to four-way ANOVA)
- **3dICC** (intraclass correlation): prototype only
- **3dISC** (intersubject correlation): prototype only

Preview of Coming Attractions

- Concepts and terminology
- Group analysis approaches
 - 。GLM: 3dttest++, 3dMEMA
 - GLM, ANOVA, ANCOVA: 3dMVM
 - LME: 3dLME
 - Presumed vs. estimated HDR (i.e., fixed vs. variable shape)
- Miscellaneous
 - Issues with covariates
 - Intra-Class Correlation (ICC)
 - Inter-Subject Correlation (ISC)

Goal = Give outline of AFNI capabilities in group analyses Decisions about complex situations require help https://afni.nimh.nih.gov/afni/community/board

Why Group Analysis?

- Reproducibility and generalization
 - Summarization
 - Generalization: from current results to population level
 - Typically 10 or more subjects per group
 - Individualized inferences: pre-surgical planning, lie detection, ...
- One model combining both steps (single subject and group)?
 - + Ideal: less information loss, more accurate inferences
 - $_{\circ}$ Historical
 - Computationally unmanageable, and very hard to set up
 - Data quality check at individual level

Simplest case

- BOLD responses from a group of 20 subjects

 data: (β₁, β₂, ..., β₂₀)=(1.13, 0.87, ..., 0.72)
 mean: 0.92
 - $_{\circ}$ standard deviation of the betas: 0.40 or .90
 - Do we have strong evidence for the effect being nonzero?
- Statistical modeling perspective

 Simplest GLM: one-sample *t*-test

$$\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

• Statistical evidence - *t*-test: $\hat{b}/(\hat{\sigma}/n)$

summarization: b (dimensional), sd, and t (dimensionless)

Terminology

- Response/outcome variable: left-hand side of model

 Regression β_i coefficients (plus measurement errors)
 Structured: subjects, tasks, groups
- Explanatory variables: right-hand side of model

 Categorical (factors) vs quantitative (covariates)
 Fixed- vs random-effects: conventional statistics
- Type of Models
 - Univariate GLM: Student's *t*-tests, regression, AN(C)OVA
 - Multivariate GLM: within-subject factors
 - LME: linear mixed-effects model
 - MEMA: mixed-effects multilevel analysis
 - BML (Bayesian multilevel model)

<u>Terminology</u>: categorical vs quantitative

- Factors
 - Finite (small) number of levels: categories (coded by labels)
 - Within-subject (repeated-measures): tasks, conditions
 - Between-subjects
 - patients/controls, genotypes, scanners/sites, handedness, …
 - Each subject nested within a group
 - Subjects: random-effects factor measuring randomness
 - Of no intrinsic interest: random samples from a population
- Quantitative variables
 - $_{\circ}$ numeric or continuous
 - o age, IQ, reaction time, brain volume, ...
 - 3 usages of "covariate"
 - No interest:
 - Qualitative (e.g., scanner/site, groups)
 - Quantitative (e.g., per subject amount of head motion)
 - Explanatory variable (e.g., subject age, anxiety score)

<u>Terminology</u>: fixed vs random

- Fixed-effects variables
 - Of research interest
 - Visual vs auditory, age, ...
 - Unable to extend to something else
 - Modeled as constants, not random variables
 - Shared by all subjects
 - Not exchangeable/replaceable or extendable to something else
- Random-effects variables (mean + random part)
 - Of research interest? $\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$
 - Subjects: random samples
 - Trials, regions?
 - Modeled as random variables: Gaussian distributions
 - Exchangeable, replaceable, generalizable
- Differentiations blurred under BML (Bayesian Multi-Level)

Terminology: main effects

- Main effect for a fixed-effects factor
 - Omnibus: overall inference or summarization
 - e.g., Evidence for differences across 3 levels
 - Conventional ANOVA framework
 - *F*-statistic: not detailed enough
 - Tells you *something* is different, but not *which one*
 - Further partitions: post hoc inferences via pairwise comparisons
 - *F*-statistic as a two-sided test?
 - 1) A > B, 2) A < B 3) $A \neq B$

Terminology: interactions

- Interaction effect between 2 or more factors
 - Omnibus: overall inference or summarization
 - Conventional ANOVA framework
 - *F*-statistic: not detailed enough to tell what specifically is happening
 - Further partitions: post hoc inferences via pairwise comparisons
 - $_{\circ}$ 2 × 2 design: difference of difference
 - *F*-test for 2x2 interaction = *t*-test of

(A1B1 - A1B2) - (A2B1 - A2B2) or (A1B1 - A2B1) - (A1B2 - A2B2)

Terminology

- Interaction effect involving a quantitative variable
 - By default: linearity (age, modulation, ...)
 - Controlling: misconception e.g., "covary out" age differences?
 - or, Effect of interest
 - Interaction between a factor and a quantitative variable

Terminology

- Interaction effect involving a quantitative variable
 - \circ Validity of linearity of β with (e.g.) age
 - Nonlinear: difficult (too much freedom)! Polynomials? Theory-driven?

Example: 2 × 3 Mixed ANCOVA

- Explanatory variables
 - Factor A (Group): 2 levels (patient and control)
 - Factor B (Condition): 3 levels (pos, neg, neu emotional words)
 - Factor S (Subject): 15 ASD children and 15 healthy controls
 - Quantitative covariate: Age
- Piecemeal: multiple *t*-tests too tedious
 - Group comparison + age effect
 - Pairwise comparisons among three conditions
 - Assumption: same age effect across conditions
 - Difficulties with *t*-tests
 - Main effect of Condition: 3 levels plus age?
 - Interaction between Group and Condition
 - Age effect across three conditions?

Classical ANOVA: 2 × 3 Mixed ANOVA (no covariate)

- Factor A (Group): 2 levels (patient and control)
- Factor B (Condition): 3 levels (pos, neg, neu)
- Factor S (Subject): 15 ASD children and 15 healthy controls
- Covariate (Age): cannot be modeled; no correction for sphericity violation

$$F_{(a-1,a(n-1))}(A) = \frac{MSA}{MSS(A)},$$

$$F_{(b-1,a(b-1)(n-1))}(B) = \frac{MSB}{MSE},$$

$$F_{((a-1)(b-1),a(b-1)(n-1))}(AB) = \frac{MSAB}{MSE},$$

Different
denominators

where

$$MSA = \frac{SSA}{a-1} = \frac{1}{a-1} \left(\frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{abn} Y_{..}^{2} \right),$$

$$MSB = \frac{SSB}{b-1} = \frac{1}{b-1} \left(\frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} - \frac{1}{abn} Y_{...}^{2} \right),$$

$$MSAB = \frac{SSAB}{b-1} = \frac{1}{b-1} \left(\frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} - \frac{1}{abn} Y_{...}^{2} \right),$$

$$MSAB = \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)} \left(\frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} + \frac{1}{abn} Y_{...}^{2} \right),$$

$$MSS(A) = \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)} \left(\frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} \right),$$

$$MSE = \frac{1}{a(b-1)(n-1)} \left(\sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{ijk}^{2} - \frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} + \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} + \frac{1}{abn} Y_{...}^{2} \right)$$

-14-

Univariate GLM: 2 x 3 mixed ANOVA

- Group: 2 levels (patient and control)
- Condition: 3 levels (pos, neg, neu)

Difficult to incorporate covariates

- Broken orthogonality of matrix
 No correction for sphericity violation
- Subject: 3 ASD children and 3 healthy controls

Univariate GLM: problematic implementations

(in some other software we won't name)

Two-way mixed ANOVA

Between-subjects Factor A (Group): 2 levels (patient, control) Within-subject Factor B (Condition): 3 levels (pos, neg, neu)

1) Omnibus tests

2) Post hoc tests (contrasts)

- Incorrect *t*-tests for factor A due to incorrect denominator
- Incorrect *t*-tests for factor B or interaction effect AB when weights do not add up to 0

Univariate GLM: problematic implementations

Two-way repeated-measures ANOVA

Within-subjects Factor A (Object): 2 levels (house, face) Within-subject Factor B (Condition): 3 levels (pos, neg, neu)

1) Omnibus tests

2) Post hoc tests (contrasts)

- Incorrect *t*-tests for both factors A and B due to incorrect denominator
- Incorrect *t*-tests for interaction effect AB if weights don't add up to 0

Better Approach: Multivariate GLM

- Group: 2 levels (patient and control)
- Condition: 3 levels (pos, neg, neu)
- Subject: 3 ASD children and 3 healthy controls
- Age: quantitative covariate

MVM Implementation in AFNI

- Program **3dMVM** generalize multi-way ANCOVA, and more
 - No dummy coding needed!
 - **Symbolic coding** for variables and post hoc testing

		Varia	able type	S	Post hoc tests			
3dMVM	-prefix -bsVars	OutputFile	-jobs 8 -wsVars	-SC 'Cond'	-qVars 'Age	,		
	-num_glt 4 -gltLabel 1 -gltLabel 2 -gltLabel 3 -gltLabel 4	Pat_Pos Ctl_Pos-Neg GrpD_Pos-Neg Pat_Age	-gltCode 1 -gltCode 2 -gltCode 3 -gltCode 4	'Grp :	'Grp : 'Grp : 1*Ctl (1*Ctl -1*Pat (1*Pat Cond : 1*Pos' Cond : 1*Pos -1*Neg' Cond : 1*Pos -1*Neg' 'Grp : 1*Pat Age :'		
	-dataTable Subj S1 S1 S1 S50 S50 S50	Grp Ctl Ctl Ctl Pat Pat Pat	Age 23 23 23 19 19 19	Cond Pos Neg Neu Pos Neg Neu	InputFile S1_Pos.nii S1_Neg.nii S1_Neu.nii S50_Pos.nii S50_Neg.nii S50_Neu.nii	Data layout		

MVM General Linear Tests - besides main effects

- **Symbolic coding** for variables and post hoc testing
 - **-bsVARS** '**Grp*Age'** shows 2 *between* subjects variables
 - -qVars 'Age' shows one is quantitative (numbers)
 - So the other one **Grp** is categorical (labels)
 - **-wsVars** 'Cond' shows 1 *within* subjects variable (categorical)
 - Potential values for all variables collated from data table

o GLT #3 "Grp : 1*Pat Cond : 1*Pos -1*Neg"

- Within the **Grp** variable, select the **Pat** mean effect
- Within the Cond variable, select the difference between the Pos and Neg mean effects
- **Age** is not specified, so test will be carried out on the effects regressed to the **Age** center (for each **Grp**)
- GLT #4 "Grp : 1*Pat Age :" tests the *slope* of the betas w.r.t. Age for Patients (averaged across Cond values)

Improvement 1: precision information

- Conventional approach: β_s as response variable
 - Assumptions
 - no measurement errors
 - all subjects have same precision
 - All subjects are treated equally (have the same randomness)
- More precise method: estimated βs plus precision estimates
 t-statistic contains precision (t = β / SEM(β))
 - β s and their *t*-stats as input
 - βs weighted based on precision
 - Only available for simple GLM types: 3dMEMA
 - Regions with substantial cross-subject variability
- Best approach: combining all subjects in one big super-model
 Currently not feasible

One group: Example

- 3dttest++: β as input only
 3dttest++ -prefix Vis -mask mask+tlrc -zskip \
 -setA `FP+tlrc[Vrel#0_Coef]' \
 (FR+tlrc[Vrel#0_Coef]' \)
 Voxel value = 0 → treated it as missing
 (GM+tlrc[Vrel#0_Coef]'

Paired comparison: Example

.....

.....

• 3dttest++: comparing two conditions

3dttest++ -prefix Vis_Aud \
-mask mask+tlrc -paired -zskip \
-setA 'FP+tlrc[Vrel#0_Coef]' \
'FR+tlrc[Vrel#0_Coef]' \

'GM+tlrc[Vrel#0_Coef]' \
-setB 'FP+tlrc[Arel#0_Coef]' \
'FR+tlrc[Arel#0_Coef]' \

'GM+tlrc[Arel#0_Coef]'

Paired Comparison: Example

- 3dMEMA: accounting for differential accuracy (among β s)
 - Contrast as input
 - 3dMEMA -prefix Vis_Aud_MEMA
 - -mask mask+tlrc -missing_data 0
 - -setA Vis-Aud

.....

- FP 'FP+tlrc[Vrel-Arel#0_Coef]' 'FP+tlrc[Vrel-Arel#0_Tstat]' \
- FR 'FR+tlrc[Vrel-Arel#0_Coef]' 'FR+tlrc[Vrel-Arel#0_Tstat]' \
- GM 'GM+tlrc[Vrel-Arel#0_Coef]''GM+tlrc[Vrel-Arel#0_Tstat]'

- Conventional approach $f(t) = t^q e^{-t} / (q^q e^{-q}) (q=4)$
 - Presumed curve (empirical and approximate): BLOCK(d,1)
 - Fixing HDR shape and capturing magnitude with one number
 - Simple and straightforward: one β per effect
 - Not ideal: HDR varies across regions, tasks/conditions, groups, subjects
- More accurate HDR modeling
 - Data driven (no assumptions about HDR shape): TENTzero, CSPLINzero
 - Estimating both shape and magnitude with multiple effect estimates
 - More complicated: multiple β s per task/condition
 - More challenging: how to make inferences? $H_0: \beta_1=0, \beta_2=0, ..., \beta_k=0$
- Middle
 - Adjust major HDR curve with 2/3 auxiliary functions: SPMG2/3
 - Focus: magnitude (β) associated with major HDR curve

- Group analysis with HDR estimates: TENTzero, CSPLINzero
 NHST: *H*₀: *β*₁=0, *β*₂=0, ..., *β*_k=0 [all responses in HRF = zero]
 - Area under curve (AUC) approach
 - Reduce HRF to one number: use area as magnitude approximation
 - Ignore shape subtleties
 - Shape information loss: (undershoot, peak location/width)
 - Better approach: maintaining shape integrity
 - Take individual β s to group analysis (MVM)
 - One group with one condition: 3dLME
 - Other scenarios: treat βs as levels of a factor (e.g., Time) 3dMVM
 ** Task or group effect: *F*-stat for interaction between task group and Time, complemented with main effect for task/group (AUC)

Chen et al. (2015). Detecting the subtle shape differences in hemodynamic responses at the group level. Front. Neurosci., 26 October 2015.

- 2 groups (children, adults), 2 conditions (congruent, incongruent), 1 quantitative covariate (age)
- 2 methods: HRF modeled by 10 (tents) and 3 (SPMG3) bases
- Effect of interaction: interaction group:condition 3dMVM

-27-

- Advantages of ESM over FSM
 - $_{\circ}\,$ More likely to detect HDR shape subtleties
 - Visual verification of HDR signature shape (vs. relying significance testing: *p*-values)
 - Study: Adults/Children with Congruent/Incongruent stimuli (2×2)

Dealing with quantitative variables

- Reasons to consider a covariate
 - Effect of interest: variability of response with some subject parameter
 - Model improvement: accounting for data variability with plausible cause
 But you don't particularly care about this effect *per se*
- Frameworks
 - ANCOVA: between-subjects factor (e.g., group) + quantitative variable
 - Broader frameworks: regression, GLM, MVM, LME, BML
 - Assumptions: linearity, homogeneity of slopes (interaction)
- Interpretations
 - Effect of interest: slope, rate, marginal effect
 - Regress/covariate out *x*? (e.g., head motion at individual level)
 - "Controlling *x* at ...", "holding *x* constant": *centering*

Quantitative variables: centering

• Model

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \epsilon_i$$

- $\circ \alpha_1, \alpha_2$ slope
- $\circ \alpha_0$ intercept: group effect when **x=0**
 - Not necessarily meaningful by itself
 - Linearity may not hold over large ranges of x₁ or x₂
 - Centering covariates for interpretability
 - Mean or median centering?
- When a factor is involved
 Complicated decision: within-level or grand centering

A Useful Article about Covariates

- Miller GM and Chapman JP.
- Misunderstanding analysis of covariance
- J Abnormal Psych 110: 40-48 (2001)
- http://dx.doi.org/10.1037/0021-843X.110.1.40
- http://psycnet.apa.org/journals/abn/110/1/40.pdf

IntraClass Correlation (ICC)

- Reliability (consistency, agreement/reproducibility) across two or more measurements of same/similar condition/task
 - sessions, scanners, sites, studies, twins
 - Classic example (Shrout and Fleiss, 1979): *n* targets are rated by *k* raters
 - Relationship with Pearson correlation
 - Pearson correlation: two different types of measure: e.g., BOLD response vs. RT
 - how much does one measurement type "explain" the other?
 - ICC: **same** measurement type how reliable are the results?
 - Modeling frameworks: ANOVA, LME
 - 3 types of ICC: ICC(1,1), ICC(2,1), ICC(3,1) one-, two-way random- and mixed-effects ANOVA
- Whole-brain voxel-level ICC
 - ICC(2,1): 3dLME –ICC or 3dLME –ICCb
 - 3dICC: ICC(1,1), ICC(2,1) and ICC(3,1)

Chen et al. (2017), Human Brain Mapping 39(3) DOI:10.1002/hbm.23909

Naturalistic scanning

- Subjects view a natural scene during scanning

 Visuoauditory movie clip (e.g., <u>http://studyforrest.org/</u>)
 Music, speech, games, …
- Duration: a few minutes (at least) or more
- Close to naturalistic settings: minimally manipulated
- Effect of interest: intersubject correlation (ISC) 3dTcorrelate
 - Calculates correlation coefficient between voxel time series between subjects
 - Usual input is errts dataset after pre-processing to "correct" for motion, align to template space, et cetera
 - Extent of synchronization ("entrainment")
 - Or of common response in that voxel/region across subjects to whatever they were experiencing
- Whole-brain voxel-wise group analysis of these voxel-wise intersubject correlations: 3dISC

ISC group analysis

Voxel-wise ISC matrix (usually Fisher/arctanh-transformed)
 One group

- Two groups
 - Within-group ISC: R11, R22
 - Inter-group ISC: R21
 - 3 group comparisons: R11 vs R22, R11 vs R21, R22 vs R21

Complexity of ISC analysis

- 2 ISC values associated with a common subject are correlated with each other: 5 subjects ---> 5x4/2 = 10 ISC values
 - i.e., random fluctuations in inter-subject correlations are correlated 😕
- $\rho \neq 0$ (unknown) characterizes non-independent relationship

	Z_{21}	Z_{31}	Z_{41}	Z_{51}	Z_{32}	Z_{42}	Z_{52}	Z_{43}	Z_{53}	Z_{54}
Z_{21}	(1	ρ	ρ	ρ	ρ	ρ	ρ	0	0	0)
Z_{31}	ρ	1	ρ	ρ	ρ	0	0	ρ	ρ	0
Z_{41}	ρ	ρ	1	ρ	0	ρ	0	ρ	0	ρ
Z_{51}	ρ	ρ	ρ	1	0	0	ρ	0	ρ	ρ
Z_{32}	ρ	ρ	0	0	1	ρ	ρ	ρ	ρ	0
Z_{42}	ρ	0	ρ	0	ρ	1	ρ	ρ	0	ρ
Z_{52}	ρ	0	0	ρ	ρ	ρ	1	0	ρ	ρ
Z_{43}	0	ρ	ρ	0	ρ	ρ	0	1	ρ	ρ
Z_{53}	0	ρ	0	ρ	ρ	0	ρ	ρ	1	ρ
Z_{54}	0	0	ρ	ρ	0	ρ	ρ	ρ	ρ	1)

• **Challenge**: how to handle this irregular correlation matrix?

ISC: LME approach

Modeling via effect partitioning: crossed random-effects LME

$$z_{ij} = b_0 + \theta_i + \theta_j + \epsilon_{ij}, \quad i \neq j$$

$$\theta_i, \theta_j \stackrel{iid}{\sim} G(0, \zeta^2) \text{ and } \epsilon_{ij} \stackrel{iid}{\sim} G(0, \eta^2)$$

cross-subject within-subject

• Charactering the relatedness among ISCs via LME

$$\rho = Corr(z_{ij}, z_{jl}) = \frac{Cov(z_{ij}, z_{jl})}{\sqrt{Var(z_{ij})Var(z_{jl})}} = \frac{\zeta^2}{2\zeta^2 + \eta^2}$$
$$0 \le \rho = \frac{\zeta^2}{2\zeta^2 + \eta^2} = \frac{\zeta^2}{\sigma^2} \le 0.5$$

Chen et al, 2016. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling. Neuroimage. NeuroImage 147:825-840

<u>Summary</u>

- Concepts and terminology
- Group analysis approaches
 - GLM: 3dttest++, 3dMEMA
 - GLM, ANOVA, ANCOVA: 3dMVM
 - LME: 3dLME
 - Presumed vs. estimated HDR
- Miscellaneous
 - $_{\circ}$ Issues with covariates
 - Intra-Class Correlation (ICC)
 - Inter-Subject Correlation (ISC)

Program List

- **3dttest++** (GLM: one-, two-sample, paired *t*, between-subjects variables)
- **3dMVM** (generic AN(C)OVA)
- **3dLME** (sophisticated cases: missing data, within-subject covariates)
- **3dMEMA** (similar to 3dttest++: measurement errors)
- **3dANOVA** (one-way between-subject)
- 3dANOVA2 (one-way within-subject, 2-way between-subjects)
- **3dANOVA3** (2-way within-subject and mixed, 3-way between-subjects)
- **3dttest** (obsolete: one-sample, two-sample and paired *t*)
- **3dRegAna** (obsolete: regression/correlation, covariates)
- **GroupAna** (obsolete: up to four-way ANOVA)
- **3dICC** (intraclass correlation): prototype only
- **3dISC** (intersubject correlation): prototype only