The Sources of Bias in Resting State FMRI

Ziad S Saad, PhD

SSCC / NIMH & NINDS / NIH / DHHS / USA /
EARTH

o - National Institute
b of Mental Health | %, n S

3/
/ / NATIONAL INSTITUTE OF

NEUROLOGICAL
JURDM AND STROKE

--. "-_- ‘;,‘ . 'U-' : ;..':'v ,NS}/ ¢PS\$ERV‘CES.QS‘4
= - \: ; . o
A\ =R I~ — |2
. A % =
W E
V'. 4 3
%
: %,

Z.S.S 16/06/13



The Sources of Bias in Resting State FMRI
No Conflicts Of Interest To Declare
Ziad S Saad, PhD

SSCC / NIMH & NINDS / NIH / DHHS / USA /
EARTH

e N S ERVICES™y,
g : ‘;\:._ =~ &A’ ,NS)))\ Qg’;\?ﬁ 8y
ot o ‘_1’\- ) \O c ™
FLA NN = é =l
3 ; ' ‘.;.:' % g ;
"RIE L pY  National Institute) ~ & 5
S| of Mental Health | %/, pS ,?:}
: -

3/
// NATIONAL INSTITUTE OF

NEUROLOGICAL
JUORDHG AND STROKE

Z.S.S 16/06/13



Resting state

BOLD signal fluctuations during undirected brain activity

rest_=sub00440.BEZ_rh SSM.std.60.niml.dset, node 2056

11468.273

rest_=sub00440.BEZ_1h_ SSM.std.60.niml.dset, node 2205

TR {2.00s) step
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Resting state

BOLD signal fluctuations during undirected brain activity

There is no model for signal, such as expected response
In task FMRI
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Resting state

BOLD signal fluctuations during undirected brain activity

There is no model for signal, such as expected response
In task FMRI

Resort to describing relationships between brain regions
Correlation matrices, graph theory, functional/effective/* connectivity

Factoring data into space®time components in statistically interesting
ways (PCA, ICA)
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Resting state

Resort to describing relationships between brain regions

rest_=ub00440.BEZ_rh_ SSM.std.60.niml.dset, node 2056

1148.273

rest_=sub00440.BEZ_1h_ SSM.std.60.niml.dset, node 2205

TR (2.00s) step

Correlation Seed
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Resting state

Interpret correlation strength as proxy for brain function
coupling between regions

rest_=ub00440.BEZ_rh_ SSM.std.60.niml.dset, node 2056

1148.273

rest_=sub00440.BEZ_1h_ SSM.std.60.niml.dset, node 2205

TR (2.00s) step

Correlation Seed
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475 e ————

The magic of resting state @iswai 9

Magnitude

G. 3. (Left) FMRI task-activation response to bilateral left and right finger movement, superimposad on a GRASS anatomic image. (Right)
ictuation response using the methods of this paper. See text for assignment of labeled regions. Red is positive correlation, and vellow
negative.
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Resting state PROBLEM

Neuronally driven BOLD fluctuations of interest i

AND

Fluctuations from respiration, heart beat, motion _>

Q
rest_=ub00440.BEZ_1h SSM.std.60.niml.dset, node 2205
108B.628 T T T T T
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The fount of our troubles

We have no model for signal
Nothing like the expected response (regressors) of task FMRI

We have no good models for noise
We have some, but they're far from perfect

Effect size (as correlation) is a spatially varying function of noise
(fluctuations of no interest)
* Noise can bias correlations up, or down depending on the
noise’s spatial covariance
* |n task FMRI by contrast, noise affects variance of effect
amplitude estimate
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The fount of our troubles
Difficult to attach meaning to effect size in RS-FMRI

Effect is like an SNR measure, affected by changes in
both signal (hnumerator) and noise (denominator)

For example more motion = more noise - less
(or more!) correlation (bias) = group differences

Weak but consistent bias - significant difference

Some sources have brain-wide (global) effects on
correlation distribution (e.g. ETCO, , motion, etc.)
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The fount of our troubles
Difficult to attach meaning to effect size in RS-FMRI

Effect is like an SNR measure, affected by changes in
both signal (hnumerator) and noise (denominator)

For example more motion = more noise - less
(or more!) correlation (bias) > group differences

Weak but consistent bias - signﬁ%ant difference

Some sources have brain-wide (global) effects on
correlation distribution (e.g. ETCO, , motion, etc.)
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Sources of bias
« Head motion (van Dijk, 2012) (Power, 2012)

(Glover, 2002)

(Birn, 2006) ( Shmueli, 2007) (Chang, 2009)
(Jo, 2010)
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Sources of bias

(Van Dijk, 2012) (Power, 2012)
« Physiological “"Noise”
* Respiratory or cardiac cycles (Glover, 2002)

* Non-stationarity of breathing and cardiac rhythms
(Birn, 2006) ( Shmueli, 2007) (Chang, 2009)

(Jo, 2010)
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Physiological noise

photoplethysmograph(top)

respiration(bottom)
450, T T T T
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Bias from physiological noise

MR Signal Variance Accounted for by Respiration Measures

Br

. ASD
c 6}
£ ™D
.g
E at
)
a
N i
%) 0.1 0.2 0.3 04

Mean R%;, ;. .s0n Fit Over Brain Mask

TD - ASD Connectedness, Respiration Not Removed

“All of these results highlight the importance of measuring and
removing the effects of respiration in resting-state fMRI studies
that compare two groups of participants, particularly if one of
these groups involves a clinical population with anxiety

symptoms that could alter normal breathing patterns.”
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Sources of bias
(Van Dijk, 2012) (Power, 2012)

(Glover, 2002)

(Birn, 2006) ( Shmueli, 2007) (Chang, 2009)
* Hardware instability (Jo, 2010)

* Anatomical bias
* Pre-processing
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Hardware instability
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Hardware instability
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Hardware instability
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Correlation Map
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Sources of bias
(Van Dijk, 2012) (Power, 2012)

(Glover, 2002)

(Birn, 2006) ( Shmueli, 2007) (Chang, 2009)
(Jo, 2010)
« Anatomical bias
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Anatomical Bias
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Anatomical Bias

 |f concerned about systematic differences in
anatomy, consider

« Surface-based analysis with smoothing on the surface, or smooth within
gray matter mask only

 ROI-based analysis with ROls restricted to gray-matter voxels in each
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Adjusting for noise/bias sources
* Model noise effect on time series and project

 Motion estimates

* Retroicor/RVT/etc requires simultaneous
recordings of cardiac and respiratory cycles

(Glover 2002; Birn 2006; Shmueli 2007; Chang 2009)
* Nuisance signals estimates from dataset
* Tissue-based nuisance regressors

(Beckmann 2004; Fox 2009; Behzadi 2007; Beall 2007, 2010;
Jo 2010, 2013; Kundu 2012; Bright 2013; Boubela 2013)

* Group level adjustments

 (Covariates for motion, brainwide levels of
correlation
(Van Dijk 2012; Satterthwaite 2012; Saad 2013; Yan 2013)
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Sources of bias
(Van Dijk, 2012) (Power, 2012)

(Glover, 2002)

(Birn, 2006) ( Shmueli, 2007) (Chang, 2009)
(Jo, 2010)

* Pre-processing
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Tissue-based nuisance regressors

* Avoid Projecting Fluctuations of Interest

* OK to sample nuisance signals from regions
whose fluctuations are not correlated with the
fluctuations of interest in the regions of interest

» Should not project time series containing
aggregates of fluctuations of interest, even if

they contain contribution from noise

Sagittal sinus voxels might allow sampling of aliased heart
rate, HOWEVER they also exhibit BOLD fluctuations of
interest from the regions being modeled (Jo, 2010)
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And why not?

* Because you end up differentially biasing the
correlation matrices of your groups, and
considerably distorting group differences

« Best explained with GSReg because math is
straight forward.

* What follows applies whether or not noise exists or
differs between groups
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Why not GSReq ?

Original (R) After GSReg (5) S-R

Alp

A2

A3

Bias will vary by region pair
AND
Entirely dependent on initial covariance matrix P
(therefore your grouping variable)
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Why not GSReq ?

Original (R) After GSReg (5)

B A1 A2 A3

For any FMRI time series (not S|mulat|ons
S—-R=(P- (P11 P)/(l P1)) * O'QO'QT - P * opOp!
S-R is constant for group with same cov. matrix P
(Q is also a sole function of P) (Saad, 2013)
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Are biased estimates useful?
Region pair dependent biasing is OK if:

Not interpreting correlations between regions as those between
the sampled BOLD signals and by extension neuronal signals

Not just about interpretability of negative correlations (Murphy, 2008;
Weissenbacher, 2009; Cole, 2010)

Two strongly correlated regions after GSReg DOES NOT imply regions were

strongly correlated before GSReg

Using correlations after GSReg as some feature space for
parcellation, classification, etc (Craddock, 2009)
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Are biased estimates useful?
Region pair dependent biasing is OK if:

Not interpreting correlations between regions as those between
the sampled BOLD signals and by extension neuronal signals

Not just about interpretability of negative correlations (Murphy, 2008;
Weissenbacher, 2009; Cole, 2010)

Two strongly correlated regions after GSReg DOES NOT imply regions were

strongly correlated before GSReg

Using correlations after GSReg as some feature space for
parcellation, classification, etc (Craddock, 2009)

Region pair dependent biasing can be problematic when
interpreting connectivity matrix differences:

S—R=(P-(P11'P)/(1'P1)) * 0p0," - P * OpOp'
S-R is constant for group with same cov. matrix P
S-R will differ between groups with different P
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An Illustrative model

G Fou P Ll) Observed signal from region 4:

y,=Vw,+e=0.36v,+0.66v;+036v,+054v.+e

Wy |W; | W, [W; | W, |W;
F--
1.00 | 0.56 | 0.48 | 0.39 |o.3: 0.48
b
;|
0.56 | 0.73 - :/ﬁ w,
: Ir connection
0.61 | 0.48 : | weights for
: | region 4
0.39 |0.66: 0.64
-
I
0.63 :0.36I 0.35
oy
I
0.54 |0_54= 0.48 Connection Weight
l--- I

In simulations 9 regions + background were used

0.3 1.0
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Comparing Groups

Increased connection
between regions 1 and 2 only
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Comparing Groups

- lme v oese Difference confined
= | to two regions
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Distortion of long/short range correlations

Contrast of correlations between groups A and B
‘long-range’ correlations in Group B only

Pre-GSReg  Post-GSReg Post-GSReg
I'*B - I'*A 05
- A=+.056 I° )
803
Local Corr. Only T i
sN02
GCOR,=.166 A=-.059 A=-.061 e
| E— 0
Group B L A=-.126 "
Local and Long N -
Range Corr.
GCORy=.273 s
0.4
"local" " "
. long-range : : 05
correlations Reliimer 5 Distortion (A) of

Group Differences by r-value

GS Regression
(Saad, 2012, Gotts 201 3)
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Comparing Groups with GSReg

One seeks and hopes for differences in covariance/
correlation structures between groups.

Using GSReg means each group will be biased
DIFFERENTLY for different region pairs.

- Even in the absence of noise difference, you could find group
correlation differences in places where none existed before.

- OK if you're teaching a classifier to differentiate between the two groups.

- NOT OK if interpreting correlation differences to evoke correlation
differences of neuronally induced BOLD signal between these regions.

With noise previous problems remain

- However bias now depends on the covariance structures
of noise and signals of interest though we can't tell them
apart.

- Interaction between GSReg projection effects and
grouping variable remains
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SAME holds with empirical data

+ GS Regression ANATICOR (Jo,2010)

t-val (N=60)

II24I)

TD>ASD

— 2.0

—-2.0

ASD>TD
<-4.0

(Gotts, 2013)
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SAME holds W|th emplrlcal data

Basic Model + GS Regression , ANATICOR

Group t-tests

TD > ASD

ASD>TD

Partial r>0

Partial r<0

Ip< .005

p<.05

p < .05

Ip< .005

Correlation with SRS
(ASD Group)

Ip<.005

p<.05

p<.05

Ip<.005

(Gotts, 2013)
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It is not just GSR

* Nuisance regressors correlated with fluctuations
of interest in regions of interest (not the noise)
can cause the same problems.

* Non-gray matter averages may be comparable to
GSReg (partial voluming with gray matter)

* Averaging over small regions of eroded non-gray
matter tissue is advantageous (Jo, 2010, 2013)

 Decomposition methods that cannot separate
BOLD (fluctuations of interest) from noise also

problematic.

Z.S.S 16/06/13



There is some denoising with GSR

What of results being more stable after GSR?

There is a denoising component to the approach and bias is
consistent for consistent covariance structure
* However, interpretation of correlations is now difficult (Cole, 2010)
» Interaction effect with grouping variable completely ignored
» Differences can get spread in unknown ways

« Tests of processing methods should always consider group
comparisons

What of GSReg for motion compensation?

Some denoising effect = reducing residual variance and
motion-based group differences

However, caveats from above remain
AND are we actually compensating for motion?
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Grouping Based on Motion

Mean Motion
Small Movers

Mean Motion

I J Big Movers
0.6} : 0.6}
0.5 0.5
oal & -T2 X o4l <
S 04r : X 04 ‘
8 % y .3:: ”“ » 8 v ‘
03F 37 ;.2 0.3 I | P
; VR : T P T .
0.2} ¢ T Ot Bust, T OTF S s i
0.1 n 1 1 0.1 ' ' -
002 004 006 0.08 0.1 0.02 004 006 0.08 0.1
motion motion
FCON 1000: Cambridge_Buckner FCON 1000: Beijing_Zang

Note weak correlation between motion and
GCOR (R?>=11% Cambridge, 4.3% Beijing)
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Grouping Based on Motion

FCON 1000: Cambridge_Buckner

Largest 4 Clusters

4 clusters 3 clusters
06+
05+
o I of o e
o) 0.4 .
Q 5 X 3:: i
Q) 03[ :‘}::.;:. ):.‘ R
.:‘.& o:'& e s
= S
02 | ’:o .
0.1
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Grouping Based on Motion

FCON 1000: Cambridge_Buckner FCON 1000: Beiiing Zang
B+ Base B+ GSReg B, Base B+ GSReg

rY iy

',l:] LJm
E’E! o
ﬂm 25 um/TR 2? um/TR

0o

| cluster 0 clusters

Small > Big  Small < Big

(I

Group Difference, p<0.01, a=0.05

Largest 4 Clusters

4 clusters 0.6} i 06
0.5 ; 0.5
Xanal e o
X 0.4 " ; X 0.4 L B
3 8 ahaiig = e
0 3 .i‘i’:‘: L ':; (D 0 3 o: ‘: :s' ’;
i’ }‘:‘8 ’?"’ oNe * . = T S : :
RPN ‘;: ®e . 2 o‘ o.:o %
02 7= (8 0.2 1 SRl ¢
0.1 ' ' ' 0.1 : : .
002 004 006 008 0.1 002 004 006 008 0.1 (Saad 20 | 3)
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Can GSReg help with motion?

Censoring (scrubbing) high motion samples changes inter-
regional correlations in distance dependent manner.

—> suggests effect of motion on correlations depends on distance

between regions (Power et al. 2012)
—> importance of censoring high motion

Data generously made public by Power et al.
(A) GS+MO

0.2

o
o
- n

5

&

Pearson Correlation
Difference
O
b o

o
0

O
N
o

50 100 150
Seed-Pair Distance (mm) Z.S5.S 16/06/13



Can GSReg help with motion?

Censoring (scrubbing) samples of high motion changes

inter-regional correlations in a distance manner.

—> suggests effect of motion on correlations depends on
distance between regions (Power et al. 2012)
—> importance of censoring high motion

Less dependence without GSReg
(A) GS+MO MO+WMe, ;.\,

0.2

0.15

0.1

5

&

Pearson Correlation
Difference
o

L
=

o
0

O
N
o

50 100 150 0 50 100 150
Seed-Pair Distance (mm)
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Can GSReg help with motion?

Censoring (scrubbing) samples of high motion changes
inter-regional correlations in a distance manner.

—> suggests effect of motion on correlations depends on
distance between regions (Power et al. 2012)
—> importance of censoring high motion

Least dependence

LOCAL

(A) GS+MO MO+WMe Despike+MO+WMe, ..

Pearson Correlation
Difference

% 50 100 150 0 50 100 150 0 0 100 130
Seed-Pair Distance (mm) Z.S.S 16/06/13



Pearson Correlation

Can GSReg help with motion?

GSReg > Correlation more sensitive to motion
- Correlation more sensitive to censoring

(Jo,2013)

Improved denoising largely eliminates distance dependent bias
(A) GS+MO Despike+MO+WMe

0.2 hd - hd A A -

LOCAL

0.15

Difference
o C'> o o
2 & o & =

-0.15

-0.2

0 50 100 150 0 50 100 150
Seed-Pair Distance (mm) 7.5.S 16/06/13



Sampling nuisance TS regressors

* Sample noise without aggregating over regions with
fluctuations of interest
« Erode white matter masks to avoid partial voluming

* Avoiding regions with fluctuations of interest  (Anderson 2011)

» Local eroded white matter masks improve denoising without
increasing DOF's (Jo,2010,2013)

« Use decomposition methods that can separate BOLD

from non BOLD fluctuations of interest
(Kundu, 2012, Bright, 2013)

or attempt to identify noise components
(Beckmann 2004, Beall 2010, Boubela, 201 3)

» Use noise models RICOR/RVT/etc.
(Glover 2000; Shmueli 2007; Birn 2008; Chang 2009)
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Brain-wide correlation adjustments?

 |f subject to subject variations in brain-wide
correlations exist, why not correct for them?

« Consider GCOR, the average over the entire
correlation matrix of every voxel with every
other voxel (Saad, 2013)

 Measure would be costly to compute if one had to
estimate the entire correlation matrix first.

 However estimating GCOR is trivial:

y = 1/(M2 ]\]) IT UT U1l g 1s the average of all

(M) unit variance time

=1/N guT 2 series of length NV in

matrix U
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GCOR as group level covariate

» Using models described earlier, we consider
group level correlation (differences) from three
models:

No adjustment: Vij = Bo L [31 X
- GSRegatlevell: §;;,=Po+ P1x
+ GCOR as covariate: #;; = Bo + P1x+ P2y +Bsxy

Z.S.S 16/06/13



Less bias than with GSReq for 1
sample tests

Mean Correlations with Region 1

1.0

0.0

Level-1l Adjusted

0.5

|

X

()]

(@)

o

)

O o ~ o (0] NN w N —
AN

0.8 0.9 1.0 1.1 1.2

Level-Il Base (3¢)
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Comparing Groups

Cowbell
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Group Contrast, Only Local Change

1

9 7 5 3

P —y Base P -y GCOR P -y GSReg
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- O _| Q@ ©
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1

9 7 5 3

Group Contrast, Local & Backg. Change
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1 000 o
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Largest 4 Clusters

GCOR and Motion Grouping

FCON 1000: Cambridge Buckner FCON 1000: Beijing_Zang
f; Base B1 GSReg py GCOR f; Base B GSReg f;1 GCOR

E’ :3 PN (one)  (none)
-®|0aléa
o ol0w

0o

Small > Big  Small < Big

Group Difference, p<0.01, a=0.05

4 clusters 3 clusters 6 clusters
Mean Motion ~ Mean Motion
A=25 um/TR Small Movers N A=29 um/TR / Big Movers
06l le—s 0.6
. 05 . 3 Mean GCOR
Big Movers
. * m a b
% 0.4 R : 4 o 04 el ‘
O . .‘ 3“. .‘o. .. g 8 - g “
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GCOR as Group Level Covariate

Correlations less biased with GCOR, than GSReg.

« when GCOR has low correlation with grouping variable

| evel-ll tests conservative

« Less likely to detect difference as grouping variable and
covariate correlation increases

Adjustment outside of level Il test is NOT recommended

« There is always potential for interaction effect with group

« GCOR (and other params. (Yan 2013)) depend on noise AND/
OR inter-regional correlations of interest

—>contrast results very likely depend on covariate centering
*Centering at overall mean makes sense if GCOR is driven by noise.
What if it is also driven by correlations of interest?

—> contrast sign might even get reversed
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Conclusions for Global Corrections

Stay away from regions with Fluctuations of Interest
GSReg and its variants are problematic for group comparisons
One MUST consider interactions of method with grouping variable

®* Generative models clarify matters since there is no base truth

GCOR is very simple to compute and is useful to assess global
correlation levels

Use of GCOR and comparable measures is safer than GSReg
*However, their interaction with grouping variable can confound interpretation

Use should be as last resort
 Use them as covariates and consider interaction terms
« Separate covariate modeling prior to level-ll not recommended
« Risks of false negatives
« Centering issues
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Preprocessing

Despiking

Slice Timing Correction

Motion Correction

Alignment with Anatomy

Spatial Normalization

Spatial Smoothing
(with 6 mm FWHM
isotropic Gaussian kernel)

Extracting Tissue-Based
Regressors

Nuisance Regression

Motion Censoring

Bandpass Filtering

(0.009 < f< 0.08 Hz)

Correlation Map

RS FMRI
processing
pipeline

Joetal. 2013
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Single-Subject RS-FMRI Processing

Generate Analysis Pipeline with

afni proc.py -subj id subjl23
-dsets epi runl+orig.HEAD
-copy_anat anat+orig
-blocks despike ricor tshift align

volreg blur regress

-regress anaticor
-regress censor motion 0.2
-regress bandpass 0.01 0.1
-ricor regs RICOR/r*.slibase.1lD

See afni_proc.py —h view for more detailed examples,

~ - - - - - -



Single-Subject RS-FMRI Processing

Generate Analysis Pipeline with

afni_proc.py -subj_id subjl23 <& Subject \
-dsets epi runl+orig.HEAD & EPI timeseries
-copy_anat anat+orig & Anatomical \

See afni proc.py —h view for more detailed examples,



Single-Subject RS-FMRI Processing

Generate Analysis Pipeline with

afni proc.py

\
-blocks despike ricor tshift align \

volreg blur regress < Processing blocks  \
Use defaults or specify sequence

See afni proc.py —h view for more detailed examples,



Single-Subject RS-FMRI Processing

Generate Analysis Pipeline with

afni proc.py

-regress anaticor € Use Local Eroded White Matter \
for denoising.

See afni proc.py —h view for more detailed examples,



Single-Subject RS-FMRI Processing

Generate Analysis Pipeline with

afni proc.py

-regress_censor_motion 0.2 < Motion censoring
-regress_bandpass 0.01 0.1 and bandpass filter

See afni proc.py —h view for more detailed examples,

\



Single-Subject RS-FMRI Processing

Generate Analysis Pipeline with

afni proc.py

\
-ricor regs RICOR/r*.slibase.1D & RICOR+RVT for

respiration & cardiac denoising

See afni proc.py —h view for more detailed examples,



Conclusions

The best approach remains with careful denoising
* motion parameter estimates
* physiological measurements
 |ocal estimates of nuisance signals from eroded white matter

* denoising decompositions in as far as they can dissociate
nuisance estimates from signal fluctuations of interest

Look at your data, one subject at a time!
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