More about DTI-tracking: Practicalities and programs AFNI Bootcamp (SSCC, NIMH, NIH)

Outline

- + Practicalities around tracking with AFNI/FATCAT
- + 3dTrackID's "modes" (a.k.a. styles or types) of tracking
 - and calculating tensor parameter uncertainty
- + Setting up networks of target ROIs with 3dROIMaker
 - examples from anatomical parc/seg and FMRI
- + Checking gradients
- + Additional tracking features

Network tracking paradigm: recall

Useful generalization of AND-logic: **"Network tracking"** through several target ROIs simultaneously. Find tracts in WB that go through any pair in a set of targets, where the targets make sense to think about together.

Note that the connections can be "sparse": not every target is connected to every other target. (Physiologically, we would **not** expect otherwise...)

Network tracking paradigm: recall

FMRI (e.g., thresholded seed-based or ICA maps)

Anatomical parc/seg (e.g., FreeSurfer) Spheres/simple ROIs (can map across group)

Network tracking paradigm: points

Main criteria for making target ROI networks

- + define meaningful regions (-> sensical to be together for hypothesis)
 + make sure targets border on FA-WM
- + for group analysis, create equivalent/consistent regions across group

Network tracking paradigm: points

Main criteria for making target ROI networks

- + define meaningful regions (-> sensical to be together for hypothesis)
 + make sure targets border on FA-WM
- + for group analysis, create equivalent/consistent regions across group

<u>... Then</u>

- + targets can be defined **in** subject's own DTI space
- + main quantity: matrix of structural properties for each network

Network tracking paradigm: points

Main criteria for making target ROI networks

- + define meaningful regions (-> sensical to be together for hypothesis)
 + make sure targets border on FA-WM
- + for group analysis, create equivalent/consistent regions across group

<u>... Then</u>

- + targets can be defined **in** subject's own DTI space
- + main quantity: matrix of structural properties for each network

Different than "voxelwise comparisons"

+ Here, don't need to warp to standard space/WM skeleton
-> avoid (some) alignment issues/demands
+ Here: calc "network-wide" properties, then zoom in (big -> small)

- voxelwise comps: calc voxel diffs and build "clusters" (small -> big)
- + Here, WM structure matters; voxelwise comps ignore this.

Combining FMRI and DTI (much applies to any target network)

Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:

- + determining networks from FMRI, parcellation or other data;
- + finding correlations and local properties of functional networks;
- + turning GM ROIs into targets for tractography;
- + doing reasonable tractography to find WM ROIs;
- + estimating stats on WM ROIs...

Tools for combining FC and SC:

<u>Combining functional and tractographic connectivity will require:</u>

- + determining networks from FMRI, parcellation or other data;
- + finding correlations and local properties of functional networks;
- + turning GM ROIs into targets for tractography;
- + doing reasonable tractography to find WM ROIs;
- + estimating stats on WM ROIs...

FATCAT: Functional And Tractographic Connectivity Analysis Toolbox (*Taylor & Saad, 2013, BC; Taylor et al. 2015, BC*) Demos in AFNI: @Install_FATCAT_DEMO, @Install_FATMVM_DEMO

Schematic for combining FMRI and DTI-tractography via FATCAT

FATCAT goals:

- + Do useful tasks
- + Integrate with existing pipelines/software
- + Derive/use information from the data itself
- + Be "simple" to implement
- + Be network-oriented, when possible
- + Be efficient
- + Be flexible and able to grow

(Taylor, Chen, Cox & Saad, 2016)

Schematic for combining FMRI and DTI-tractography via FATCAT

FATCAT goals:

- + Do useful tasks
- + Integrate with existing pipelines/software
- + Derive/use information from the data itself
- + Be "simple" to implement
- + Be network-oriented, when possible
- + Be efficient
- + Be flexible and able to grow

Main focus today on DTItractography, including making ROIs from FMRI

(Taylor, Chen, Cox & Saad, 2016)

Motivating example

Network view of both functional and structural data

FMRI: GM Networks

IC01:	IC02:	IC03:	IC04:	IC05:
0, -84, -3	33, -93, -6	24, -69, 48	18, 9, 18	-1, 29, 2
IC06:	IC07:	IC08:	IC09:	IC10:
0, -72, 39	0, -48, -24	-51, 15, 27	24, -69, 48	21, -6, -33
IC11:	IC12:	IC13:	IC14:	IC15:
45, -57, 42	10, -26, 11	0, 57, -3	1, -18, 35	5, -25, 56
IC16:	IC17:	IC18:	IC19:	IC20:
-5, -5, 3	0, 18, 21	-54, -60, 18	-60, -18, 6	-9, 15, 37

(Biswal et al., 2010 PNAS)

FMRI: GM Networks

Functional connectivity networks of distinct GM regions, from BOLD time series during task or rest/no task.

- + Quantify GM properties:
 ALFF, fALFF, RSFA, σ,
 ReHo, GMV, etc.
- + Quantify network props: seedbased correlation,
 ICA, graph theoretical measures, etc.

Sidenote:

Mention of a few of the FMRI tools

Functional processing, 3

For {RS- | TB-}FMRI: correlation matrices

+ 3dNetCorr: calculated post-processing, input time series data + network maps

- can be multi-brick maps, 1 network per brick
- calculate average time series per ROI, correlation among network ROIs
- outputs correlation matrix/matrices, (can also do Fisher-Z transform output)

Applying tractography

Structure + Function

Simple example:

FMRI provides: maps of (GM) regions working together

Control

Default mode

Raichle (2010, TiCS)

Structure + Function

Simple example:

FMRI provides: maps of (GM) regions working together

GM ROIs network:

Raichle (2010, TiCS)

Associated WM ROIs

Structure + Function

Simple example:

FMRI provides: maps of (GM) regions working together

Raichle (2010, TiCS)

Associated WM ROIs

Our goal for tractography-> estimate likely/probable locations of WM associated with GM, and relate ROI quantities with functional/GM properties

Describing and comparing "modes" of tracking in 3dTrackID, with example network of targets:

SUMA view of targets from FMRI (axial view, S->I)

Tracking modes: **DET**

Deterministic tracking

+ For each FA-WM voxel (e.g., FA>0.2), place seedpoint(s), track from each until stop criterion reached, and keep tracts through ROIs (AND- or OR-logic).
+ Can delete "bad" bundles with too few tracts.

+ Output:

tract bundles, volumetric map of WMCs, **and** matrix of structural properties.

--> **DET** is OK for quick testing, QC, general data checking, but does not take into account uncertainty; don't know how reliable or noise-dependent results are. Mostly just used for quick, WB QC.

WMC (surfaces)

Tracking modes: MINIP

Mini-probabilistic tracking

+ For each FA-WM voxel (e.g., FA>0.2), place seedpoint(s), track from each until stop criterion reached, and keep tracts through ROIs (AND- or OR-logic);
+ Then, perturb every tensor randomly, according to its estimated uncertainty (-> desc. below), and then do WB tracking. Repeat a few (~5-7) times.

+ Can delete "bad" bundles with too few tracts.

+ Output: tract bundles, volumetric map of WMCs, **and** matrix of structural properties.

--> **MINIP** improves on DET: accounts for noise; easier to detect spurious bundles; better vis. than DET. But no voxelwise thresholding...

WMC (surfaces)

(Taylor et al. 2015, BC<mark>)</mark>

Tracking modes: **PROB**

(full) probabilistic tracking

+ For each FA-WM voxel (e.g., FA>0.2), place seedpoint(s), track from each until stop criterion reached, and keep tracts through ROIs (AND- or OR-logic);
+ Then, perturb every tensor randomly, according to its estimated uncertainty (-> desc. below), and then do WB tracking. Repeat many (~thousands) times.

+ Threshold tract count per voxel to make WMC.

+ Output:

volumetric map of WMCs, and matrix of structural properties.

--> **PROB** is most robust tracking: noise most strongly accounted for, and each WMC is built with **per voxel** criterion of tract counts. Produces best "likelihood" map of WMC. <u>No bundles output</u> They are only used to build up prob. map

WMC (surfaces)

Bundles/WMCs comparisons per mode

DET

Bundles/WMCs comparisons per mode

Importantly, each mode **automatically** makes a file containing matrices of structural properties

-> these will be used quantitative analysis & statistical modeling.

W 8 # Number of network KUIS											
# 15 # NUMBER OF LADELE											
# WITH_ROI_LAD	DELS	003	004	005	006	007	000				
100	002	005	004	600	000	007	000				
# NT	2	2	4	5	0		0				
# 111	۵	٩	60	٥	٥	٥	0				
50025 A	188697	A	50	0	0	9	0				
Å	100057	32576	90	0	252	9	e e				
69	50	52570 A	609454	0	20305	9	6707				
A	9	A	005454 A	238636	4096	0	0,07				
Å	e e	252	20305	4096	1216505	82	õ				
Å	, A	A	20505	4050	82	264950	õ				
Ä	0	e e	6707	0	02	0	201024				
# fNT		•	0,0,				202024				
3.698318e-03	0.000000e+00	0.000000e+00	4,490698e-06	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00				
0.000000e+00	7.074281e-03	0.000000e+00	3.254129e-06	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00				
0.000000e+00	0.000000e+00	2.120130e-03	0.000000e+00	0.000000e+00	1.640081e-05	0.000000e+00	0.000000e+00				
4.490698e-06	3.254129e-06	0.000000e+00	3.966484e-02	0.000000e+00	1.321502e-03	0.000000e+00	4.365089e-04				
0.000000e+00	0.000000e+00	0.000000e+00	0.00000e+00	1.553105e-02	2.665782e-04	0.000000e+00	0.00000e+00				
0.000000e+00	0.000000e+00	1.640081e-05	1.321502e-03	2.665782e-04	7.917328e-02	5.336771e-06	0.00000e+00				
0.000000e+00	0.000000e+00	0.000000e+00	0.00000e+00	0.000000e+00	5.336771e-06	1.724363e-02	0.00000e+00				
0.000000e+00	0.00000e+00	0.000000e+00	4.365089e-04	0.000000e+00	0.000000e+00	0.000000e+00	1.308316e-02				
# PV											
1.241600e+04	0.00000e+00	0.00000e+00	3.360000e+02	0.000000e+00	0.00000e+00	0.000000e+00	0.000000e+00				
0.000000e+00	1.908800e+04	0.000000e+00	3.280000e+02	0.000000e+00	0.000000e+00	0.000000e+00	0.00000e+00				
0.000000e+00	0.000000e+00	1.578400e+04	0.000000e+00	0.000000e+00	1.176000e+03	0.000000e+00	0.00000e+00				
3.360000e+02	3.280000e+02	0.000000e+00	5.860800e+04	0.000000e+00	7.272000e+03	0.000000e+00	4.688000e+03				
0.000000e+00	0.000000e+00	0.000000e+00	0.00000e+00	2.372800e+04	1.584000e+03	0.000000e+00	0.00000e+00				
0.000000e+00	0.00000e+00	1.176000e+03	7.272000e+03	1.584000e+03	1.087440e+05	3.040000e+02	0.000000e+00				
0.00000e+00	0.00000e+00	0.000000e+00	0.00000e+00	0.000000e+00	3.040000e+02	2.150400e+04	0.00000e+00				
0.000000e+00	0.00000e+00	0.000000e+00	4.688000e+03	0.000000e+00	0.00000e+00	0.000000e+00	2.936000e+04				
# fNV											
9.200799e-03	0.000000e+00	0.000000e+00	2.489907e-04	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00				
0.000000e+00	1.414504e-02	0.000000e+00	2.430623e-04	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00				
0.000000e+00	0.000000e+00	1.169663e-02	0.000000e+00	0.000000e+00	8.714675e-04	0.000000e+00	0.000000e+00				
2.489907e-04	2.430623e-04	0.000000e+00	4.343109e-02	0.000000e+00	5.388870e-03	0.000000e+00	3.474013e-03				
0.000000000000	0.000000000000	0.000000000000	0.000000000000	1.7583490-02	1.1/3813e-03	0.000000000000	0.000000000000				
0.000000000000	0.000000000000	8./146/5e-04	5.3888700-03	1.1/3813e-03	8.058406e-02	2.252//3e-04	0.00000000+00				
0.000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000000000	0.0000000000000000000000000000000000000	2.252//3e-04	1.5935400-02	0.0000000000000				
0.000000e+00	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	5.4/4013e-03	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	2.1/5/04e-02				
1.552000e+03	0.000000e+00	0.000000e+00	4.200000e+01	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00				

3dTrackID: choosing a "mode"

DET

+ Initial, quick QC of full DWI data (e.g., WB tracking)
+ Check gradient flip (-> @GradFlipTest)

MINIP

- + Quick network check
- + Visualize tract bundles, esp. for example figure
- + Requires uncert. calc. (3dDWUncert)

PROB

+ <u>The choice for</u> <u>quantitative work</u>

- + *Can* also visualize WMCs as RGB or per-bundle coloring
- + Requires uncert.
 - calc. (3dDWUncert)
- + Is slower.... but not too bad.

3dTrackID: control tracts at surface boundaries

A. Default: between and within target

B. -uncut_at_rois : no trimming

D. -targ_surf_twixt : between targets only

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/FATCAT/Tracking.html#using-target-surfaces-to-control-tract-trimming

@GradFlipTest: track WB to check grad format

+ Software and scanners have can have different definitions of +/- when interpreting scan directions. So, use WB tracking via @GradFlipTest to check and 1dDW_Grad_o_Mat++ to adjust/fix.

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/FATCAT/GradFlipTest.html https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/FATCAT/DealingWithGrads.html (Taylor et al. 2015, BC)

Making network of targets for tracking Ex. 1: from FreeSurfer parc/seg Ex. 2: from FMRI maps

3dROIMaker: (controlled) ROI inflation

- + Target ROIs may be slightly "cut off" from the FA-WM masks, due to thresholding (e.g., FMRI) or alignment/resampling (e.g., FS/template or FMRI).
 - Can use **3dROIMaker** to inflate targets a little to fill in gaps while not overrunning WM or other targets.

Ex. 1: olay: FS targets **pre-**inflation; ulay: FA>0.2 mask

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/FATCAT/MakingROIs.html https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/fatcat_prep/Postprocessing_III.html

3dROIMaker: (controlled) ROI inflation

- + Target ROIs may be slightly "cut off" from the FA-WM masks, due to thresholding (e.g., FMRI) or alignment/resampling (e.g., FS/template or FMRI).
 - Can use **3dROIMaker** to inflate targets a little to fill in gaps while not overrunning WM or other targets.

Ex. 1: olay: FS targets **pre-**inflation; ulay: FA>0.2 mask

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/FATCAT/MakingROIs.html https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/fatcat_prep/Postprocessing_III.html

Ex. 2: FMRI-derived targets

1) Start with some FC map (seed-based correlation, ICA, etc.) Here: olay = ICA map (Z-score values) ulay = FA map

Ex. 2: FMRI-derived targets

2) Threshold FC map voxelwise and for size of clusters -> isolated ROIs
 Here: olay = map of regions after thresholding
 ulay = mask of FA>0.2 (-> FA-WM)

Ex. 2: FMRI-derived targets

3) Inflate isolated targets a small amount, constrain with FA-WM Here: olay = inflated ROIs -> targets for tracking ulay = mask of FA>0.2 (-> FA-WM)

3dROIMaker: additional features

- + Can remove overlap of regions with WM or CSF
- + Inflation options: inflation can stop just before or just after overlapping with FA-WM
- + Select subsets of ROIs with *N* highest values
- + Apply a "refset" to have consistent numbering+labelling of ROIs

How do we estimate tensor parameter noise/uncertainty for MINIP and PROB tracking?

Recall: noise in DW signals

MRI signals have additive noise

$$S_i = S_0 e^{-b g_i^{\mathsf{T}} \mathsf{D} g_i} + \varepsilon_i$$

where ε is (Rician) noise, with the effect of leading to errors in surface fit, equivalent to *rotations* and *rescalings* of ellipsoids:

'Un-noisy' vs perturbed/noisy fit

EPI distortions, subject motion, et al. also warp ellipsoids.

DTI Uncertainty

We use jackknife resampling (e.g., Efron 1982)

•

- Other studies have used bootstrapping (e.g., Jones 2003), or theoretical estimates (Jeong & Anderson 2008)
- Jackknifing is efficient (just need one data set unlike bootstrap), simpler than theory, since, e.g., SNR is likely not constant across voxels

• Basically, take M acquisitions

e.g., M=12

 Basically, take M acquisitions
 Randomly select M_J < M to use to calculate quantity of interest

 standard nonlinear fits

e.g., M=12 M_J=9

$[D_{11} \ D_{22} \ D_{33} \ D_{12} \ D_{13} \ D_{23}] = \dots$

- Basically, take M acquisitions
 Randomly select M_J < M to use to calculate quantity of interest

 standard nonlinear fits
- Repeatedly subsample large number (~10³-10⁴ times)

e.g., M=12 M_J=9

 $\begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots \\ \begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots \\ \begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots$

. . . .

- Basically, take M acquisitions
 Randomly select M_J < M to use to calculate quantity of interest

 standard nonlinear fits
- Repeatedly subsample large number (~10³-10⁴ times)
- Analyze distribution of values for estimator (mean) and confidence interval
 - sort/%iles
 - (not so efficient)
 - if Gaussian, e.g. $\mu \pm 2\sigma$
 - simple

e.g., M=12 M_T=9

 $\begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots \\ \begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots \\ \begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots \\ \end{bmatrix}$

Uncertainty estimation

+ 3dDWUncert estimates

 bias and σ of the first eigenvector e₁
 (main direction of diffusion), for two
 degrees of freedom: how much it could
 tip toward either e₂ or e₃:

(Taylor & Saad. 2013, BC)

Uncertainty example

+ Can see difference in e_1 uncertainty along e_2 and e_3 (in rads).

+ Tissue-dependent differences in FA uncertainty.

(Taylor & Saad. 2013, BC)

FATCAT addenda: 1) HARDI tracking

Higher order models

DTI tractography:
+ susceptible to false negatives, difficulty with long range tracts (noise/error accumulation)
+ Major diffusion can be average of multiple paths
+ Voxels can have low FA from several WM paths, false ending
+ Can't resolve complex underlying architecture
- Jeurissen et al. (2012, HBM): 60-90% of WM voxels estimated

to have multiple fibers

(Jeurissen et al., 2012)

HARDI

+ High Angular Resolution Diffusion Imaging:

- DSI, ODF, Qball, FOD...
- model multiple fiber bundle directions per voxel
- generally need more scan time and acquisitions and computational power, much higher b-values
- still can't resolve intravoxel tract behavior (which of multiple paths?)
- higher DW \rightarrow lower signal, so susceptible to noise

HARDI

+ High Angular Resolution Diffusion Imaging:

- DSI, ODF, Qball, FOD...
- model multiple fiber bundle directions per voxel
- generally need more scan time and acquisitions and computational power, much higher b-values
- still can't resolve intravoxel tract behavior (which of multiple paths?)
- higher DW \rightarrow lower signal, so susceptible to noise

FATCAT can now track through HARDI data → HARDI reconstruction done outside AFNI (e.g., DSI-Studio, Diffusion Toolkit, ...), and outputs tracked in FATCAT.

Example: 3dTrackID on HARDI data <u>Ex:</u> Human Connectome Project subject, 288 grads, HARDI reconstructed with GQI in DSI-Studio.

FATCAT addenda:2) 'Connectome'-type tracking

"Connectome": parcellation of GM

Example (script available in FATCAT DEMO): + FreeSurfer parcellation into >112 ROIs. + Selected 80 cortical GM ROIs. + Used 3dROIMaker to inflate by 1 voxel, up to FA>0.2. (+ NEW: keep labeltable labels and use them in output.) + '3dTrackID' among the regions

"Connectome": parcellation of GM

Example (script available in FATCAT DEMO): + FreeSurfer parcellation into >112 ROIs. + Selected 80 cortical GM ROIs. + Used 3dROIMaker to inflate by 1 voxel, up to FA>0.2. (+ NEW: keep labeltable labels and use them in output.) + '3dTrackID' among the regions

"Connectome": tracking

Pnt 0, trct 72, bnd 56

SUMMARY

+ We motivated using subject data to make networks of targets
- e.g., FMRI or anatomical parcellation

+ Tracking estimates most likely locations of WMCs

- Use **PROB** mode in 3dTrackID for best estimation
- 3dDWUncert to estimate DT parameter uncertainty
- + Quantitative output: matrices of properties in tracked WMCs
- + 3dROIMaker is useful for making target ROIs
- + Checking/fixing grads: @GradFlipTest + 1dDW_Grad_o_Mat
- + 3dTrackID also has HARDI-compatible functionality

