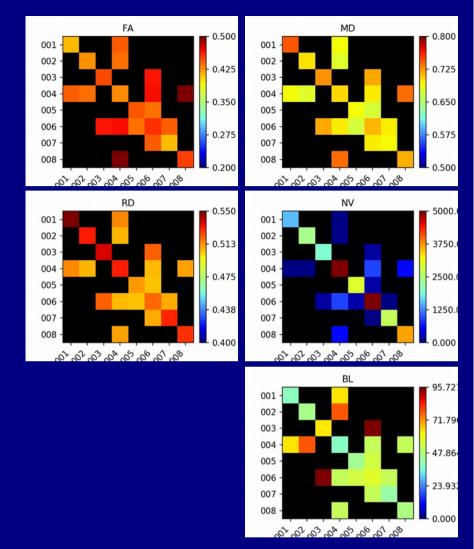

# Introduction to: investigating networks with multivariate modeling

AFNI Bootcamp (SSCC, NIMH, NIH)





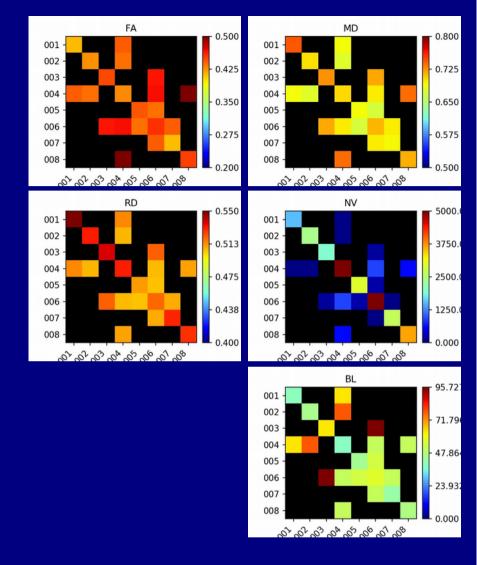



#### **Outline**

- + We describe combining DTI or FMRI network results (matrices) with non-MRI data (e.g., age, test scores, characteristics, etc.) for group analysis.
- + General motivation for multivariate modeling (MVM)
- + Case study example

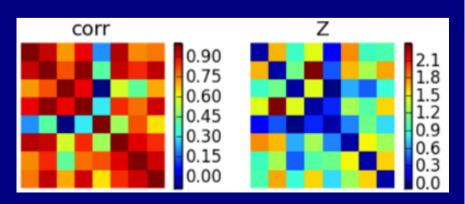
#### WMC Quantities

For pairs of targets in a network, have an average WMC property (or can map to T1, PD...) →


Have produced sets of localized structural/anatomical quantities for comparison with functional values or behavioral scores, genetics, etc.



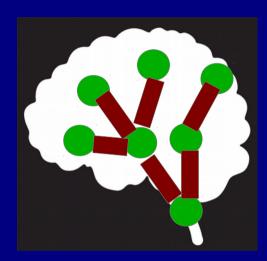
#### WMC Quantities


For pairs of targets in a network, have an average WMC property (or can map to T1, PD...) →

Have produced sets of localized structural/anatomical quantities for comparison with functional values or behavioral scores, genetics, etc.



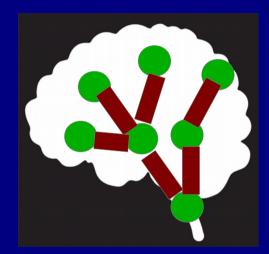
Also works for GM quantities (FC)


3dNetCorr: correlation matrices
of average time series in ROIs
(e.g., uninflated GM ROIs from
3dROIMaker)

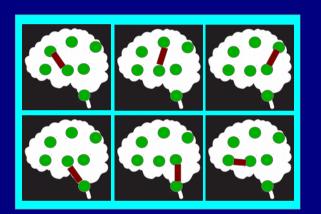


1) Place network targets




- 1) Place network targets
- 2) Probabilistic tracking

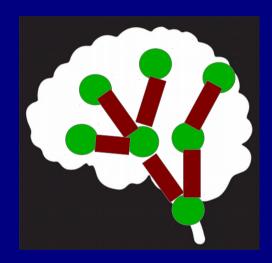



1) Place network targets

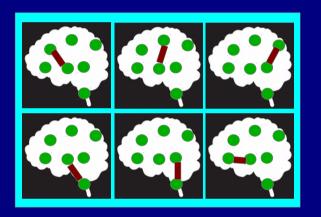



2) Probabilistic tracking




3) set of WM ROIs → set of simultaneous measures



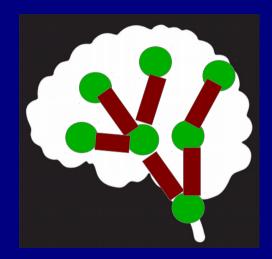

1) Place network targets



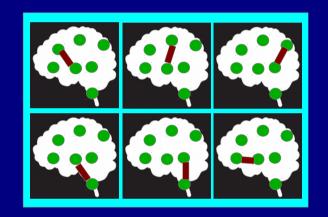
2) Probabilistic tracking



3) set of WM ROIs → set of simultaneous measures




4) Network-level test: multivariate model (MVM)

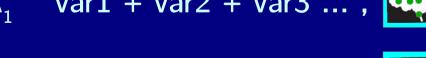

1) Place network targets



2) Probabilistic tracking



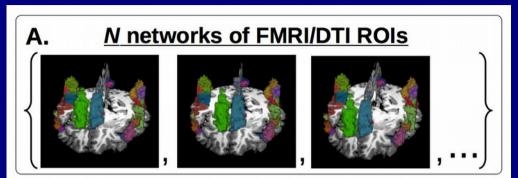
3) set of WM ROIs  $\rightarrow$ set of simultaneous measures

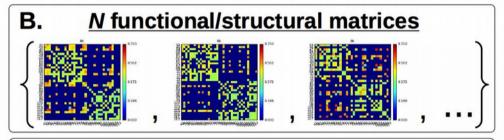


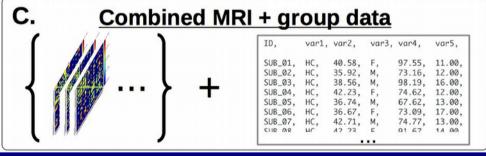

4) Network-level test: multivariate model (MVM)



5) WMC-level / ROI-level tests: follow-up GLM for each WMC


$$FA_1$$
 ~ var1 + var2 + var3 ...,





$$FA_2$$
 ~ var1 + var2 + var3 ... ,



## Group Analysis: Summary







E. <u>Network-level statistics for each model</u>

ANOVA table of  $\chi^2$ , DF, and p-value:

F. <u>Set of ROI statistics for each model</u>

Post hoc table of value, t-stat, DF and 2-sided p:

#### Helper functions

#### Combine data: fat\_mvm\_prep.py

- + make a data table combining:
  - a CSV (~XLS) file of subject data with
  - a set of 3dTrackID "\*.grid" (or 3dNetcorr "\*.netcc") files
- + automatically determines matrix elements found across all subj (some missing data allowed with LME modeling)

#### Specify model + GLTs: fat\_mvm\_scripter.py

- + define a statistical model of MRI data from CSV columns
- + build a 3dMVM command for both
  - the network-level model, and
  - the follow-up GLTs (to investigate individual elements)

## Example: Group analysis of tracked networks using multivariate statistics

from study:

<u>A DTI-Based Tractography Study of Effects</u>

<u>on Brain Structure Associated with</u>

<u>Prenatal Alcohol Exposure in Newborns,</u>

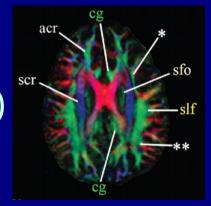
Taylor, Jacobson, van der Kouwe, Molteno, Chen,

Wintermark, Alhamud, Jacobson, Meintjes (2015, HBM)

## Prenatal alcohol exposure (PAE)

- Alcohol is a teratogen, disrupting healthy embryonic and fetal development.
  - → leads to various Fetal Alcohol Spectrum Disorders (FASD)
- FASD occurs in children whose pregnant mothers binge drank
  - e.g., ≥4 drinks/occasion and/or ≥14 drinks/wk
- Results in *poor*:
  - academic performance
  - language/math skills
  - impulse control
  - abstract reasoning
  - memory, attention and facial and skeletal dysmorphology




#### Goals of this study

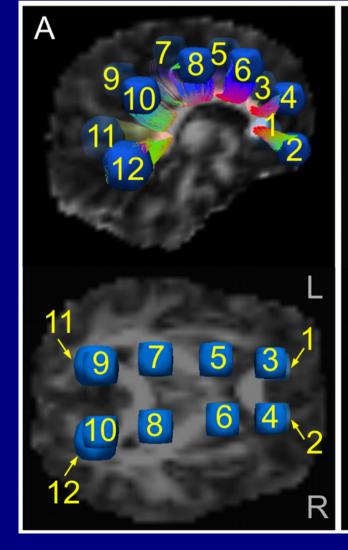
#### To:

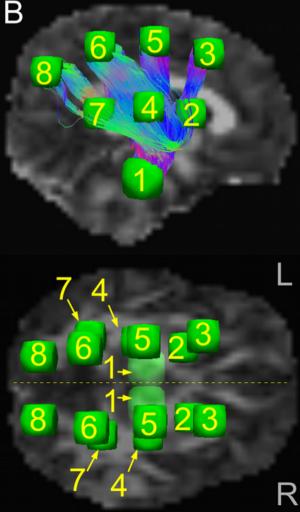
- 1) Use neuroimaging to compare structural brain development in newborns with PAE to that of HC newborns.
- 2) Quantitatively examine WM properties across the brain
- 3) Relate changes in (localized) WM properties with PAE, controlling for several confounding effects
  - → examine several, and see which is/are (most) significant

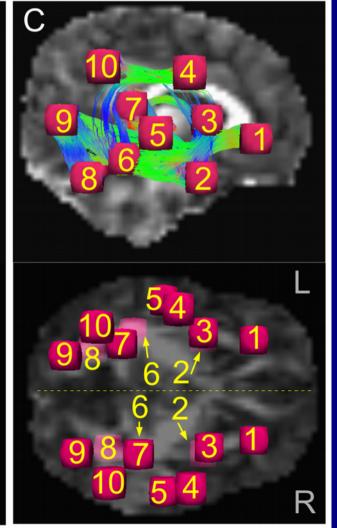
Tools: diffusion tensor imaging (DTI) + tractography

- A) delineate similar WM ROIs across all subjects
- B) quantify structural properties (FA, MD, T1, ...)
- C) statistical modeling for comparisons
  - at whole brain, network and ROI levels




## Setting up DTI-tractography


Location of targets for tractography: 5 WM networks.


CC and Cor. Rad. (CCCR)

Projection (L/R-PROJ)

Association (L/R-ASSOC)







#### The questions:

- 1) which WM networks are affected by PAE?
- 2) which parameters show effects most strongly?

```
Answer using: MVM for each network:
```

```
{set of DTI parameters} ~
alcohol (frequency: binge/wk) +
infant age (wks since conception) +
infant sex (M/F) +
maternal age (yrs) +
maternal cigarette smoking (cig/day).
```

#### The questions:

- 1) which WM networks are affected by PAE?
- 2) which parameters show effects most strongly?

#### Parameters showing at least trends $(p<0.1) \rightarrow$

|         | 1       | FA                     |                 |       | 1       | MD            |                     |          |         | AD            |                                        |          | 1    | PD            |                 |       |
|---------|---------|------------------------|-----------------|-------|---------|---------------|---------------------|----------|---------|---------------|----------------------------------------|----------|------|---------------|-----------------|-------|
|         |         |                        | F (-16 -16 )    |       |         |               | F (-16 -16 )        |          |         |               | F (-15 -15 )                           |          |      |               | F (-16 -16 )    |       |
| Network | var.    | $oldsymbol{eta}_{med}$ | $F(df_N, df_D)$ | р     | var.    | $\beta_{med}$ | $F(df_{N}, df_{D})$ | р        | var.    | $\beta_{med}$ | F (df <sub>N</sub> , df <sub>D</sub> ) | p        | var. | $\beta_{med}$ | $F(df_N, df_D)$ | р     |
| CCCR    |         |                        |                 |       | alc     | -0.70         | 8.6 (1, 14)         | 0.011*   | alc     | -0.72         | 14.0 (1, 14)                           | 0.002**  |      |               |                 |       |
|         |         |                        |                 |       |         |               |                     |          | cig     | -0.27         | 2.5 (6, 9)                             | 0.101    | cig  | 0.47          | 3.5 (1, 14)     | 0.083 |
|         |         |                        |                 |       | mat_age | 0.56          | 5.5 (1, 14)         | 0.034*   | mat_age | 0.53          | 6.3 (1, 14)                            | 0.025*   |      |               |                 |       |
| L-PROJ  |         |                        |                 |       | alc     | -0.41         | 3.9 (10, 140)       | 0.000*** | alc     | -0.52         | 4.1 (10, 140)                          | 0.000*** |      |               |                 |       |
|         | cig     | 0.12                   | 4.2 (11, 4)     | 0.091 |         |               |                     |          |         |               |                                        |          | cig  | 0.52          | 4.0 (1, 14)     | 0.066 |
|         |         |                        |                 |       |         |               |                     |          |         |               |                                        |          |      |               |                 |       |
|         |         |                        |                 |       | mat_age | 0.37          | 4.4 (1, 14)         | 0.056    | mat_age | 0.44          | 6.5 (1, 14)                            | 0.023*   |      |               |                 |       |
|         |         |                        |                 |       |         |               |                     |          |         |               |                                        |          |      |               |                 |       |
| R-PROJ  |         |                        |                 |       | alc     | -0.41         | 1.9 (12, 168)       | 0.035*   | alc     | -0.45         | 2.7 (12, 168)                          | 0.002**  |      |               |                 |       |
|         |         |                        |                 |       |         |               |                     |          |         |               |                                        |          | cig  | 0.48          | 3.4 (1, 14)     | 0.085 |
|         | age     | 0.33                   | 8.6 (13, 2)     | 0.109 | age     | -0.41         | 5.8 (1, 14)         | 0.031*   | age     | -0.39         | 5.3 (1, 14)                            | 0.038*   |      |               |                 |       |
|         |         |                        |                 |       | sex     | -0.20         | 4.3 (1, 14)         | 0.056    | sex     | -0.39         | 5.9 (1, 14)                            | 0.029*   |      |               |                 |       |
|         | mat_age | -0.16                  | 9.2 (13, 2)     | 0.103 |         |               | , ,                 |          |         |               | , ,                                    |          |      |               |                 |       |
| L-ASSOC |         |                        |                 |       | alc     | -0.65         | 6.0 (7, 8)          | 0.011*   | alc     | -0.66         | 8.1 (1, 14)                            | 0.013*   |      |               |                 |       |
|         |         |                        |                 |       |         |               | , ,                 |          |         |               | ,                                      |          | cig  | 0.49          | 3.6 (1, 14)     | 0.080 |
|         |         |                        |                 |       |         |               |                     |          | age     | -0.16         | 2.5 (6, 84)                            | 0.030*   |      |               | ,               |       |
|         |         |                        |                 |       | mat_age | 0.44          | 3.8 (1, 14)         | 0.071    |         |               | 4.7 (1, 14)                            | 0.048*   |      |               |                 |       |
|         |         |                        |                 |       | ugc     | 0             | 0.0 (1, 14)         | 0.011    | at_age  | 0.10          | (1, 14)                                | 0.0.0    |      |               |                 |       |
| R-ASSOC | alc     | 0.23                   | 1.8 (7, 98)     | 0.090 | alc     | -0.62         | 10.2 (1, 14)        | 0.007**  | alc     | -0.67         | 14.1 (1, 14)                           | 0.002**  |      |               |                 |       |
|         |         |                        | - (-,)          |       |         |               | ( -,,               |          | cig     | -0.29         | 3.9 (1, 14)                            |          | cig  | 0.5           | 3.5 (1, 14)     | 0.082 |

<sup>\*</sup> p<0.05; \*\* p<0.01; \*\*\* p<0.001.

#### The questions:

- 1) which WM networks are affected by PAE?
- 2) which parameters show effects most strongly?

Parameters showing at least trends  $(p<0.1) \rightarrow$ 

| 2   |         |         | FA                         |                 |       |         | MD                   |                 |          |         | AD                   |                     |          |      | PD                   |                 |       |
|-----|---------|---------|----------------------------|-----------------|-------|---------|----------------------|-----------------|----------|---------|----------------------|---------------------|----------|------|----------------------|-----------------|-------|
|     | Network | var.    | $\boldsymbol{\beta}_{med}$ | $F(df_N, df_D)$ | р     | var.    | $\beta_{\text{med}}$ | $F(df_N, df_D)$ | р        | var.    | $\beta_{\text{med}}$ | $F(df_{N}, df_{D})$ | р        | var. | $\beta_{\text{med}}$ | $F(df_N, df_D)$ | p     |
| DI  | CCCR    |         |                            |                 |       | alc     | -0.70                | 8.6 (1, 14)     | 0.011*   | alc     | -0.72                | 14.0 (1, 14)        | 0.002**  |      |                      |                 |       |
| 3   |         |         |                            |                 |       |         |                      |                 |          | cig     | -0.27                | 2.5 (6, 9)          |          | cig  | 0.47                 | 3.5 (1, 14)     | 0.083 |
| PEW |         |         |                            |                 |       | mat_age | 0.56                 | 5.5 (1, 14)     | 0.034*   | mat_age | 0.53                 | 6.3 (1, 14)         | 0.025*   |      |                      |                 |       |
| U   | L-PROJ  |         |                            |                 |       | alc     | -0.41                | 3.9 (10, 140)   | 0.000*** | alc     | -0.52                | 4.1 (10, 140)       | 0.000*** |      |                      |                 |       |
| 2   |         | cig     | 0.12                       | 4.2 (11, 4)     | 0.091 |         |                      |                 |          |         |                      |                     |          | cig  | 0.52                 | 4.0 (1, 14)     | 0.066 |
|     |         |         |                            |                 |       |         |                      |                 |          |         |                      |                     |          |      |                      |                 |       |
|     |         |         |                            |                 |       | mat_age | 0.37                 | 4.4 (1, 14)     | 0.056    | mat_age | 0.44                 | 6.5 (1, 14)         | 0.023*   |      |                      |                 |       |
| 4   | D DDO   |         |                            |                 |       | ala     | 0.44                 | 1.0 (10, 169)   | 0.025*   | ala     | 0.45                 | 0.7/40.469\         | 0.000**  |      |                      |                 |       |
|     | R-PROJ  |         |                            |                 |       | alc     | -0.41                | 1.9 (12, 168)   | 0.035*   | alc     | -0.45                | 2.7 (12, 168)       | 0.002**  | cig  | 0.48                 | 3.4 (1, 14)     | 0.085 |
|     |         | 200     | 0.33                       | 8.6 (13, 2)     | 0.100 | 200     | -0.41                | 5.8 (1, 14)     | 0.031*   | 200     | -0.39                | 5.3 (1, 14)         | 0.038*   | cig  | 0.40                 | 3.4 (1, 14)     | 0.005 |
|     |         | age     | 0.55                       | 0.0 (13, 2)     | 0.109 | age     | -0.20                | 4.3 (1, 14)     | 0.056    | age     | -0.39                | , ,                 | 0.039*   |      |                      |                 |       |
|     |         | mat_age | -0.16                      | 9.2 (13, 2)     | 0.103 | sex     | -0.20                | 4.3 (1, 14)     | 0.056    | sex     | -0.39                | 5.9 (1, 14)         | 0.029    |      |                      |                 |       |
|     | L-ASSOC | mat_age | -0.10                      | 0.2 (10, 2)     | 0.100 | alc     | -0.65                | 6.0 (7, 8)      | 0.011*   | alc     | -0.66                | 8.1 (1, 14)         | 0.013*   |      |                      |                 |       |
|     | L-A0000 |         |                            |                 |       | uic     | 0.00                 | 0.0 (1, 0)      | 0.011    | aic     | 0.00                 | 0.1 (1, 14)         |          | cig  | 0.49                 | 3.6 (1, 14)     | 0.080 |
|     |         |         |                            |                 |       |         |                      |                 |          | age     | -0.16                | 2.5 (6, 84)         | 0.030*   |      |                      | (.,,            |       |
|     |         |         |                            |                 |       | mat_age | 0.44                 | 3.8 (1, 14)     | 0.071    | mat_age |                      | 4.7 (1, 14)         | 0.048*   |      |                      |                 |       |
|     |         |         |                            |                 |       | aage    | J. 1 .               | 5.5 (1, 14)     | 5.07 1   | uugu    | 5.10                 | (1, 11)             |          |      |                      |                 |       |
|     | R-ASSOC | alc     | 0.23                       | 1.8 (7, 98)     | 0.090 | alc     | -0.62                | 10.2 (1, 14)    | 0.007**  | alc     | -0.67                | 14.1 (1, 14)        | 0.002**  |      |                      |                 |       |
|     |         |         |                            |                 |       |         |                      |                 |          | cig     | -0.29                | 3.9 (1, 14)         |          | cig  | 0.5                  | 3.5 (1, 14)     | 0.082 |

<sup>\*</sup> p<0.05; \*\* p<0.01; \*\*\* p<0.001.

 → Statistically significant alcohol exposure associations in ~every WM network

#### The questions:

- 1) which WM networks are affected by PAE?
- 2) which parameters show effects most strongly?

Parameters showing at least trends  $(p<0.1) \rightarrow$ 

|         |         | FA    |                 |       |         | MD               |                                        |          |           | AD                   |                                        |          |      | PD            |                 |       |
|---------|---------|-------|-----------------|-------|---------|------------------|----------------------------------------|----------|-----------|----------------------|----------------------------------------|----------|------|---------------|-----------------|-------|
| Network | var.    | 2     | $F(df_N, df_D)$ | р     | var.    | β <sub>med</sub> | F (df <sub>N</sub> , df <sub>D</sub> ) | р        | var.      | $\beta_{\text{med}}$ | F (df <sub>N</sub> , df <sub>D</sub> ) | р        | var. | $\beta_{med}$ | $F(df_N, df_D)$ | р     |
| CCCR    |         |       |                 |       | alc     | -0.70            | 8.6 (1, 14)                            | 0.011*   | alc       | -0.72                | 14.0 (1, 14)                           | 0.002**  |      |               |                 |       |
|         |         |       |                 |       |         |                  |                                        |          | cig       | -0.27                | 2.5 (6, 9)                             |          | cig  | 0.47          | 3.5 (1, 14)     | 0.083 |
|         |         |       |                 |       | mat_age | 0.56             | 5.5 (1, 14)                            | 0.034*   | mat_age   | 0.53                 | 6.3 (1, 14)                            | 0.025*   |      |               |                 |       |
| L-PROJ  |         |       |                 |       | alc     | -0.41            | 3.9 (10, 140)                          | 0.000*** | alc       | -0.52                | 4.1 (10, 140)                          | 0.000*** |      |               |                 |       |
|         | cig     | 0.12  | 4.2 (11, 4)     | 0.091 |         |                  |                                        |          |           |                      |                                        |          | cig  | 0.52          | 4.0 (1, 14)     | 0.066 |
|         |         |       |                 |       |         |                  |                                        |          |           |                      |                                        |          |      |               |                 |       |
|         |         |       |                 |       | mat_age | 0.37             | 4.4 (1, 14)                            | 0.056    | mat_age   | 0.44                 | 6.5 (1, 14)                            | 0.023*   |      |               |                 |       |
| R-PROJ  |         |       |                 |       | alc     | -0.41            | 1.0.(12.169)                           | 0.025*   | ale       | 0.45                 | 27/12 169)                             | 0.002**  |      |               |                 |       |
| K-PKOJ  |         |       |                 |       | aic     | -0.41            | 1.9 (12, 168)                          | 0.035*   | alc       | -0.45                | 2.7 (12, 168)                          |          | cig  | 0.48          | 3.4 (1, 14)     | 0.085 |
|         | age     | 0.33  | 8.6 (13, 2)     | 0.109 | age     | -0.41            | 5.8 (1, 14)                            | 0.031*   | age       | -0.39                | 5.3 (1, 14)                            | 0.038*   | oig  | 0.40          | 0.4 (1, 14)     | 0.000 |
|         | age     | 0.00  | 0.0 (10, 2)     | 0.100 | sex     | -0.20            | 4.3 (1, 14)                            | 0.056    | sex       | -0.39                | 5.9 (1, 14)                            | 0.029*   |      |               |                 |       |
|         | mat_age | -0.16 | 9.2 (13, 2)     | 0.103 | SCX     | -0.20            | 4.5 (1, 14)                            | 0.030    | SCX       | -0.59                | 3.9 (1, 14)                            | 0.029    |      |               |                 |       |
| L-ASSOC | mat_ago | 0.10  | 0.2 (10, 2)     | 0.100 | alc     | -0.65            | 6.0 (7, 8)                             | 0.011*   | alc       | -0.66                | 8.1 (1, 14)                            | 0.013*   |      |               |                 |       |
| L-A0000 |         |       |                 |       | uic     | 0.00             | 0.0 (7, 0)                             | 0.011    | uic       | 0.00                 | 0.1 (1, 14)                            |          | cig  | 0.49          | 3.6 (1, 14)     | 0.080 |
|         |         |       |                 |       |         |                  |                                        |          | age       | -0.16                | 2.5 (6, 84)                            | 0.030*   |      |               | (.,,            |       |
|         |         |       |                 |       | mat_age | 0.44             | 3.8 (1, 14)                            | 0.071    | mat_age   |                      | 4.7 (1, 14)                            | 0.048*   |      |               |                 |       |
|         |         |       |                 |       | mat_age | U.77             | 0.0 (1, 14)                            | 0.071    | linat_age | 0.40                 | T.7 (1, 1 <del>4</del> )               | 0.040    |      |               |                 |       |
| R-ASSOC | alc     | 0.23  | 1.8 (7, 98)     | 0.090 | alc     | -0.62            | 10.2 (1, 14)                           | 0.007**  | alc       | -0.67                | 14.1 (1, 14)                           | 0.002**  |      |               |                 |       |
|         |         |       | , , , , ,       |       |         |                  | , ,                                    |          | cig       | -0.29                | 3.9 (1, 14)                            |          | cig  | 0.5           | 3.5 (1, 14)     | 0.082 |

<sup>\*</sup> p<0.05; \*\* p<0.01; \*\*\* p<0.001.

 → Increased alcohol exposure: decreased AD (and decreased MD)

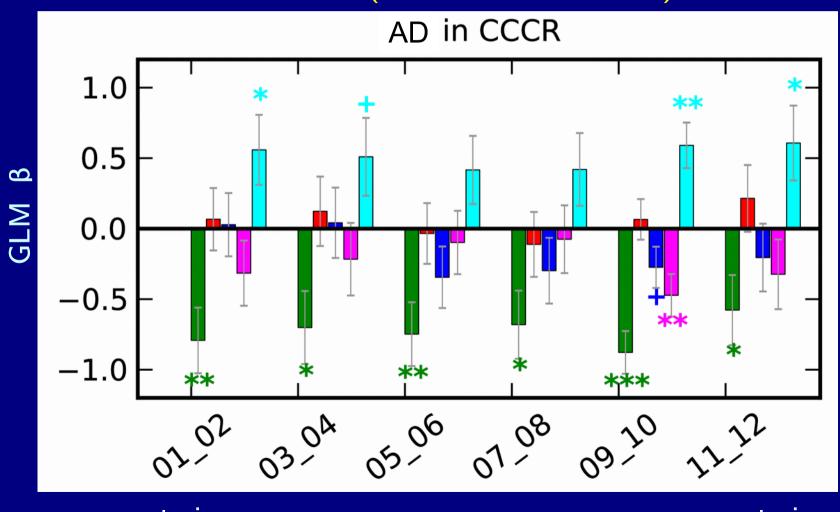
— Networks

## III) Results: ROI level

#### The question:

1) where are most significant AD-alcohol relations in each network?

```
Answer using: Follow-up GLT for each WMC:
```


```
WMC DTI parameter ~ alcohol (frequency: binge/wk) + infant age (wks since conception) + infant sex (M/F) + maternal age (yrs) + maternal cigarette smoking (cig/day).
```


## III) Results: ROI level

#### The question:

1) where are most significant AD-alcohol relations in each network?

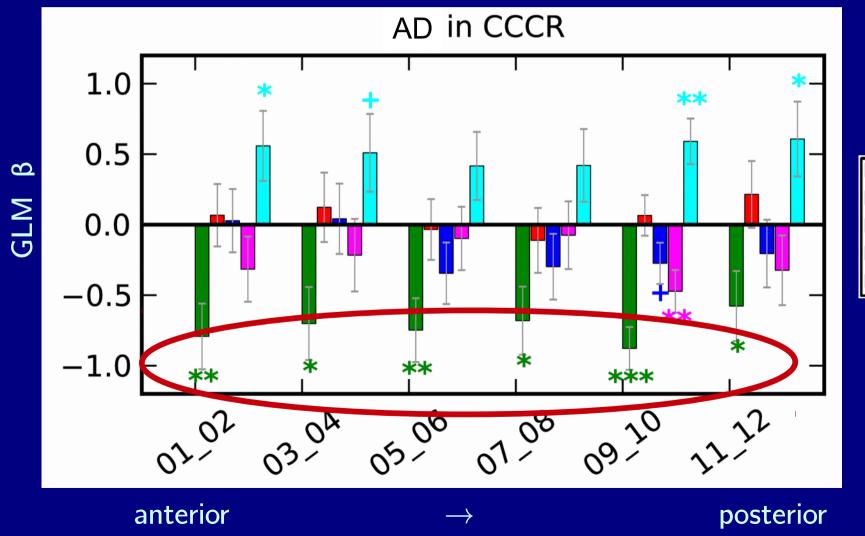
Transcallosal (CC and corona radiata)

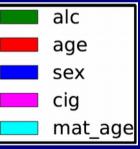




anterior




posterior


## III) Results: ROI level

#### The question:

1) where are most significant AD-alcohol relations in each network?

Transcallosal (CC and corona radiata)





→ strong
 AD-alc
 relations
 in most
 (medial)
 WM ROIs

#### SUMMARY

- + Tracking allows one to compare and investigate properties first at a network level, and then "zoomed in" at WMC level
  - Same applies for FC matrices (e.g., from 3dNetCorr)
- + MVM modeling provides omnibus *F*-statistic for network level, and GLTs for follow-up
- + FATCAT functions help combine MRI data (\*.grid or \*.netcc files) with subject characteristics (\*.xls -> \*.cxv file)
- + Additional functions help specify the model for 3dMVM

