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Outline

+  Why Function+Structure

+  DWI and DTI  (→ local structures)

- Brief diffusion imaging basics and parameters

- Role of noise → DTI parameter uncertainty

+ Using tractography (→ estimate extended structures)

- goals of tracking.

- algorithms/properties

- final thoughts on interpretation



  

(Biswal et al., 2010 PNAS)

FMRI: GM Networks



  

FMRI: GM Networks

+  Quantify GM properties:
ALFF, fALFF, RSFA, σ,
ReHo, GMV, etc.

+  Quantify network props:
seedbased correlation,
ICA, graph theoretical 
measures, etc.

Functional connectivity 
networks of distinct GM
regions, from BOLD
time series during task 
or rest/no task.



  

Sidenote:

Mention of a few of the FMRI tools



  

Functional processing, 3

For {RS- | TB-}FMRI:   correlation matrices

+ 3dNetCorr: calculated post-processing, input time series data + network maps
- can be multi-brick maps, 1 network per brick
- calculate average time series per ROI, correlation among network ROIs
- outputs correlation matrix/matrices, (can also do Fisher-Z transform output)

++ Can also calculate ReHo, ALFF, fALFF, etc.
in FATCAT/AFNI.



  

0.2

DTI-based parameters characterize some local structural 
properties and also show the presence of spatially-extended 
WM structures.

Can quantify structural
(esp. WM) properties
using:
FA, MD, RD, L1, etc.

Can investigate (and
Quantify?) network 
relations with:
tractography

DTI: WM structure

FA MD

0.8 0 1

(x10-3 mm2/s)



  

Structural connections in the brain

Extended white matter fibers, 
often organized in bundles

The (schematic) structure of neurons



  



  



  



  

Combining FC and SC

+ How to combine quantitatively?
- FMRI has measures of functional connectivity and 'strength'

(e.g., correlation, network parameters)



  

Combining FC and SC

+ How to combine quantitatively?
- FMRI has measures of functional connectivity and 'strength'

(e.g., correlation, network parameters)

- DTI tracking between GM ROIs-- we can have 
'structural connectivity' strength, e.g., in terms of # of fibers?
-> will discuss more, but think this is not good road to be on



  

- DTI tracking between GM ROIs-- we can have 
'structural connectivity' strength, e.g., in terms of # of fibers?
-> will discuss more, but think this is not good road to be on
- how about: 

find likely areas where WM is connecting GM regions,
and quantify properties in those regions (FA, MD, proton 
density from structural images...)
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- DTI tracking between GM ROIs-- we can have 
'structural connectivity' strength, e.g., in terms of # of fibers?
-> will discuss more, but think this is not good road to be on
- how about: 

find likely areas where WM is connecting GM regions,
and quantify properties in those regions (FA, MD, proton 
density from structural images...)

Combining FC and SC

+ How to combine quantitatively?
- FMRI has measures of functional connectivity and 'strength'

(e.g., correlation, network parameters)

→ FC+SC provides sets of complementary quantities
to describe a network, and can be further combined 
with behavioral/other measures (statistical modeling).



  

Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:
+ determining networks from FMRI (or other) data; 
+ finding correlations and local properties of functional networks; 
+ turning GM ROIs into targets for tractography; 
+ doing reasonable tractography to find WM ROIs; 
+ estimating stats on WM ROIs...



  

Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:
+ determining networks from FMRI (or other) data; 
+ finding correlations and local properties of functional networks; 
+ turning GM ROIs into targets for tractography; 
+ doing reasonable tractography to find WM ROIs; 
+ estimating stats on WM ROIs...

FATCAT:  Functional And Tractographic Connectivity Analysis Toolbox
 (Taylor & Saad, 2013), available in AFNI with demo data+scripts.

*

*picture from google search, not from/of either author



  

Schematic for combining 
FMRI and DTI-tractography 
via FATCAT

(Taylor, Chen, Cox & Saad, 2015?)



  

Schematic for combining 
FMRI and DTI-tractography 
via FATCAT

FATCAT goals:
+ Do useful tasks
+ Integrate with existing 
      pipelines/software
+ Derive/use information  
      from the data itself
+ Be “simple” to implement
+ Be network-oriented,
      when possible
+ Be efficient
+ Be flexible and able to
      grow

(Taylor, Chen, Cox & Saad, 2015?)



  

Main focus today on DTI- 
tractography, including
making ROIs from FMRI

Schematic for combining 
FMRI and DTI-tractography 
via FATCAT

FATCAT goals:
+ Do useful tasks
+ Integrate with existing 
      pipelines/software
+ Derive/use information  
      from the data itself
+ Be “simple” to implement
+ Be network-oriented,
      when possible
+ Be efficient
+ Be flexible and able to
      grow

(Taylor, Chen, Cox & Saad, 2015?)



  

What is diffusion tensor imaging?

DTI is a particular kind of magnetic resonance imaging (MRI)



  

What is diffusion tensor imaging?

Diffusion:  random motion of particles, tending to spread out

 → here, hydrogen atoms in aqueous brain tissue

DTI is a particular kind of magnetic resonance imaging (MRI)

motion

particle

random path/walk



  

What is diffusion tensor imaging?

Diffusion:  random motion of particles, tending to spread out

Tensor:  a mathematical object (a matrix) to store information

 → here, hydrogen atoms in aqueous brain tissue

 → here, quantifying particle spread in all directions

DTI is a particular kind of magnetic resonance imaging (MRI)

D =
D11  D12  D13

D21  D22  D23

D31  D32  D33



  

What is diffusion tensor imaging?

Diffusion:  random motion of particles, tending to spread out

Tensor:  a mathematical object (a matrix) to store information

 → here, hydrogen atoms in aqueous brain tissue

 → here, quantifying particle spread in all directions

Imaging:  quantifying brain properties

 → here, esp. for white matter 

DTI is a particular kind of magnetic resonance imaging (MRI)



  

The DTI model:
Assumptions and relation to WM properties



  

Diffusion: random (Brownian) motion of particles → mixing or spreading

Diffusion as environmental marker

Ex: unstirred, steeping tea (in a large cup):



  

Empty cup, no structure:
Atoms have equal probability of
movement any direction
→ spherical spread of concentration
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Diffusion: random (Brownian) motion of particles → mixing or spreading

Diffusion as environmental marker

Ex: unstirred, steeping tea (in a large cup):

Empty cup, no structure:
Atoms have equal probability of
movement any direction
→ spherical spread of concentration



  

But in the presence of structures: 

Diffusion: random (Brownian) motion of particles → mixing or spreading

Diffusion as environmental marker

Ex: unstirred, steeping tea (in a large cup):

Empty cup, no structure:
Atoms have equal probability of
movement any direction
→ spherical spread of concentration



  

But in the presence of structures: 
Unequal probabilities of moving in
different directions 
→ nonspherical spread

Diffusion: random (Brownian) motion of particles → mixing or spreading

Diffusion as environmental marker

Ex: unstirred, steeping tea (in a large cup):

Empty cup, no structure:
Atoms have equal probability of
movement any direction
→ spherical spread of concentration



  

But in the presence of structures: 
Unequal probabilities of moving in
different directions 
→ nonspherical spread

Diffusion: random (Brownian) motion of particles → mixing or spreading

Diffusion as environmental marker

 → Diffusion shape tells of structure presence and spatial orientation

Ex: unstirred, steeping tea (in a large cup):

Empty cup, no structure:
Atoms have equal probability of
movement any direction
→ spherical spread of concentration



  

Local Structure via Diffusion MRI

(In brief)

1) Random motion of molecules affected by local structures
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Local Structure via Diffusion MRI

(In brief)

1) Random motion of molecules affected by local structures

2) Statistical motion measured using diffusion weighted MRI

3) Bulk features of local structure approximated with various reconstruction
models, mainly grouped by number of major structure directions/voxel:

+  one direction:
DTI (Diffusion Tensor Imaging)



  

Local Structure via Diffusion MRI

(In brief)

1) Random motion of molecules affected by local structures

2) Statistical motion measured using diffusion weighted MRI

3) Bulk features of local structure approximated with various reconstruction
models, mainly grouped by number of major structure directions/voxel:

+  one direction:
DTI (Diffusion Tensor Imaging)

+  >=1 direction:  
HARDI (High Angular Resolution Diffusion Imaging)
Qball, DSI, ODFs, ball-and-stick, multi-tensor, CSD, ...



  

Diffusion in MRI

D =
D11  D12  D13

D21  D22  D23

D31  D32  D33

- Real-valued

- Positive definite (rTDr > 0)

Dei =λi
ei,      λi > 0

- Symmetric (D12 = D21, etc), 

6 independent values

Mathematical properties 

of the matrix/tensor:

Having: 3 eigenvectors: e
i
 

3 eigenvalues:  λ
i
 



  

Diffusion in MRI

D =
D11  D12  D13

D21  D22  D23

D31  D32  D33

- Real-valued

- Positive definite (rTDr > 0)

Dei =λi
ei,      λi > 0

- Symmetric (D12 = D21, etc), 

6 independent values

Mathematical properties 

of the matrix/tensor:

Having: 3 eigenvectors: e
i
 

3 eigenvalues:  λ
i
 

Geometrically, this describes

an ellipsoid surface:

ei

[λ2]-1/2

[λ3]-1/2

[λ1]-1/2

ei

[λ2]
-1/2[λ1]

-1/2

[λ3]-1/2

C = D11x2  + D22y2  + D33z2  + 
2(D12xy  + D13xz  + D23yz)

   

 λ1 = λ2 = λ3

isotropic case

anisotropic case
λ1 > λ2 > λ3



  

DTI: ellipsoids

Important mathematical properties of the diffusion tensor:

+ Help to picture diffusion model:

tensor D → ellipsoid surface
eigenvectors → orientation in space

eigenvalues → 'pointiness' + 'size'



  

DTI: ellipsoids

+ Determine the minimum number of 

DWIs measures needed (6 + baseline)
D11  D12  D13

D21  D22  D23

D31  D32  D33

Important mathematical properties of the diffusion tensor:

+ Help to picture diffusion model:

tensor D → ellipsoid surface
eigenvectors → orientation in space

eigenvalues → 'pointiness' + 'size'



  

+ Determine much of the processing and 

noise minimization steps

+ Determine the minimum number of 

DWIs measures needed (6 + baseline)
D11  D12  D13

D21  D22  D23

D31  D32  D33

DTI: ellipsoids

Important mathematical properties of the diffusion tensor:

+ Help to picture diffusion model:

tensor D → ellipsoid surface
eigenvectors → orientation in space

eigenvalues → 'pointiness' + 'size'



  

“Big 5” DTI ellipsoid parameters

first eigenvalue, L1
(= λ1, parallel/axial diffusivity, AD)

Main quantities of diffusion (motion) surface

L11        <         L12



  

“Big 5” DTI ellipsoid parameters

first eigenvalue, L1
(= λ1, parallel/axial diffusivity, AD)

first eigenvector, e1

(DT orientation in space)

e1e1

Main quantities of diffusion (motion) surface

L11        <         L12



  

“Big 5” DTI ellipsoid parameters

first eigenvalue, L1
(= λ1, parallel/axial diffusivity, AD)

first eigenvector, e1

(DT orientation in space)

Fractional anisotropy, FA
(stdev of eigenvalues)

FA≈0 FA≈1

e1e1

Main quantities of diffusion (motion) surface

L11        <         L12



  

“Big 5” DTI ellipsoid parameters

first eigenvalue, L1
(= λ1, parallel/axial diffusivity, AD)

first eigenvector, e1

(DT orientation in space)

Mean diffusivity, MD
(mean of eigenvalues)

MD1          >    MD2

Fractional anisotropy, FA
(stdev of eigenvalues)

FA≈0 FA≈1

e1e1

Main quantities of diffusion (motion) surface

L11        <         L12



  

“Big 5” DTI ellipsoid parameters

first eigenvalue, L1
(= λ1, parallel/axial diffusivity, AD)

first eigenvector, e1

(DT orientation in space)

Mean diffusivity, MD
(mean of eigenvalues)

MD1          >    MD2

Fractional anisotropy, FA
(stdev of eigenvalues)

FA≈0 FA≈1

e1e1

Radial diffusivity, RD
(= (λ2+λ3)/2)

RD1          >     RD2

Main quantities of diffusion (motion) surface

L11        <         L12



  

Cartoon examples: white matter ↔ FA
GM     vs     WM



  

FA ↑

Cartoon examples: white matter ↔ FA
GM     vs     WM



  

WM bundle organization

FA ↑

Cartoon examples: white matter ↔ FA
GM     vs     WM



  

WM bundle organization

FA ↑ FA ↑

Cartoon examples: white matter ↔ FA
GM     vs     WM



  

WM bundle density

WM bundle organization

FA ↑ FA ↑

FA ↑

Cartoon examples: white matter ↔ FA
GM     vs     WM



  

WM bundle density WM maturation (myelination)

WM bundle organization

FA ↑

FA ↑ FA ↑

FA ↑

Cartoon examples: white matter ↔ FA
GM     vs     WM



  

Interpreting DTI parameters
General literature:
FA: measure of fiber bundle coherence and myelination

- in adults, FA>0.2 is proxy for WM
MD, L1, RD: local density of structure
e1: orientation of major bundles



  

Interpreting DTI parameters

Cautionary notes:
• Degeneracies of structural interpretations
• Changes in myelination may have small effects on FA 
• WM bundle diameter << voxel size

- don't know location/multiplicity of underlying structures

• More to diffusion than structure-- e.g., fluid properties
• Noise, distortions, etc. in measures

General literature:
FA: measure of fiber bundle coherence and myelination

- in adults, FA>0.2 is proxy for WM
MD, L1, RD: local density of structure
e1: orientation of major bundles



  

Acquiring DTI data:
diffusion weighted gradients in MRI



  

For a given voxel, observe relative diffusion along a given 
3D spatial orientation (gradient)

DW gradient 
g

i
 = (g

x
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y
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z
)

Diffusion weighted imaging
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For a given voxel, observe relative diffusion along a given 
3D spatial orientation (gradient)

S
i
 = S

0
 e -b gi

T D gi

MR signal is attenuated by diffusion 
throughout the voxel in that direction:

→ ellipsoid equation
of diffusion surface: 
C = rT D-1 r.

DW gradient 
g

i
 = (g

x
, g

y
, g

z
)

Diffusion weighted imaging



  

For a given voxel, observe relative diffusion along a given 
3D spatial orientation (gradient)

diffusion 
motion 
ellipsoid:

C
2
 = rT D-1 r.

Diffusion weighted imaging

DW gradient 
g

i
 = (g

x
, g

y
, g

z
)

r



  

For a given voxel, observe relative diffusion along a given 
3D spatial orientation (gradient)

diffusion 
motion 
ellipsoid:

C
2
 = rT D-1 r.

Diffusion weighted imaging

DW gradient 
g

i
 = (g

x
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y
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For a given voxel, observe relative diffusion along a given 
3D spatial orientation (gradient)

diffusion 
motion 
ellipsoid:

C
2
 = rT D-1 r.

Diffusion weighted imaging

DW gradient 
g

i
 = (g

x
, g

y
, g

z
)



  

Diffusion weighted imaging

For a given voxel, observe relative diffusion along a given 
3D spatial orientation (gradient)

diffusion 
motion 
ellipsoid:

C
2
 = rT D-1 r.

 Individual points → Fit ellipsoid surface
Individual signals →  Solve for D

DW gradient 
g

i
 = (g

x
, g

y
, g

z
)



  

Unweighted 
reference
b=0 s/mm2

Diffusion weighted images 
(example: b=1000  s/mm2)

Sidenote: what DWIs look like



  

Unweighted 
reference
b=0 s/mm2

(Each DWI has a 
different brightness
pattern: viewing
structures from 
different angles.)

Diffusion weighted images 
(example: b=1000  s/mm2)

Sidenote: what DWIs look like



  

Noise in DW signals

MRI signals have additive noise

S
i
 = S

0
 e -b gi

T D gi     + ε,

where ε is (Rician) noise.



  

Noise in DW signals

MRI signals have additive noise

S
i
 = S

0
 e -b gi

T D gi     + ε,
where ε is (Rician) noise.
 
→ Leads to errors in surface fit, equivalent to 

rotations and rescalings of ellipsoids: 

 'Un-noisy' vs perturbed/noisy fit



  

Noise in DW signals

MRI signals have additive noise

S
i
 = S

0
 e -b gi

T D gi     + ε,
where ε is (Rician) noise.
 
→ Leads to errors in surface fit, equivalent to 

rotations and rescalings of ellipsoids: 

Leads to standard:
+ 30 DWs (~12 clinical)
+ repetitions of b=0
+ DW b chosen by:

MD * b ≈ 0.84
+ nonlinear fitting

 'Un-noisy' vs perturbed/noisy fit



  

Now discuss using local structure information 
to generate/estimate nonlocal structures:

WM tractography



  



  

Field of local diffusion parameters

Local DTs → extended tracts



  

Field of local diffusion parameters

→ individual ellipsoids

Local DTs → extended tracts



  

Field of local diffusion parameters Connect to form extended tracts

→ linked structures

Local DTs → extended tracts

→ individual ellipsoids



  

Tractography: connecting the brain

(looking at you) (looking downward)



  



  

Diversity in tractography

Series of (mostly) logical, simple rules for estimating tracts
→  many methods/algorithms and kinds of parameters to choose:

(Mori et al., 1999;  Conturo et al. 1999; Weinstein et al. 1999; 
Basser et al. 2000;  Poupon et al. 2001;  Mangin et al. 2002; 
Lazar et al. 2003; Taylor et al. 2012; ….)

Propagation via, e.g.:
smoothing diffusion vectors and solving differential equations;
deflecting propagating tracts;  allowing tracts themselves to 
‘diffuse’;  solving for global minimum energy of connections…

 To date, no single 'best' algorithm, work continues: 
- histology can’t give perfect answers.
- some test models (phantoms) exist, but not brain-complex



  

So, first question for using tractography in a study:

Which algorithm to choose?



  



  



  



  



  



  



  

FACTID (FACT Including Diagonals):

(Taylor, Cho, Lin & Biswal, 2012)

+ Utilize simple check for diagonals.

(2D) Schematic:



  

FACTID (FACT Including Diagonals):

(Taylor, Cho, Lin & Biswal, 2012)

+ Utilize simple check for diagonals.

(2D) Schematic:

NB that in (3D) FACT, a single voxel has 6 neighbors for propagation,
while in FACTID, a voxel has 26 neighbors propagation.

vs



  



  



  



  

In addition to tracking algorithms, 
(great) care also has to be taken in
pre-processing the diffusion data.



  

Importance of being processed (in earnest)

On two occasions I have been asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come
out?" ... I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

—Charles Babbage, Passages from the Life of a Philosopher

NB words of wisdom from wikipedia GIGO entry:



  

Importance of being processed (in earnest)

In addition to the tracking algorithm, the quality of data 
acquisition and preparation matter quite a bit 

→ see the TORTOISE tool (Pierpaoli et al., 2010)

On two occasions I have been asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come
out?" ... I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

—Charles Babbage, Passages from the Life of a Philosopher

NB words of wisdom from wikipedia GIGO entry:

https://science.nichd.nih.gov/confluence/display/nihpd/TORTOISE
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Importance of being processed (in earnest)
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Data from the morning session, same target ROI in brainstem.
Consider reach of tracts, symmetry, physiology, etc.

A A PP

A A PP

R L

R L



  

Cinematic side note:

La Belle et la Bête of tractography



  

Known Challenges for Tracking
+  Axon diameters are of order a few micrometers
+  MRI voxel size is of order millimeters

(images of Eyewire data via NPR website)



  

(images of Eyewire data via NPR website)

+  WM regions  are tightly packed, with many connections and
potentially complicated sub-voxel scale structure

Crossing/kissing fibers can:
- Lower FA (stop tracking)
- Redirect (or not) tracking

incorrectly.

Known Challenges for Tracking
+  Axon diameters are of order a few micrometers
+  MRI voxel size is of order millimeters



  

Achievements of Tracking

(Wakana et al., 2004)

(Bammer et al., 2003)

+  Reproduction of many known pathways
+  In vivo vs post-mortem information



  

Light at the end of the tunnel?

1)  GM ROIs are connected by WM skeleton.
2)  We can use  tracking to estimate and highlight WM likely to be 

associated with GM ROIs.
3)  One can then use DTI parameters in the tracked 'WM ROIs' for 

quantitative comparisons (or use ROIs as masks for other data).
4)  Tractography can parcellate the WM skeleton based on the

subject's own data.
5)  Avoid interpreting reconstructed tracks to represent literal, 

underlying fibers.

Tractography seems useful and logically consistent as follows:



  

Applying tractography



  

FMRI provides:  
maps of (GM) regions working together



  

FMRI provides:  
maps of (GM) regions working together



  

FMRI provides:  
maps of (GM) regions working together



  

1) Start with FMRI:
→ threshold to obtain

networks of GM ROIs

     Z>0 (map)         Z>2.3 (mask)

Example: Tractographic selections of WM



  

Example: Tractographic selections of WM

'AND'

'OR'

2) Use DTI-tractography to
find likely location of WM
associated with these 'targets' 

(Deterministic tracking using publicly available AFNI-FATCAT software)



  

Example: Probabilistic tractography

More robust tracking method (many Monte Carlo iterations) 

orange  =  GM ROIs 
blue  =  WM estimates
(via AFNI-FATCAT)

→ 'most likely' locations of WM 



  

Brings up next question for doing tractography:

How do we estimate tensor parameter 
noise/uncertainty?



  

Noise in DW signals

MRI signals have additive noise

S
i
 = S

0
 e -b gi

T D gi     + ε,

where ε is (Rician) noise, with the effect of leading to errors in 
surface fit, equivalent to rotations and rescalings of ellipsoids: 

 'Un-noisy' vs perturbed/noisy fit

EPI distortions, subject motion, et al. also warp ellipsoids.



  



  



  



  



  



  

Uncertainty estimation

+ 3dDWUncert estimates bias and σ
of first eigenvector e

1
 (main direction

of diffusion), based on how much it 
could tip toward either e

2
 or e

3
:

e
1

e
2

e
3

.... and the bias and σ of FA



  

Uncertainty example

+ Can see difference in 
e1 uncertainty along 
e2 and e3 

+ Tissue-dependent
differences in FA
uncertainty 



  

A B C

+ Full probabilistic methods  generate voxelwise brain maps without linear
track structure
+ 'Mini-probabilistic' tracking performs a few extra iterations of' deterministic'
tracking on uncertainty-perturbed data sets

- track structure is retained, 
- results generally exhibit more robust tracks and fewer false negatives 

than deterministic tracking alone 
- false positives tend to be isolated and visually apparent.

Mini-Probabilistic Tracking

Deterministic (AND) with  `-mini_prob 7'



  

Deterministic vs mini-Probabilistic

Mini-Probabilistic Tracking

Through 
single ROI

AND logic
through
network, cf
with full-prob
results

(Taylor et al., 2014)
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