3dQwarp and Its Nwarp Friends

Or, How I Learned to Stop Worrying and Love Getting My Datasets all Warped

Linear and Nonlinear Warping

• The Central Equation:

-S(x) = source image B(x) = base image

> $S(W(x)) \approx B(x)$ where W(x) = desired warp function = shows where each point x in B maps to in S

- <u>3dAllineate</u>: W(x) = Mx where M = 4x3 matrix
 M has 12 parameters to optimize
- <u>3dQwarp</u>: $W(x) = W_1(W_2(..., W_{n-1}(W_n(x)))...))$
 - Each $W_k(x)$ is a polynomial warp over a "patch"
 - Patches start big $[W_1(x)]$ and shrink and shrink
 - Cubic patch = 24 parameters ; Quintic = 81 params
 - By the end, 1000s of parameters have been used

The Good and The Ugly

• the Good:

- Nonlinear warping can match anatomical structures between subjects more closely than linear transformation
- Can also be used for intra-subject warping for high accuracy matching (e.g., pre- and post-surgery)
- the Ugly:
 - Nonlinear warping can seriously distort when it tries to match in regions that don't really "fit together" (e.g., 2 gyri in one person, 1 gyrus in another)
 - Extraneous small features can drive warping in strange ways (unlike linear transformation)
 - Partial brain coverage is a problem

Start: Looking Good

Compare FSL *FNIRT* vs AFNI *3dQwarp* Average of 101 brain volumes warped to template

Good Matches to Anatomical Labels

Maybe Even Useful: Neurosurgery

Pre-surgical volume

Neurosurgery

Manually drawn "exclusion Mask"

Post-surgical volume

Neurosurgery

Pre-surgical volume *3dQwarp*-aligned to Post-surgical volume

But ... Some Ugly

All 101 Volumes After Warping

Mean of 101 Volumes After Warping

How to Make a Template

- Given a collection of skull-stripped structural (T₁-weighted) datasets
- Script @toMNI_Awarp pre-processes each dataset (3dUnifize and @auto_tlrc)
- Script @toMNI_Qwarpar runs 3dQwarp to collectively warp them together over finer and finer patch levels
- Has been used to create Haskins pediatric brain atlas (coming to an AFNI near you "real soon")

What Else to Do with a Warp?

- Warp another dataset the same way

 3dNwarpApply (e.g., carry EPI to template)
- Warp some discrete points the same way
 3dNwarpXYZ (e.g., eCog electrode locations)
- Compute voxel-wise functions of a warp – 3dNwarpFuncs (e.g., volume distortion)
- Compose multiple warps together
 3dNwarpCat and *3dNwarpCalc*
- Can compute inverse warp W⁻¹(x), to map locations in S(x) to matching locations in B

- $S(W(x)) \approx B(x) \rightarrow S(x) \approx B(W^{-1}(x))$

How to Use 3dQwarp

- Run it yourself (the "old school" or "real man" way)
- *auto_warp.py* (easier, less flexible)
- Use '-tlrc_NL_warp' option in afni_proc.py to have transformation to template space be done via auto_warp.py
- Use @toMNI_Awarp and @toMNI_Qwarpar to create a study specific template
- Use '-plusminus' option in 3dQwarp to warp blipup and blip-down EPI datasets to "meet in the middle" (need to write script for this someday)

Yet to Be Done

- Incorporate more fully into *afni_proc.py* and *uber_subject.py*
 - Warping to template; un-warping EPI distortions
- Explore how much nonlinear warping to a template can improve group analysis in functional and anatomical MRI

And improvements to 3dSeg (segmentation)

- Extend matching algorithm to allow labelbased matches, vs. existing intensity-based
- Speed the damn thing up!
- Write a paper about it!