
-1-

Regions of Interest (ROIs)
for those interested in regions

Daddy, where do little
ROIs come from?

or

-2-

What is an ROI?

• An ROI is a "region of interest" usually used as a mask of voxels
• In AFNI, ROIs are stored as any other dataset (.HEAD/.BRIK, .nii, ...) , typically

with positive integer values for voxels to consider.
o Zero values are outside the mask.
o Positive values are inside the mask

• Note any dataset can be considered as an ROI if it is non-zero in areas in which
you are interested.

• Usually stored as byte integers to save disk space and memory

Voxel with
value of 0

Voxel with
value of 1

-3-

Region of Interest Drawing and Usage in AFNI
• Method 1: Draw it. Manually select Regions of Interest (ROIs) based on anatomical

structures, then analyze functional datasets within these regions
o E.g., Someone doing a study on emotion may want to draw an ROI mask that

includes the amygdala only, in order to analyze the voxels that fall within that
brain region

o This method relies on ‘a priori’ assumptions about localization of brain function
• Method 2: Cluster it. Analyze functional dataset for entire brain first, then focus on

geometrically connected clusters of ‘activity’ (supra-threshold voxels in some
functional statistical map)
o i.e., analyze the entire brain first and then pinpoint interesting areas of activity

and do further analyses on those areas (programs 3dClusterize (older - 3dclust
and 3dmerge), or the AFNI graphical interface button [Clusterize], can
assist you in finding those larger “blobs” or clusters of activity)
 Even with this method, you might want to manually adjust the ROIs (i.e., add

or delete some voxels in the ROI mask)
• Method 3: Atlas it. Use atlases to select your ROIs regions

o By using the whereami program or symbolic notation to create masks on the
command line

-4-

• Quick outline of procedure:
1. On the main AFNI control panel, set the anatomical underlay dataset (with

[UnderLay]) to be what you want to draw on -- usually a SPGR or MP-RAGE
type of dataset
 i.e., the anatomical underlay will serve as our guide or template for drawing

the ROI mask
2. Start the Draw Dataset plugin (this is our ROI-creating plugin):

1. [Define Datamode]  [Plugins]  [Draw Dataset]
H Create an all zero anatomical overlay dataset with the Draw Dataset plugin.

This is the beginning of our ROI mask. At this point, the anatomical overlay is
empty - i.e., all the voxel values are zero
1. This anatomical overlay must have the same geometry as the anatomical

underlay, i.e., it has the same voxel size as the underlay, the same xyz-grid
spacing, etc…, since drawing/editing is done on a voxel-by-voxel basis
1. Think of the anat overlay as a blank piece of tracing paper that is the

same size as the template underneath. The blank overlay will be used to
trace portions of the underlay. Voxels inside the traced portion will make
up the ROI mask. Values outside the traced region are irrelevant (zeros)

2. Note: You could also edit an already existing ROI mask (that you created
earlier) at this step

Method 1- Handmade ROI’s from Anatomical Volumes

-5-

4. To view and begin drawing an ROI mask (or several ROIs) on this blank
anatomical overlay dataset, go to the main AFNI interface and [Switch
Overlay] to be the empty anatomical dataset you will be editing. Also turn
the overlay ON with [See OverLay]

5. Start drawing the ROI mask into this blank anatomical overlay dataset.
Voxels inside the ROI mask will receive a non-zero value (you decide what
value to give them). Values outside the ROI mask will remain zero
 Be sure to save the results by pressing [Save], [SaveAs] or [DONE]

in the ROI plugin GUI ([Quit] will exit the ROI plugin without saving
your work)

H Convert the anatomical-resolution ROI dataset into a dataset at the
resolution of the functional (statistical) datasets you want to analyze with the
ROI
4. Note: The ROI and functional datasets may already be at the same

resolution, if you are operating in +tlrc coordinates
5. Resolution conversion of masks is done with program 3dfractionize

4. Use programs 3dmaskave, 3dmaskdump, and 3dROIstats to extract ROI-
based information about functional datasets
 Also can use the ROI Average plugin to extract interactively the

average of a dataset over a ROI (does the same thing as 3dmaskave)

-6-

Using the Drawing Plugin

• Critical things to remember:
 You should have [See OverLay] turned on, and be viewing the same overlay dataset

in AFNI as you are editing
 Otherwise, you won’t see anything when you edit!

 When drawing, you are putting numbers into a dataset brick
 These numbers are written to disk only when you do [Save], [SaveAs] or
[Done]; before then, you can [Quit] (or exit AFNI) to get the unedited dataset
back

How to copy
dataset when

“Copy” button
is active:

Copy data, or fill
with zero

Edit in Overlay/
Underlay

Color to display
while drawing

Fill between drawing planes

Choose Atlas Region
Actually load TT Atlas Region
Save edits & continue editing

Save edits into new dataset

 Done = Save & Quit

How to
draw into

dataset
voxels:

Data being edited now

Edit new dataset

Edit copy of dataset?

Value given to ROI voxels

Undo or Redo edits Exit without saving edits

Keys 'o' and 'u' and scroll
wheel come in handy here

-7-

• Step 1: Load a dataset to be edited (for ROI creation):
 [Choose Dataset] button gives you a list of datasets that

(a) Actually have brick data with only one sub-brick;
(b) Are at the same voxel dimension, grid size, etc., as current anatomical

underlay
 When you are starting, you probably don’t want to edit an existing dataset --

i.e., you don’t want to write on the underlay itself; you just want to use it as a
template and draw on a blank overlay that shares the same geometry as that
existing underlay dataset

 To do this, you must create an all-zero copy of the anatomical underlay
(by “copy” we mean the all-zero dataset shares the same geometry as the
underlay, but not the same voxel data values)

 To create an all-zero copy, click the [Copy] button on (from the Draw
Dataset plugin GUI) and set the controls to its right to [Zero] [Show
as Olay] and [As Is]
 [Data] would make a copy of the underlay dataset with the actual

voxel data values. [Zero] copies the geometry of underlay, but gives
each voxel a data value of zero (this latter option is usually what you
want when starting out)

-8-
 [As Is] keeps the voxel values in the copy as the same type as in the

original underlay; you can also change the voxel values to be stored as:
 [Byte] (integer values: 0..255)  1 byte each
 [Short] (integer values: -32767…32767)  2 bytes each
 [Float] (fractional values)  4 bytes each
 Bytes and Shorts make the most sense for ROI masks, where you are

essentially attaching labels to voxels
 Click on [Choose Dataset], select the dataset you want a copy of (e.g., the

anatomical underlay), and then press [Set]

• Step 2: Drawing the ROI (or ROIs):
 Choose the value to draw into the anatomical overlay dataset (recall that all values in

the copied/blank overlay dataset are zero at this point)
 If you drawing only one ROI, then the default value of 1 is good
 Erase with value of zero!
 If you are drawing multiple ROIs, then you should choose a different numerical

value for each so that they can be distinguished later
 Pencil and paper are our friends -- write down which number corresponds with

which ROI for later recall!
 You could use ROI color maps (this is now the default):

 Choose the '**' map. Set 'pos' on.
 Right click on colormap --> Choose Colorscale --> ROI_i256 (or ROI_innn),
 Set 'autoRange' off. Set range to 256

 Choose the drawing color
 This is the color that is shown while you are drawing

-9-

 After you finish a drawing motion, the voxels you drew will be filled with the
drawing value, the image will be redisplayed, and the colors will be
determined by the [Define OverLay] control panel

 Choose the drawing mode
 [Filled Curve]

Drawing action produces a continuous closed-ended curve (default setting)
 [Open Curve]

Drawing action produces a continuous open-ended curve
 [Closed Curve]

Drawing action produces a continuous closed-ended curce
 [Points]

Only points actually drawn over are filled (used to “touch up” and ROI)

[Points]

[Filled Curve]

[Open Curve]

[Closed Curve]

-10-

 [FloodValue]
Flood fills space outward from the drawing point, stopping when the
flood hits the current drawing value (used to fill a closed curve)

 [Flood Nonzero]
Drawing action produces a continuous closed-ended curve (filled
inside)

 [ZeroValue]
Floods voxels with zero until the flood hits nonzero voxels (you can
also do this more easily with Filled Curve, value=0)

 [FloodNonzero]
Flood fills outwards from drawn point, stopping when the flood hits
any nonzero voxel (used to fill between regions):

 Important Note:
 An ROI is defined by the values stored in voxels of the ‘mask’ dataset
 ROIs do not need to have contiguous voxels – they can be scattered
 Two voxels are in the same ROI if they have the same value in the mask

dataset (i.e., it doesn’t matter where they are located in the volume)

-11-

 Actually draw something
 Drawing is done with mouse Button 2 (“middle” button) in 2D slice image
 Hold the button down in the image window during a single drawing action
 While the drawing action is happening, the chosen drawing color will

trace the screen pixels you draw over
 When you release the button, these pixels are converted to voxels, and

the dataset is actually changed, using the drawing value and drawing
mode you selected

 At this point, the color of the drawn region will change to reflect the
drawing value and the setup of the [Define OverLay] control panel

 [Undo] button will let you take back the last drawing action (you can go
“undo” many levels back, i.e., multiple undo function)

 You can draw on one 2D slice image at a time
 If you draw on a montage display, only screen pixels overlaying the first

image you Button 2 click in will count
 While drawing, if you cross over between sub-images in the montage,

unexpected effects will result
 But there is always [Undo] to the rescue!

-12-

• Step 3: Save your results:
 [Save] will write the current dataset values to disk (overwriting any

existing .BRIK file, i.e., if you had edited this ROI earlier, the new changes
would overwrite the old file)
 You could also then choose another dataset to edit

 [Save As] will let you write the current dataset to disk under a new name,
creating a new dataset, then continue editing the new dataset

 [Quit] exits editing and closes the plugin window, without saving to disk any
changes since the last [Save]

 Exiting AFNI has the same effect
 [Done] is equivalent to [Save] then [Quit]

• Optional Drawing Steps:
 [Linear Fillin] lets you draw a 3D ROI not in every slice, but in every

third slice (say), and then go back and fill in the gaps
 For example, if you draw in coronal slices, then you want to fill in the [A-
P] direction (the default)

 If you draw every nth slice, then you want to set the Gap to n-1
 Line segments of voxels in the fillin direction that have a current drawing

value at each end, and have no more than [Gap] zero voxels in between,
will get their gap voxels filled with the drawing value
After you try this, you will probably have to touch up the dataset

manually

-13-

 This operation can also be done with program 3dRowFillin, which creates a
new dataset

 [TT Atlas Region to Load] lets you load regions from the Talairach
Daemon database into the dataset voxels

 Requires that you be drawing in +tlrc coordinates, or at least have a
transformation from +orig  +tlrc computed in the current directory

 Choose a region to draw into the dataset (e.g., Hippocampus)
 [Load: Overwrite] will fill all voxels in the region with the drawing value
 [Load: Infill] will fill only voxels in the region that are currently zero

You probably want to edit the results manually to fit the specific subject
• Drawing and Volume Rendering at the Same Time (totally fun, and maybe useful)

 You cannot draw into the rendering plugin, but you can use it to see in 3D what
you are drawing in 2D

 If you meet the criteria for rendering (usually in +tlrc coordinates)
 How to set up the renderer:

 Choose the underlay to be the current anatomical dataset (or a “scalped”
version, from 3dSkullStrip or 3dIntracranial)

 Choose the overlay dataset to be the dataset you are editing
 Turn on [See Overlay]
 Set [Color Opacity] to [ShowThru] (or ST+Dcue)

-14-

Turn on [DynaDraw]
 Drawing in a 2D image window immediately triggers a redraw in the

rendering window
(if the 2D and 3D overlay datasets are the same)

 This is only useful if your computer is fast enough to render quickly
(<1 sec per frame)

-15-

Things to Do with ROI Datasets
(no matter how you create them)

• ROIs are used on a voxel-by-voxel basis to select parts of datasets (usually
functional datasets)

• If you draw at the anatomical resolution and want to use the ROI dataset at the
functional resolution, you probably want to convert the high-resolution ROI
dataset to a low-resolution dataset (unless you’re working in +tlrc coordinates)
 E.g., hi-res anatomical ROI resampled to low-res functional dataset:

 Each voxel inside the ROI is given a nonzero value (e.g., 4; values outside the
ROI are zeros. When the resolution is changed, what do you do with a voxel
that’s only partially filled by the ROI?

Hi-res voxel matrix Low-res voxel matrix

-16-

• 3dfractionize does this resolution conversion:

3dfractionize -template low_res_dset+orig \
 -input ROI_high_res+orig \
 -clip 0.5 -preserve -prefix ROI_low_res

 -template  The destination grid you want your ROI grid to be resampled to
(we’re going from high to low resolution here). Our output dataset
ROI_low_res+orig will be written at the resolution of func+orig

 (Also useful for transforming std space back to orig space
with the -warp dataset)

 -input  Defines the input high-resolution dataset (that needs to be converted
from high resolution to low resolution)

 -clip 0.5  Output voxels will only get a nonzero value if they are at least 50%
filled by nonzero input voxels (you decide the percentage here). E.g., when
going from high to low res, keep a label a voxel as part of the ROI if it is filled
with at least 50% (or more) of the voxel value. For example:

This voxel is 80% filled with the ROI value
-- keep it

This voxel is 30% filled with the ROI value
-- lose it

-17-

 -preserve  once it has been determined that the output voxel will be part of
the ROI, preserve the original ROI value of that voxel (and not some
fraction of that value). This option also allows for "voting" – determine the ROI
that would most fill that voxel. For example, if our ROI mask has values of “4”:

• 3dresample does conversion too but you have less controls for handling partial
overlaps:

3dresample -master low_res_dset+orig \

 -prefix ROI_low_res \

 -inset ROI_high_res+orig \

 -rmode NN

 -master: the destination grid we want our ROI mask resampled to
 -prefix: The output from 3dresample -- in this example, a low resolution ROI

 mask that corresponds with the voxel resolution of our master dataset
 -inset: The ROI mask dataset that is being resampled from high to low resolution
 -rmode NN: If a voxel’s “neighbor” is included in the ROI mask, include the voxel

 in question as well

This voxel is 80% filled with the ROI value -- keep it.
Without the -preserve option, this voxel would be given
a value of “3.2” (i.e., 80% of “4”).
With -preserve, it is labeled as “4”

-18-
• Let’s do a class example of 3dresample:

cd AFNI_data6/roi_demo

3dresample -master rall_vr+orig \
 -prefix anat_roi_resam \
 -inset anat_roi+orig \
 -rmode NN

 In this class example, we want to take our ROI mask, which has a high voxel
resolution of 0.9 x 0.9 x 1.2 mm, and resample to it the lower resolution of the time-
series dataset, rall_vr+orig (2.75 x 2.75 x 3.0mm).

Before, overlay ROI is:
anat_roi+orig
0.9x0.9x1.2 mm voxel grid

After, overlay ROI is:
anat_roi_resam+orig
2.75x2.75x3.0 voxel grid

-19-

• 3dmaskave
 This ROI program computes the average of voxels (usually from a functional or

time-series dataset), that are selected from an ROI mask
 (interactive version: ROI Average plugin)

 Class Example:
 3dmaskave -mask anat_roi_resam+orig -q \

 rall_vr+orig > epi_avg.1D
The above command takes the voxels that fall
within the ROI mask, and computes a mean for
every time point/volume.

In this example, there are 450 time-points in this
dataset, so the output will be a column of 450
means.

-q : Suppresses the voxel-count output (e.g.,
“[9 voxels] make up the ROI mask”) from
appearing next to each mean.

Alternatively, instead of having the results of
3dmaskave spewed into the shell, you can
redirect (>) the results into a text file
(epi_avg.1D) and save them for later use.

-20-

 Output will look like this (450 means in the column):

more epi_avg.1D 1076.11
 1086.11
 1092.33
 1097.33

 ...
 1084.76

 Data can also be plotted out using 1dplot:

1dplot epi_avg.1D or…
1dplot -yaxis 1000:1200:2:1 epi_avg.1D

3 concatenated EPI runs, Timepoints (0-449)

Mean voxel
intensity
for voxels
falling
within the
ROI mask
(at each
timepoint).

-21-

• 3dmaskdump
 Program that dumps out all voxel values in a dataset that fall within the ROI of a

given mask dataset
 Class example:

 3dmaskdump -noijk -mask anat_roi_resam+orig \
 'func_slim+orig[2]' > Vrel-tstats.txt

 The output appears in the shell (unless you redirect it (>) into a text file). This
example shows one column of numbers, representing the voxel values for
functional sub-brick #2 (‘Visual-reliable’ t-values) that fall within the ROI mask:

Dump out the
voxel values

from the
functional

dataset, sub-
brick #2, but

only for those
voxels that fall
within the ROI

mask.

-22-

 More than one sub-brick can be chosen at a time (e.g., func_slim+orig’[2,4-6'])
 Main application of 3dmaskdump is to dump out the data or functional values

that match an ROI so they can be processed in some other program (e.g.,
Microsoft Excel)

 If -noijk option is omitted, each output line starts with ijk-indexes (i.e.,
location) of the voxel
 Program 3dUndump can be used to create a dataset from a text file with

ijk-indexes and dataset values

• 3dROIstats
 Program to compute separate statistics

for each ROI in a dataset
 E.g. Mean can be computed for several ROIs

separately and simultaneously
 This differs from 3dmaskave because the

ROIs within a single mask are not collapsed
and then averaged. Here the averages are
done separately for each ROI within the
mask dataset

 Averaging is done over each region defined by
a distinct numerical value in the ROI dataset

ROI 1: Left Superior Occip. Gyrus
(blue)

ROI 2: Left Middle Occip. Gyrus
(red)

ROI 3: Left Inferior Occip. Gyrus
(yellow)

3rois+orig

-23-

 Example:
3dROIstats -mask 3rois+orig func_slim+orig'[0]'

Output shown in the shell (use > command to save into to a text file):

File Sub-brick Mean_-1 Mean_1 Mean_2
func_slim+orig[0] 0[Full_Fsta] 10.805717 69.336539 71.333655

 The Mean_1 column is the average over the ROI whose mask value is “1”.
The average is calculated for voxels from our functional dataset
func_slim+orig, that fall within the ROI. Averages are computed at sub-
brick #0
 Means have also been computed for ROIs whose mask value is “2” (Mean_2)

and “3” (Mean_3)
 Very useful if you create ROI masks for a number of subjects, using the same

number codes for the same anatomical regions (e.g., 1=hippocampus, 2=amygdala,
3=superior temporal gyrus, etc.)

 You can load the output of 3dROIstats into a spreadsheet for further analysis (e.g.,
statistics with other subjects’ data)

-24-

Method 2: Creating ROI datasets from Activation Maps
• ROI masks derived from functional data can be made by finding contiguous supra

(above) threshold voxel clusters in an activation (functional) map and then
converting each cluster into a ROI with a separate data value

 These ROIs can then be used as starting points for some analysis

• Example:
cd AFNI_data6/roi_demo and launch afni &

• Let’s pick select some criteria that will determine how big
our voxel clusters will be. Any voxels that survive these
criteria will be part of our ROI mask(s)

Select UnderLay: anat+orig
Select OverLay: func_slim+orig

--> Define OLay & Threshold: Sub-brick 0 (Full-F)
--> Set Threshold to F  99.0
--> To be part of a cluster, voxels must be right
 next to each other, rmm = 2.75

--> Clusters must be 200+ voxels in size
2.75 x 2.75 x 3.0 = 22.69 x 200 = vmul = 4538

-25-

Clusterize
• The Clusterize button on the main AFNI graphical interface gives users a quick

and easy way to locate clusters of activity in a functional dataset. Once the user sets
the clusterize parameters, a complete cluster “report” is given, which details the
number of clusters found, based on these parameters.

-26-

Jump: sets the crosshairs to the
designated xyz coordinates (default is
the peak of the ROI cluster)
Flash: flashes the cluster voxels in
the image viewer
SaveMask: Click on this button to
write clusters to a mask dataset called
Clust_mask+orig

Clust_mask+orig

Cluster #1 Cluster #2

Cool Clusterize Features

Plot/Save: Allows user to load a
3D+time dataset (Aux Dset button) and
plot the avg time series over a cluster. Plot
 can be saved in .jpg or .png format.

E.g., 3D+time dataset
rall_vr+orig loaded and
avg time series plotted for
voxels within Cluster #1

-27-

3dClusterize
•The program 3dClusterize looks for clusters of activity that fit the criteria set on the command line to get
report and and cluster datasest -- similar to 3dclust and 3dmerge

•Example:

3dClusterize -clust_nvox 200 -bisided -2 2 -ithr 2 -idat 1 -NN 1 -inset func_slim+orig. -pref_map myclusters
The above command tells 3dClusterize to find potential cluster volumes for dataset func_slim+orig, sub-brick #2, where the threshold
has been set to 2.0 (i.e., ignore voxels with an activation threshold absolute value <2.0). Voxels must be facing each other in the cluster, and
cluster volume must be at least 200 voxels (these are not guidelines, just an example!).

Cluster report
#[Option summary = bisided,-2,2,clust_nvox,200,NN1]
#[Threshold value(s) = left-tail stat=-2.000000;right-tail stat=2.000000]
#[Nvoxel threshold = 200; Volume threshold = 4537.500]
#[Single voxel volume = 22.688 (microliters)]
#[Neighbor type, NN = 1]
#[Voxel datum type = float]
#[Voxel dimensions = 2.750 mm X 2.750 mm X 3.000 mm]
#[Coordinates Order = RAI]
Mean and SEM based on absolute value of voxel intensities]
#
#Volume CM RL CM AP CM IS minRL maxRL minAP maxAP minIS maxIS Mean SEM Max Int MI RL MI AP MI IS
#------ ----- ----- ----- ----- ----- ----- ----- ----- ----- ------- ------- ------- ----- ----- -----
 16791 -11.0 13.5 9.6 -96.2 82.6 -120.0 94.5 -17.7 78.3 1.0198 0.0087 11.135 41.3 -70.5 -14.7
 15563 -14.6 20.2 34.4 -93.4 66.1 -103.5 94.5 -17.7 78.3 0.4392 0.0037 -8.114 -90.7 -7.3 30.3
 991 50.9 -5.4 43.7 16.6 68.8 -26.5 23.0 12.3 78.3 0.4297 0.0139 -4.655 55.1 3.7 78.3
 421 48.2 -1.7 -9.9 24.8 63.3 -26.5 36.7 -17.7 6.3 0.4582 0.0126 -1.6187 57.8 -4.5 -2.7
 418 -52.4 -4.0 -9.5 -74.2 -21.9 -29.3 25.7 -17.7 6.3 0.4287 0.0132 -2.2152 -24.7 -12.8 -14.7
 326 -2.6 -55.6 61.6 -24.7 11.1 -89.8 -23.8 45.3 78.3 0.2991 0.011 1.4813 2.8 -87.0 60.3
 206 -23.5 -30.9 -5.5 -49.4 -13.7 -45.8 -1.8 -17.7 12.3 0.6163 0.0445 -4.0194 -16.4 -40.3 -14.7
#------ ----- ----- ----- ----- ----- ----- ----- ----- ----- ------- ------- ------- ----- ----- -----
34716 -10.8 14.3 16.8 0.7196 0.0048

-28-

3dmerge
• The program 3dmerge can find contiguous supra (above) threshold voxel

clusters in an activation (functional) map and then convert each cluster into a
ROI with a separate data value. These clusters are then saved as a mask
dataset.

 Similar to the Clusterize button on the AFNI interface, but done on the
command line instead.

• Example:
3dmerge -prefix func_roi -dxyz=1 -1clip 99.0 \
 -1clust_order 1 200 func_slim+orig.’[0]’

• The result: 2 clusters survived our criteria:

ROI 1

ROI 2ULay: anat+orig
OLay: func_roi+orig

-29-

• In this example, 4 ROI clusters were found that fit the criteria designated by the 3dclust
command. Below is an explanation of the output:

 Volume: Size of each cluster volume
 CM RL: Center of mass (CM) for each cluster in the Right-Left direction
 CM AP: Center of mass for each cluster in the Anterior-Posterior direction
 CM IS: Center of mass for each cluster in the Inferior-Superior direction
 minRL,maxRL: Bounding box for cluster, min & max coordinates in R-L direction
 minAP,maxAP: Bounding box for cluster, min & max coordinates in A-P direction
 minIS, maxIS: Bounding box for cluster, min & max coordinates in I-S direction
 Mean: Mean value for each volume cluster
 SEM: Standard error of the mean for the volume cluster
 Max Int: Maximum Intensity (peak) value for each volume cluster
 MI RL: Peak value coordinate, R-L direction of each volume cluster
 MI AP: Peak value coordinate, A-P direction of each volume cluster
 MI IS: Peak value coordinate, I-S direction of each volume cluster

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-30-

Getting around with spheres

Another way to use cluster results –
 make spheres from the cluster peaks or centers of mass

Try this:
adwarp -apar anat+tlrc -dpar func_slim+orig –dxyz 3

In afni GUI, select Underlay: anat, Overlay: func_slim
Switch view to Talairach
Overlay to vrel_coef, Threshold to vrel_tstat
Clusterize, and Save Tabl
1dcat Clust_table.1D'[4..6]' > Clust_PeakXYZ.1D
3dUndump -srad 7.5 -master func_slim+tlrc -orient RAI \
 -prefix clust_spheres -xyz Clust_PeakXYZ.1D

-31-

• AFNI comes with a collection of atlas datasets
 Stored in same directory with binaries, user face files, and so on

 Have you tried example #2 from imcat -help ?
 Atlas dataset names are of the form TT_something+tlrc.HEAD / .BRIK

• The whereami command line program can create a mask dataset using an atlas
dataset and a name of a region stored inside the atlas dataset

• Example:

whereami -mask_atlas_region TT_Daemon:left:hippocampus \

 -prefix Lhip

 Produces a mask dataset named Lhip+tlrc.HEAD / .BRIK containing the
voxels defined in the Talairach Daemon as being in the left hippocampus

 To see ALL the regions available in all the atlases, type the command

whereami -show_atlas_code | less

 You could create multiple masks this way and then combine them into a multi-
region ROI mask using 3dcalc

 You may want to use such automatic atlas-generated masks as a starting point
for custom editing of the mask for each subject (using Draw Dataset plugin)

Method 3: Creating ROI datasets from Atlases:
AFNI program whereami

-32-
• whereami can provide the user with more detailed information regarding the

output of 3dClusterize
 For instance, say you want more information regarding the center of mass voxels

from each cluster (from the 3dclust output). I.e., where do they fall approximately
within the atlases?

3dClusterize -clust_nvox 200 -bisided -8.0 8.0 -ithr 2 -idat 1 -
NN 1 -inset func_slim+orig. -quiet > visual_clusters.1D

whereami -coord_file clusts.1D'[1,2,3]' -tab | less

Shown: Cluster
#1’s coordinates
according to
various atlases
(TT, MNI, etc), as
well as the name
of the anatomical
structure that is
located at or near
these coordinates
(varying by atlas)

Center of mass output,
columns 1,2,3, from
3dClusterize, Clusterize
plugin or 3dclust reports.

++ Input coordinates orientation set by default rules to RAI
+++++++ nearby Atlas structures +++++++

Original input data coordinates in TLRC space

Focus point (LPI) Coord.Space
 -3 mm [L], -83 mm [P], 2 mm [S] {TLRC}
 -3 mm [L], -86 mm [P], -3 mm [I] {MNI}
 -3 mm [L], -90 mm [P], 2 mm [S] {MNI_ANAT}
Atlas Within Label Prob. Code
TT_Daemon 0.0 Left Lingual Gyrus MPM 232
TT_Daemon 0.0 Left Brodmann area 18 MPM 295
TT_Daemon 1.0 Left Brodmann area 17 MPM 294
TT_Daemon 4.0 Left Cuneus MPM 240
TT_Daemon 4.0 Right Lingual Gyrus MPM 32
TT_Daemon 4.0 Right Brodmann area 18 MPM 95
TT_Daemon 5.0 Right Brodmann area 17 MPM 94
TT_Daemon 7.0 Right Cuneus MPM 40
CA_ML_18_MNIA 0.0 Left Calcarine Gyrus --- 43
CA_ML_18_MNIA 3.0 Left Lingual Gyrus --- 47
CA_ML_18_MNIA 7.0 Right Lingual Gyrus --- 48
CA_MPM_18_MNIA 0.0 Area 17 --- 181
CA_MPM_18_MNIA 1.0 Area 18 --- 240

-33-

• whereami can extract ROIs for various atlas regions using symbolic notation
whereami -mask_atlas_region TT_Daemon:left:amy

 The above command will use the Talairach-Tourneaux atlas (TT_Daemon:) to
create an ROI of the left amygdala (left:amy).
 See whereami -help for more details regarding available atlases

 Result: An ROI dataset called TT_Daemon.amy.l+tlrc.HEAD/BRIK:

ULay: anat+tlrc
OLay: TT_Daemon.amy.l.tlrc

-34-

• whereami can report on the overlap of ROIs with atlas-defined regions

whereami -omask anat_roi+tlrc

-35-

• You can also specify atlas-based ROI masks directly like this:
3dmaskave -mask TT_Daemon:left:hippocampus func_FullF+tlrc
 In the above single command, 2 things will occur:

1. The Talairach-Tourneaux atlas will be used to create an ROI mask of the
left hippocampus, which will be applied to the dataset func_FullF+tlrc
(note: this dataset has one sub-brick in it - small and simple, for demo
purposes).

2. A mean will be calculated for the voxels in dataset func_FullF+tlrc
that fall within the ROI mask.

 Output from above command shows up on the terminal like this:

Or
3dcalc -prefix nice_roi \
 -a 'CA_N27_ML::hippo' -b 'func_FullF+tlrc' \
 -expr '(step(a)*b)'
 Result:

ULay: anat+tlrc
OLay: nice_roi+tlrc

F-stat voxels in func
dataset that fall within the
TT left hippocampus ROI

-36-

• Above examples use a feature of the AFNI software package to create datasets from
atlas regions on the fly

 Creation of a 0-or-1 mask dataset directly on the command line using a dataset
name of the form Atlas_name:Hemisphere:Region_name

 Using this feature, you don’t have to create the mask using the whereami
program and then use it later— you can create it and use it at the same time

• Example 9 from 3dcalc -help:
Compare the left and right amygdala between the Talairach atlas, and the
CA_N27_ML atlas. The result will be 1 if a voxel is marked as amygdala in the
TT_Daemon only, 2 if it is marked as amygdala in the CA_N27_ML only, and 3 where
they overlap.

 3dcalc -a 'TT_Daemon::amygdala' \

 -b 'CA_N27_ML::amygdala' \

 -expr 'step(a)+2*step(b)' \

 -prefix compare.maps

• For more information about 3dcalc , see the AFNI Utilities presentation

Note: compare.maps+tlrc
displays the TT amygdala
(value=1) in green, the N27
amygdala (value=2) in orange,
and the overlap between the
two atlases (value=3) in red.

-37-

Back to the "Original"
Standard Space to Native Subject Space

Useful for putting atlas regions into the native space

Affine transformations only (@auto_tlrc) – 3 ways to "inverse talairach":
3dAllineate
cat_matvec -ONELINE anat+tlrc::WARP_DATA > tlrc.aff12.1D
3dAllineate -1Dmatrix_apply tlrc.aff12.1D -prefix invtlrc3dAl+orig \
 -source anat+tlrc -master anat+orig

3dWarp
cat_matvec anat+tlrc::WARP_DATA > tlrc.1D
3dWarp -matvec_out2in tlrc.1D -prefix invtlrc_3dWarp+orig \
 -gridset anat+orig anat+tlrc
3drefit -view orig invtlrc_3dWarp+tlrc.

3dfractionize - slow but useful voting option for multiple ROIs
and manual Talairach transformations
3dfractionize -input anat+tlrc -warp anat+tlrc –preserve \
 -prefix invtlrc_3dfrac -template anat+orig

-38-

Back to the "Original" 2
Standard Space to Native Subject Space

Nonlinear and Affine transformation combinations – 3 ways to "inverse
talairach":
getting data to a standard space with @auto_tlrc and auto_warp.py
affinely align to template with @auto_tlrc
@auto_tlrc -base TT_N27+tlrc -input strip_shift+orig. -no_ss \
 -init_xform AUTO_CENTER
nonlinearly align to template
auto_warp.py -skip_affine -base TT_N27+tlrc -input strip_shift+tlrc

3dNwarpApply
cat_matvec -ONELINE "strip_shift+tlrc::WARP_DATA" > at_shift.1D
one step concatenate and apply
3dNwarpApply -prefix tw3 \
 -nwarp 'at_shift.1D INV(awpy/anat.un.aff.qw_WARP.nii)' \
 -source awpy/strip_shift.aw.nii \
 -master strip_shift+orig.

-39-

Back to the "Original" 2b
Standard Space to Native Subject Space

Nonlinear and Affine transformation combinations –
3dNwarpCat
3dNwarpCat -prefix anat_total_WARPINV2 \
 -warp2 'INV(anat_qw9_WARP+tlrc)' -warp1 'at.1D'
3dNwarpApply -prefix anat_backtoorig2 \
 -nwarp anat_total_WARPINV2+tlrc. \
 -source anat_qw9+tlrc -master anat+orig

3dNwarpCalc
3dNwarpCalc "&readwarp(anat_qw9_WARP+tlrc.)" "&invert" \
 "&read4x4(at_matrix.1D)" "&compose" "&write(combo_warp3)"
3dNwarpApply -prefix anat_backtoorig5 -nwarp combo_warp3+tlrc. \
 -source anat_qw9+tlrc -master anat+orig

-40- Atlases Distributed With AFNI
TT_Daemon

• TT_Daemon : Created by tracing Talairach and Tournoux brain illustrations.
 Generously contributed by Jack Lancaster and Peter Fox of RIC UTHSCSA)

-41- Atlases Distributed With AFNI
Anatomy Toolbox: Prob. Maps, Max. Prob. Maps

• CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with some
created from cytoarchitectonic studies of 10 human post-mortem brains

 Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of IME,
Julich, Germany

-42- Atlases Distributed With AFNI:
Anatomy Toolbox: MacroLabels

• CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with some
created from cytoarchitectonic studies of 10 human post-mortem brains

 Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of IME,
Julich, Germany

-43-

Circularity – "double dipping"

Using results from one set of data to limit the data in that same
set.

FMRI example:
•Find largest differences with some threshold between groups A
and B
•Create ROIs from those differences
•Show differences between ROIs for the same two groups
showing that indeed A is very different from B with a p-value of
0.05. They're different because they're different.

•Solution : Use ROIs from independent data: Atlas regions,
locator tasks, other subjects

-44-ROIs from Locator session day 1 applied to session day 2 EPI

Session 1 – Locator Task

Anat1

Locator
TR=0

Locator
TR=1

Locator
TR=n...

...
motion correction xforms from 3dvolreg

structural-functional
alignment from
align_epi_anat.py
(affine)

Resource

Dataset

Session 2 - Task

Anat2

EPI_RUN1
TR=0

EPI_RUN1
TR=1

EPI_RUN1
TR=n

EPI_RUN2
TR=0

EPI_RUN2
TR=1

EPI_RUN2
TR=n

...

...
motion correction xforms from 3dvolreg

structural-functional
alignment from
align_epi_anat.py
(affine)

Freesurfer
Seg. (Atlas)

Known or User-defined
transformations

Transformation

Same space /
Identity xform

cluster
ROI 1

cluster
ROI 2

cluster
ROI m

align_epi_anat a2 to e2 => a2e2.aff12.1D
align_epi_anat a1 to a2 => a1a2.aff12.1D
align_epi_anat L1 to a1 => L1a1.aff12.1D

cat_matvec a2e2.aff12.1D a1a2.aff12.1D L1a1.aff12.1D > L1e2.aff12.1D

3dAllineate -1Dmatrix_apply L1e2.aff12.1D –final NN –prefix ROI1_e2 \
 -base epi_run1+orig'[1]' –input ROI1+orig

e2 -> a2 a2 -> a1 a1 -> L1 e2 -> L1

	Regions of Interest (ROIs) for those interested in regions
	What is an ROI?
	Region of Interest Drawing and Usage in AFNI
	Slide 4
	Slide 5
	Using the Drawing Plugin
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Things to Do with ROI Datasets (no matter how you create them)
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Method 2: Creating ROI datasets from Activation Maps
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Getting around with spheres
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Back to the "Original" Standard Space to Native Subject Space
	Back to the "Original" 2 Standard Space to Native Subject Space
	Back to the "Original" 2b Standard Space to Native Subject Space
	Slide 40
	Slide 41
	Slide 42
	Circularity – "double dipping"
	Slide 44

