3dQwarp and Its Nwarp Friends

Or, How I Learned to Stop Worrying and Love Getting My Datasets all Warped

Linear and Nonlinear Warping

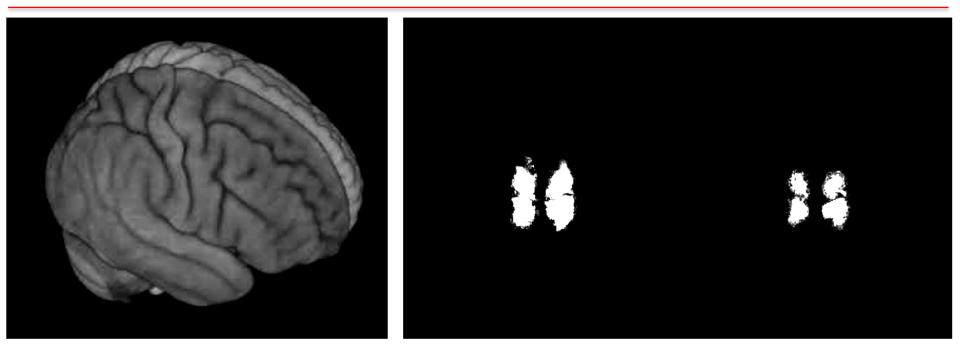
- The Central Equation:
 - -S(x) = source image B(x) = base image
 - > $S(W(x)) \approx B(x)$ where W(x) = desired warp function = shows where each point x in B maps to in S
- <u>3dAllineate</u>: W(x) = Mx where M = 4x3 matrix
 M has 12 parameters to optimize
- <u>3dQwarp</u>: $W(x) = W_1(W_2(..., W_{n-1}(W_n(x)))...))$
 - Each $W_k(x)$ is a 3D polynomial function over a "patch" that covers part of the 3D brain volume
 - Patches start big $[W_1(x)]$ and shrink and shrink
 - Cubic patch = 24 parameters ; Quintic = 81 params
 - By the end, 1000s of parameters have been used

The Good and The Ugly

• <u>the Good</u>:

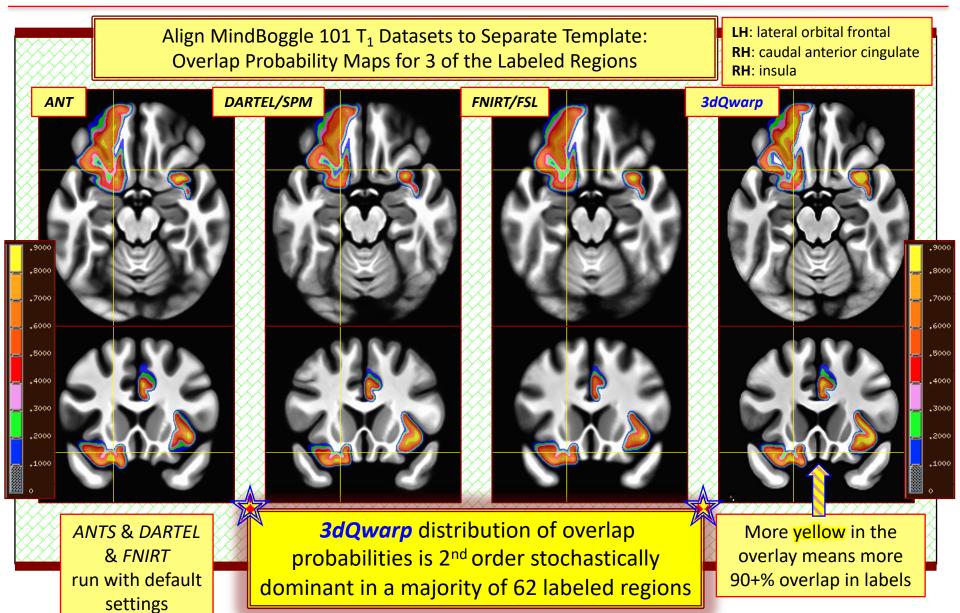
- Nonlinear warping can match anatomical structures between subjects more closely than linear transformation
- Can also be used for intra-subject warping for high accuracy matching (e.g., pre- and post-surgery)
- the Ugly:
 - Nonlinear warping can seriously distort when it tries to match in regions that don't really "fit together" (e.g., 2 gyri in one person, 1 gyrus in another)
 - Extraneous small features can drive warping in strange ways (unlike linear transformation)
 - Partial brain coverage is a problem

Start: Looking Good

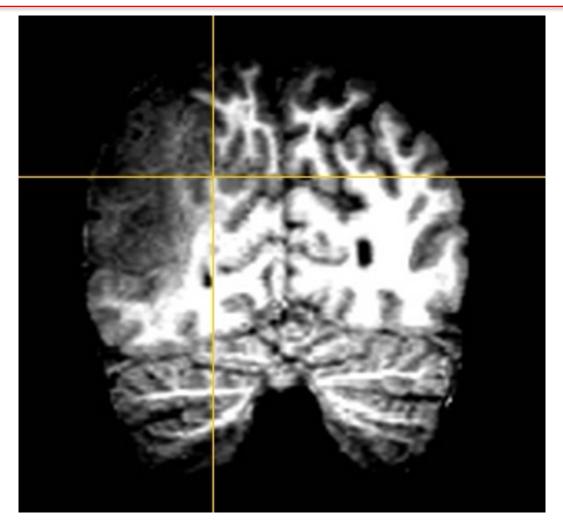


Compare FSL *FNIRT* vs AFNI *3dQwarp* Average of 101 brain volumes warped to template

Good Matches to Anatomical Labels



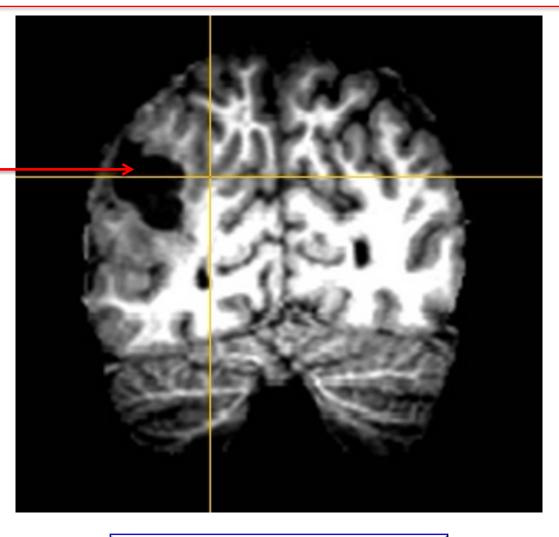
Maybe Even Useful: Neurosurgery



Pre-surgical volume

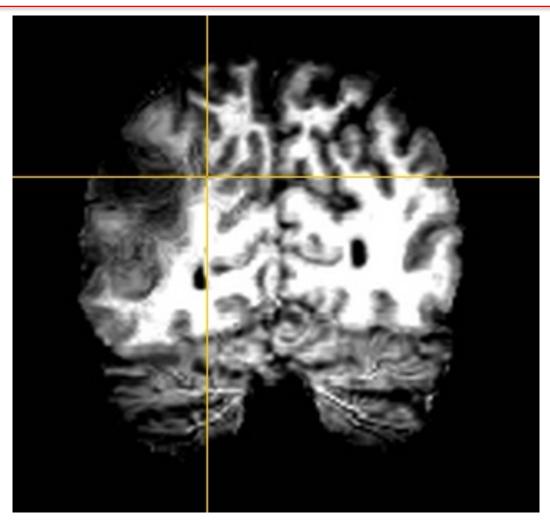
Neurosurgery

Manually drawn "exclusion Mask"



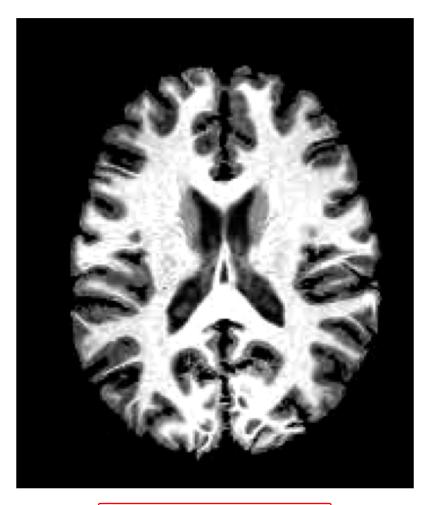
Post-surgical volume

Neurosurgery

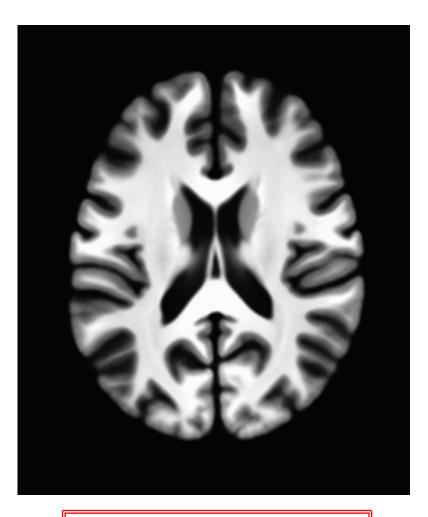


Pre-surgical volume *3dQwarp*-aligned to Post-surgical volume

But ... Some Ugly



All 101 Volumes After Warping



Mean of 101 Volumes After Warping

How to Make a Template

- Given a collection of skull-stripped structural (T₁-weighted) datasets
- Script @toMNI_Awarp pre-processes each dataset (3dUnifize and @auto_tlrc)
 - *3dUnifize* make the image intensity more uniform over the volume
- Script @toMNI_Qwarpar runs 3dQwarp to collectively warp them together over finer and finer patch levels
- Has been used to create Haskins pediatric brain atlas (now distributed with AFNI)

What Else to Do with a Warp?

- Warp another dataset the same way

 3dNwarpApply (e.g., carry EPI to template)
- Warp some discrete points the same way
 3dNwarpXYZ (e.g., eCog electrode locations)
- Compute voxel-wise functions of a warp — 3dNwarpFuncs (e.g., volume distortion)
- Compose multiple warps together
 3dNwarpCat and *3dNwarpCalc*
- Can compute inverse warp W⁻¹(x), to map locations in S(x) to matching locations in B
 - $S(W(x)) \approx B(x) \rightarrow S(x) \approx B(W^{-1}(x))$

How to Use 3dQwarp

- Run it yourself (the "old school" or "real man" way)
- *auto_warp.py* (easier, less flexible)
- Use @SSwarper script to Skull Strip and Warp to MNI template
- Use '-tlrc_NL_warp' option in afni_proc.py to have transformation to template space be done via auto_warp.py
- Use @toMNI_Awarp and @toMNI_Qwarpar to create a study (or population) specific template
- Use '-plusminus' option in 3dQwarp to warp blipup and blip-down EPI datasets to "meet in the middle" (script unWarpEPI.py)

Yet to Be Done

 Incorporate more fully into *afni_proc.py* and *uber_subject.py*

- Warping to template; un-warping EPI distortions

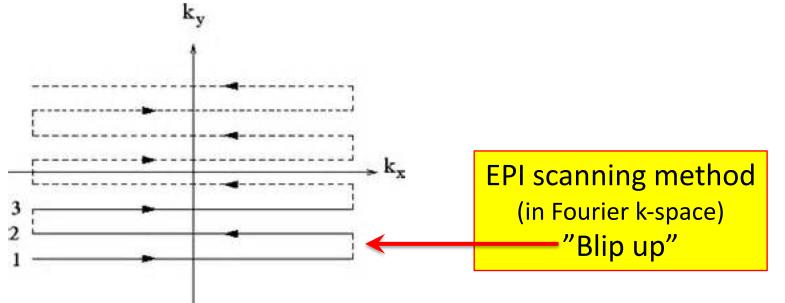
 Explore how much nonlinear warping to a template can improve group analysis in functional and anatomical MRI

- And improvements to *3dSeg* (segmentation)

- Extend matching algorithm to allow labelbased matches, vs. existing intensity-based
- Speed the damn thing up!
- Write a paper about it!

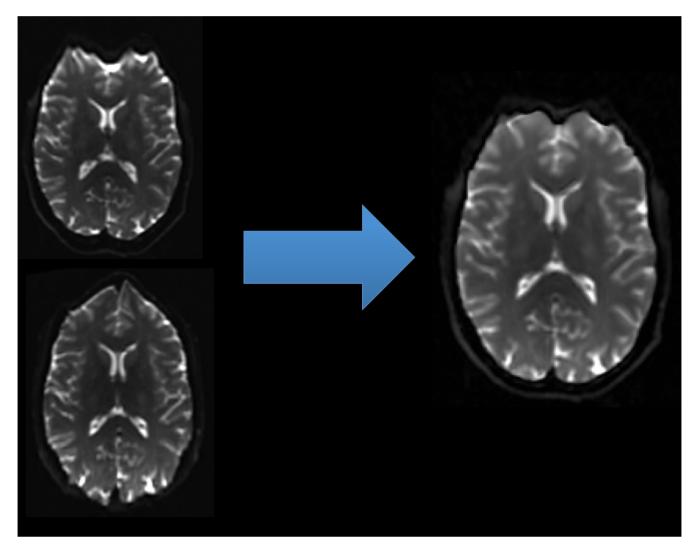
Distortion Correction of EPI

- Acquire a few 3D images with opposite phase encoding method ("blip up" and "blip down")
 - This will reverse the distortions of the EPI data
 - You don't need many opposite blip images
 - Ideally, also reverse the slice-selection gradient to also reverse the small slice-selection distortions



Distortion Correction of EPI

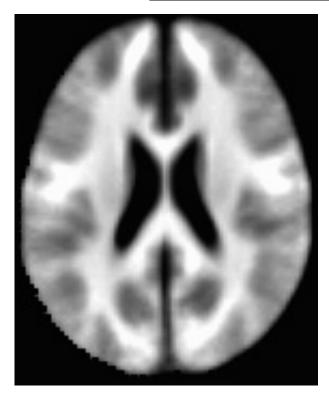
• Use *unWarpEPI.py* to fix the distortions

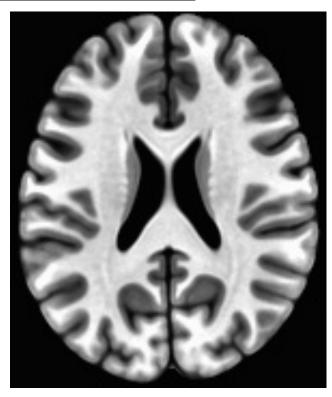


Nonlinear Warping to MNI Template

- afni_proc.py *can* do the nonlinear warping for you
 - But, nonlinear warping is slow (in fact, slowly slow)
 - If you need to re-rerun subject analysis, nonlinear warping will slow the re-run script down *a lot*
- Solution: do the nonlinear warping *before* using afni_proc.py, then supply the warping results so that afni_proc.py will skip doing the warping itself
- Mechanism: the **@SSwarper** script (tcsh)
 - Does Skull Stripping ("SS") and nonlinear warping
 - Base dataset is MNI152_2009_template_SSW.nii.gz
 - Nonlinearly warped, not too blurry

Two MNI Templates



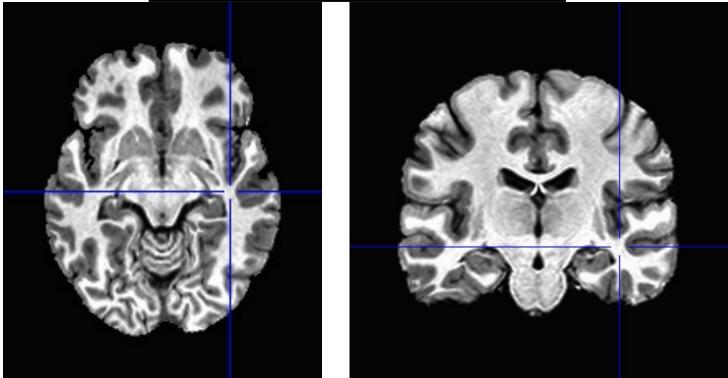


MNI152_1mm_uni+tlrc Affine alignments MNI152_2009_template.nii.gz Nonlinear alignments

What @SSwarper Reads and Writes

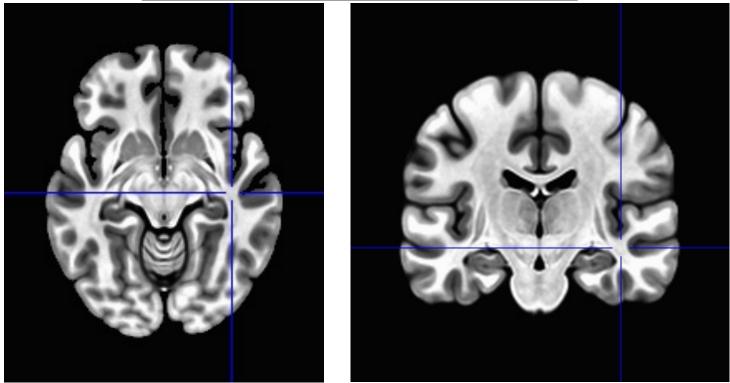
- Inputs:
 - T1-weighted anatomical image of subject (skull-on)
 - Subject ID code, for names of output files
- Outputs (subject ID = sub007):
 - anatSS.sub007.nii
 - skull-stripped dataset in original coordinates
 - anatQQ.sub007.nii
 - skull-stripped dataset, nonlinearly warped to MNI template
 - anatQQ.sub007.aff12.1D
 - affine matrix to transform original dataset to MNI template
 - anatQQ.sub007_WARP.nii
 - incremental warp from affine transformation to nonlinearly aligned dataset
- These files are needed for later use in afni_proc.py

@SSwarper Results



sub00440 from Beijing-Zang in the FCON-1000 collection

MNI Template Slices



For comparison