FMRI Task-Based Data Analysis at the Individual Level

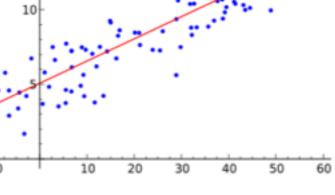
SSCC/NIMH/NIH/DHHS/USA/Earth

Overview

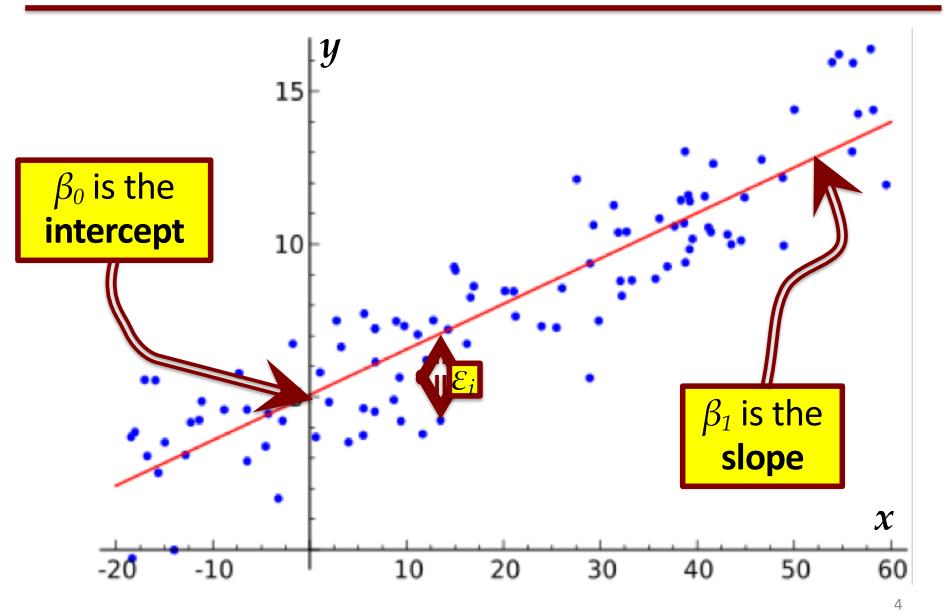
- Basics of linear models for data analysis
- FMRI data decomposition: three components
 - ▶ Baseline + slow drift + effects of no interest; Effects of interest; Noise
 - ➤ Effects of interest understanding BOLD vs. stimulus ➤ IRF and HRF and HDR
- Three modeling strategies
 - ➤ Fixed-shape HRF
 - ➤ Variable HRF shape
 - Fixed major HRF shape plus a little shape adjustment
- Other issues
 - ➤ Multicollinearity
 - > Run catenation
 - Percent signal change

Basics of Linear Modeling

- Regression: finding a relationship between a response/outcome (dependent) variable and one or more explanatory (independent) variables (regressors)
 - > Also called linear model or linear regression
- Equations
 - \triangleright *i*=index of data = 0, 1, 2 ... N-1 (total of N data points)
 - $\triangleright x_i = \text{explanatory model (known value) for data point number } i$
 - \triangleright y_i =data value for data point number i
 - $\triangleright y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \quad \text{or} \quad y_i \approx \beta_0 + \beta_1 x_i$
 - \triangleright β 0 and β 1 are model fit parameters
 - ➤ to be calculated from the *xi* and *yi*
 - \triangleright ε_i are the **residuals**
 - > what are left after the regression
 - > assumed to be random noise



$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 or $y_i \approx \beta_0 + \beta_1 x_i$



Modeling with Vectors and Matrices

• Write the model $y_i \approx \beta_0 + \beta_1 x_i$ out in columns (vectors)

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} \approx \begin{bmatrix} 1 \\ 1 \\ 1 \\ \dots \end{bmatrix} \beta_0 + \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \beta_1 = \begin{bmatrix} 1 & x_0 \\ 1 & x_1 \\ 1 & x_2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$
data vector

N×2 matrix

- In **vector-matrix** form (**bold** letters for vectors and matrices)
 - $ightharpoonup y pprox X \beta$ or with residual vector $y = X \beta + \varepsilon$
- By writing it out this way, the equations become more compact and easier to look at and easier to understand
- Each column of **X** matrix is a **regressor** or **model component**
- We assume the columns of **X** are known ("the model"), and that data vector **y** is known (measured)
- Goal is to compute **parameter vector** β (and statistics about β)
- Most of this talk: where do we get X for FMRI task analysis?

Solving a Linear Model

Vector y is sum

times vector \(\beta \)

plus residuals ε

of matrix X

- Solution for linear regression $y = X\beta + \varepsilon$
 - \triangleright "Project" data y onto the space of explanatory variables (X)
 - \triangleright OLS formula for solution: $\hat{\beta} = (X^TX)^{-1}X^Ty$
 - Columns of **X** are the **model** for data vector **y**
- Meaning of coefficient: β_k value is slope, marginal effect, or effect size associated with regressor number k [column k in X]
- β_k value says how much of regressor number k is needed to fit the data "best" in the Ordinary Least Squares sense
 - That is, the sum of the squares of εi is made as small as possible
- If we don't care about regressor number k, then we don't care about the value of βk
 - ➤ But we included regressor number *k* in the model because it was needed to fit some part of the data
 - ➤ Regressors of no interest make up the global Null Hypothesis in the model in AFNI, we call these regressors the baseline model

Statistics in a Linear Model

- Various statistical tests carried out after solving for β vector
- Some examples, with particular null hypotheses H_0
 - \triangleright Student *t*-test for each β_i of interest

*H*₀:
$$\beta$$
₃ = 0

Student *t*-test for linear combination of some β_i values = general linear test (GLT)

*H*₀:
$$\beta_3 - \beta_5 = 0$$

*H*₀:
$$0.5^*(\beta_3 + \beta_4) - \beta_5 = 0$$

> *F*-test for <u>composite</u> null hypothesis

$$H_0: \beta_3 = \beta_4 = \beta_5$$

*H*₀:
$$\beta_3 = \beta_4 = \beta_5 = 0$$

➤ Omnibus or Full *F*-test for the entire model

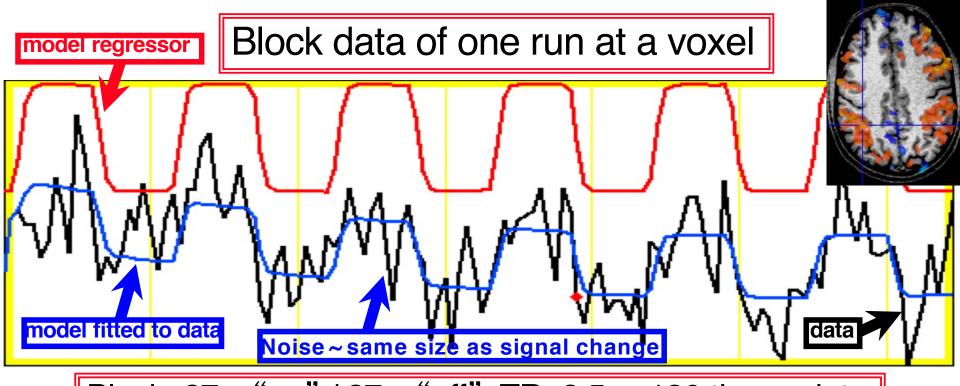
*H*₀: all β_i values of interest are 0

Linear Model with FMRI

- Time series regression: data vector **y** is time series = all values from *one* voxel throughout multiple image acquisitions (TRs)
- Regressors: idealized BOLD response curves
 - We can only find what we're looking for
 - Regression will miss something if we do not look for it
 - So we must include regressors of no interest, so we can model things like baseline drifting up or down
 - Regressor construction requires decisions
 - o Don't want to **over**-fit or **under**-fit data
- Same model matrix X for all voxels in the brain
 - Simultaneously solve all the models (1 for each voxel)
 - Voxel-wise analysis = "massively univariate" method

FMRI Data

- Data partition: Data = Signal + Noise
 - \triangleright **Data** = acquisition from scanner (voxel-wise time series)
 - > <u>Signal</u> = BOLD response to stimulus; effects of interest + no interest
 - We don't actually know the real signal shape to look for!!!
 - Look for idealized task responses by assuming a fixed shape for BOLD effect (FMRI response) for each task trial
 - o *Or* search for signal shape via repeated trials and basis functions
 - o Of interest: effect size (response amplitude) for each task: beta
 - o Of no interest: baseline, slow drifts, head motion effects, ...
 - ➤ **Noise** = components in data that interfere with signal
 - o Practically: the part of the data we can't explain with the model
 - Will have to make some assumptions about its probability distribution – to be able to carry out the statistical tests
- Data = baseline + slow drift + other effects of no interest + response₁ + ... + response_k + noise
- How to construct the regressors of interest (responses)?



Block: 27 s "on" / 27 s "off"; TR=2.5 s; 130 time points

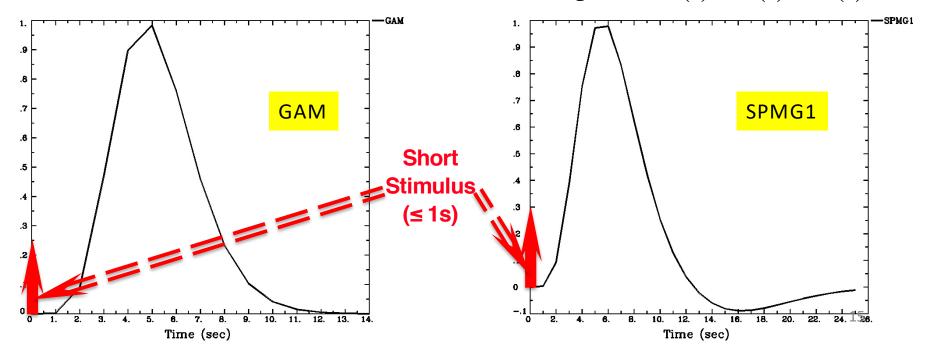
- This is "best" voxel; most voxels are not fitted as well as this
- ➤ Data drifts downwards this effect is captured in the model fit by baseline drift regressors
 - ➤ If we did *not* model for drift, our fit would not be as good
- ➤ Activation amplitude and shape vary across blocks
 - o Reasons why? We can only guess
 - Habituation? Attention? Noise?

BOLD Response

- Hemodynamic response (HDR)
 - ➤ Brain+FMRI response to stimulus/task/condition
 - ➤ Indirect measure of neural response: brain activation → changes in blood oxygen → changes in FMRI signal
- Hemodynamic response function (HRF)
 - ➤ Mathematical formulation/idealization of HDR for *one* full stimulus interval
 - ➤ HRF bridges between neural response (what we like) and BOLD signal (what we measure)
- How to build the bridge?
 - ➤ Most simple: Assume a <u>fixed-shape</u> (idealized) HRF
 - ➤ Most complex: No assumption about HDR shape
 - ➤ Basis function expansion of HRF shape and size
 - ➤ In the middle: 1 major fixed shape + a little space for shape adjustment

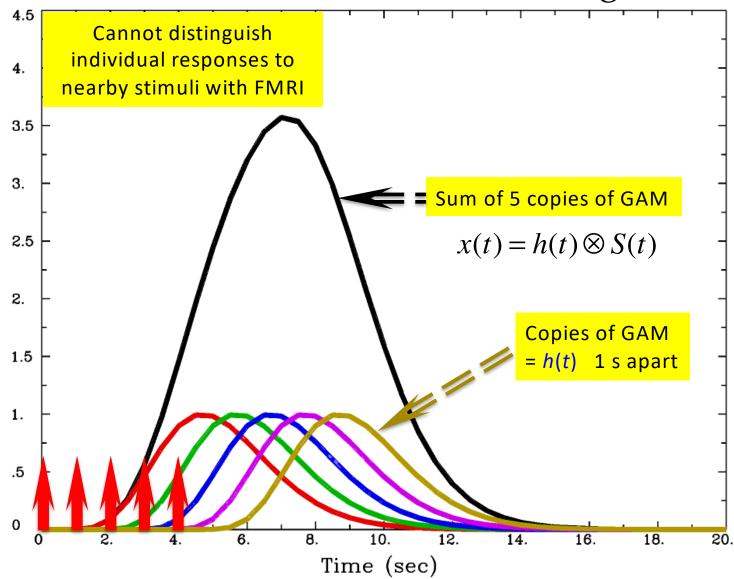
Fixed-Shape HRF – 1 s Stimulus

- Assume a <u>fixed shape</u> h(t) for HRF to an **instantaneous** (very short) stimulus: impulse response function (IRF)
 - $ightharpoonup \operatorname{GAM}(p,q)$: $h(t) = t^p \exp(t/q)$ for power p and time q
 - o Sample IRF: $h(t) = t^{8.6} \exp(-t/0.547)$ [MS Cohen, 1997]
 - o A variation: SPMG1 (undershoot is added in)
 - ➤ Build HRF based on presumed IRF through convolution
 - Combine IRF h(t) with stimulus timing S(t): $\chi(t) = h(t) \otimes S(t)$



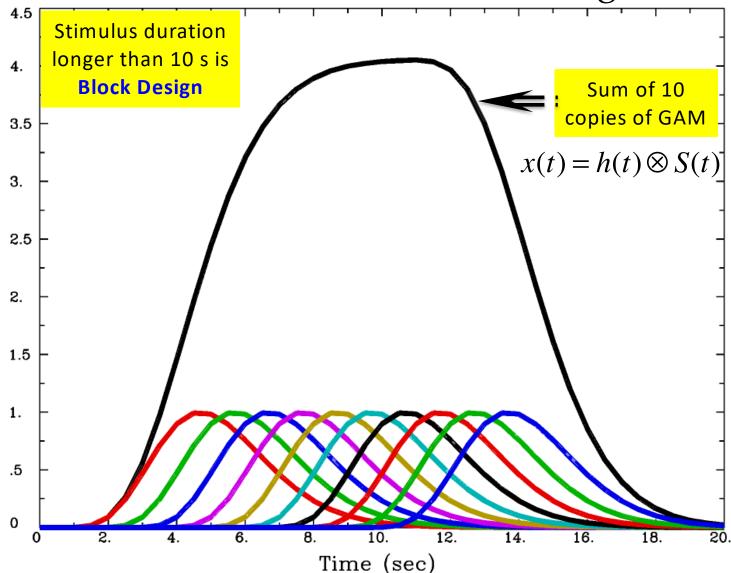
Fixed-Shape HRF – 5 s Stimulus

 \circ Combine IRF h(t) with stimulus timing S(t):



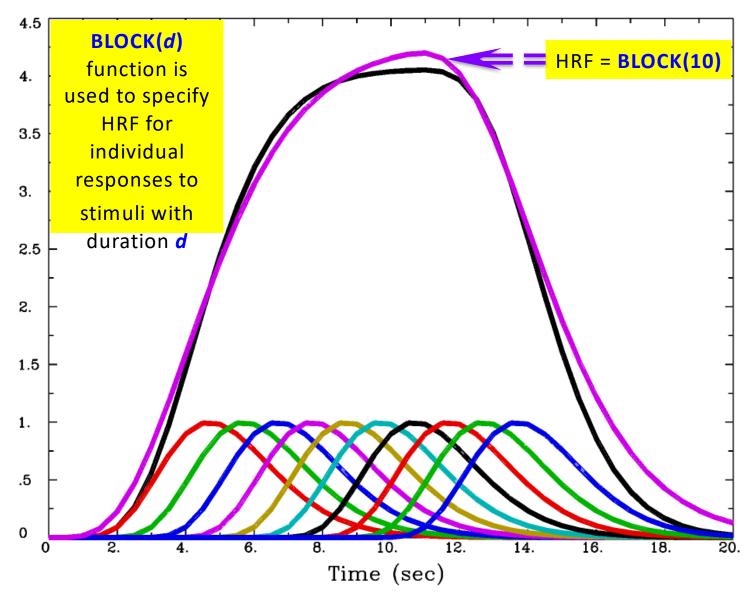
Fixed-Shape HRF – 10 s Stimulus

 \circ Combine IRF h(t) with stimulus timing S(t):



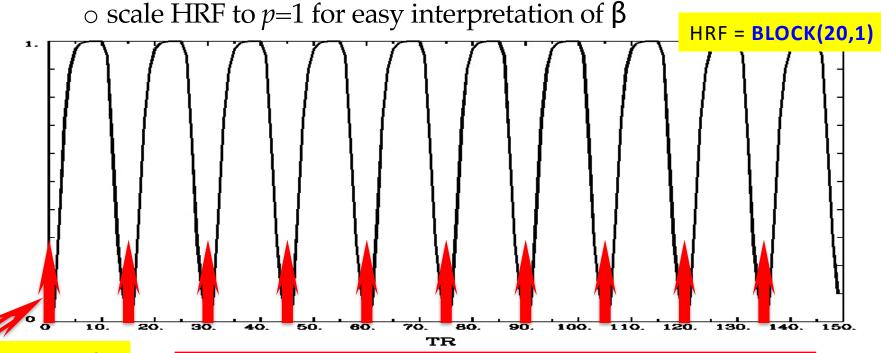
Fixed-Shape HRF – 10 s Stimulus

○ With the 'BLOCK(10)' function in AFNI



Fixed-Shape HRF for Block Design

- Assuming a fixed shape h(t) for IRF to an **instantaneous** (very short) stimulus
 - For each block, h(t) is convolved with **stimulus timing** and **duration** (d) to get idealized response (temporal pattern) as an explanatory variable (regressor): HRF = **BLOCK**(d,p)
 - o Equivalent to adding up a series of consecutive events

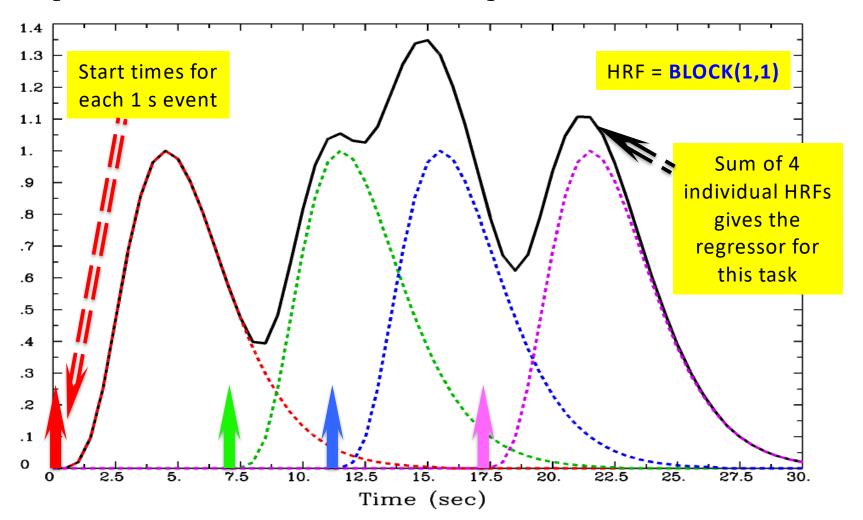


Start times for each block

Block: 20 s on and 10 s off; TR=2 s; 150 time points

Fixed-Shape HRF for Event-Related Design

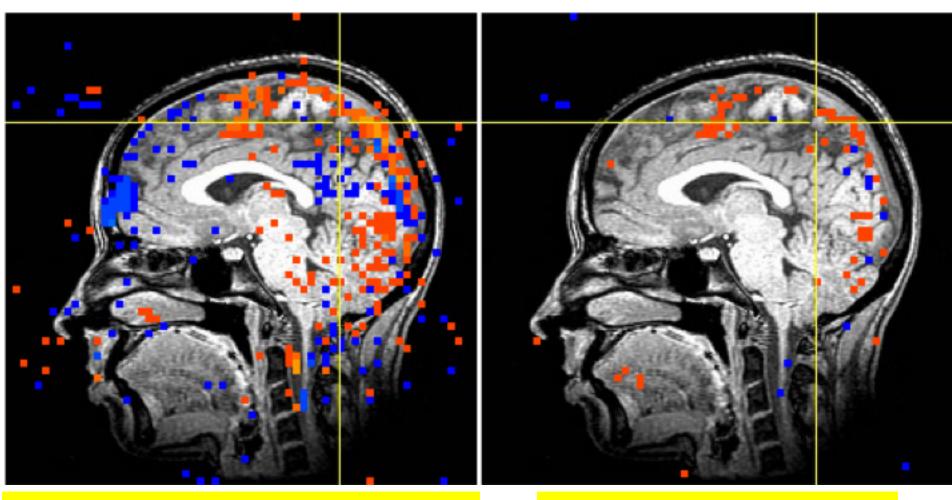
- The **BLOCK** HRF shape is useful with event-related experiment designs
- Just use a short duration, such as 1 second
- Real experiments have more than 4 task repetitions!



Linear Model with Fixed-Shape HRF

- ➤ FMRI data = baseline + drift + other effects of no interest + response1 + ... + responsek + noise
- > 'baseline' = baseline + drift + other effects of no interest
 - o Drift: physiological effect, tiny motions, scanner fluctuations
 - Data = 'baseline' + effects of interest + noise
 - Baseline condition (and drift) is treated in AFNI as baseline model, an additive effect, not an effect of interest (cf. SPM/FSL)
 - o Baseline+drift+... also need parameters in the model fit
- $y_i = \alpha_0 + \alpha_1 t_i + \alpha_2 t_i^2 + \beta_1 x_1 i + \dots + \beta_k x_k i + \dots + \varepsilon_i \quad [i = \text{time}]$
- $ightharpoonup y = X\beta + ε, X = [1, t, t^2, x_1, x_2, ..., x_k, ...]$ [vector format]
- ➤ In AFNI baseline + slow drift is modeled with polynomials
 - A longer run needs a higher order of polynomials
 - One polynomial order per 150 sec is the default in AFNI
 - With *m*>1 runs, *m* sets of polynomials needed to allow for temporal discontinuities across runs
 - m(p+1) columns for **baseline+slow drift** with p-order polynomials
- > Other effects of no interest: head movement estimates

Stimulus Correlated Motion = Bad



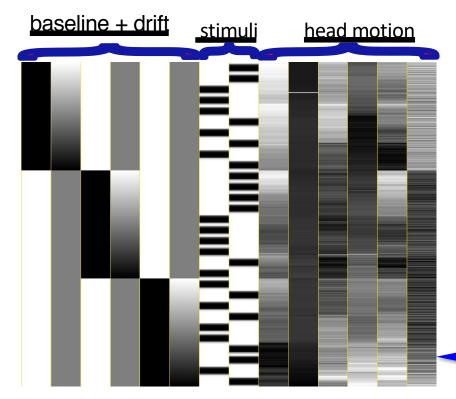
Activation map with image registration but *without* using movement estimates as regressors

Activation map when also using movement estimates as regressors

Design Matrix with Fixed-Shape HRF

- Voxel-wise (massively univariate) linear model: $y = X\beta + \varepsilon$
 - ➤ X: explanatory variables (regressors) same across voxels
 - ▶ y: data (time series) at a voxel− different across voxels
 - \triangleright β : regression coefficients (effects) **different** across voxels
 - ε: anything we can't account for different across voxels

- Visualizing design matrix $\mathbf{X} = [1, t, x_1, x_2, ..., x_k, ...]$ in grayscale image

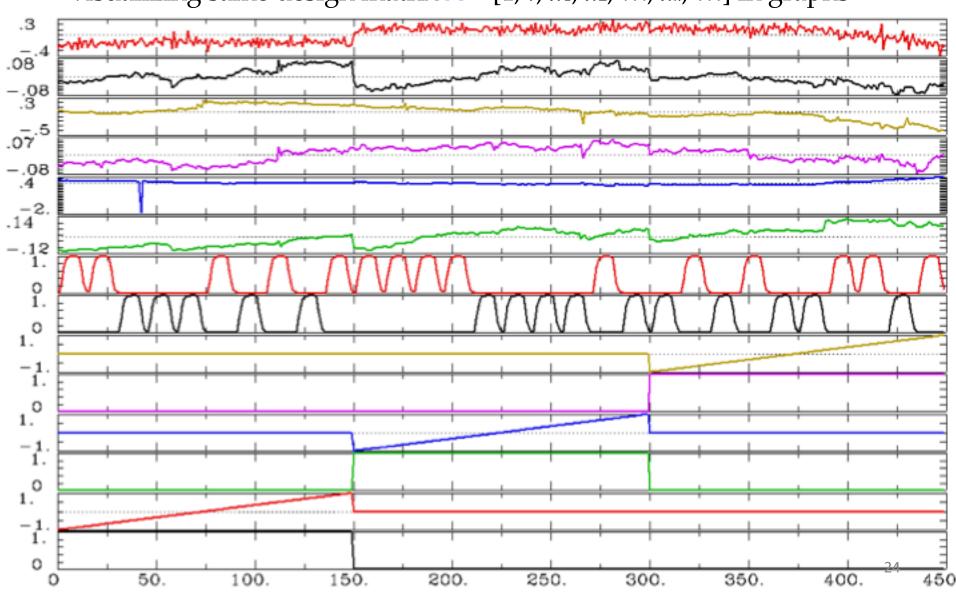


- 6 drift effect regressors
 - linear baseline
 - 3 runs x 2 parameters/run
- •2 regressors of interest
 - that is, relevant to brain activity
- 6 head motion regressors
 - 3 rotations + 3 shifts

Black = bigger numbers White = smaller numbers Each column of **X** scaled separately

Design Matrix with Fixed-Shape HRF

• Visualizing same design matrix $X = [1, t, x_1, x_2, ..., x_k, ...]$ in graphs

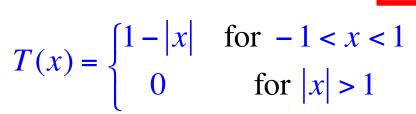


Assessing Fixed-Shape HRF Approach

- Used 99% of time: Why is it popular?
 - Assume brain responds with same shape across 4 levels: subjects, activated regions, stimulus conditions/tasks, trials
 - o Difference in **magnitude** β in different conditions or different subjects (and its significance) is what we focus on
 - O Strong assumption about four levels of shape information?
 - > Easy to handle and think about: one value per effect/task
 - ➤ Works relatively well
 - Block design: shape usually not important due to accumulating effects (modeled via convolution) of consecutive events
 - Really plateau? Same magnitude across blocks?
 - o Event-related experiment: OK most of time
 - Linearity when responses overlap? Same effect across events?
- Not what you want if you
 - ➤ Care/worry about shape difference across subjects, across regions, across conditions, and across trials
 - > Improved modeling

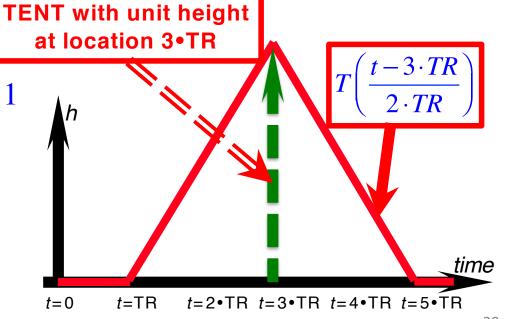
Alternative: No Constraint on HRF Shape

- TENT expansion of HRF
 - > Set multiple tents at various equally-spaced locations to cover the potential BOLD response period
 - o Each TENT is a basis function
 - \circ HRF is a sum of multiple basis functions, each with its own β
 - \triangleright BOLD response measured by TENT heights (β s) at all locations
 - > TENTs are also known as 'piecewise linear splines'



Formula for standardized TENT centered at x=0, width= ± 1

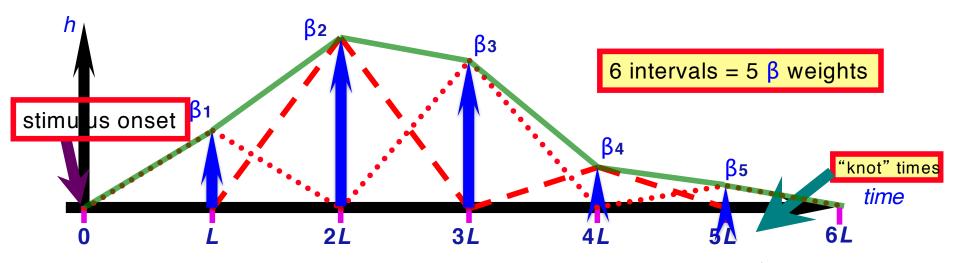
Cubic splines (CSPLIN) are also available in AFNI



Σ Tent Functions = Linear Interpolation

• 5 equally-spaced TENT functions = linear interpolation between "knots" with TENTzero(b,c,n) = TENTzero(0,12,7)

$$h(t) = \beta_1 \cdot T\left(\frac{t-L}{L}\right) + \beta_2 \cdot T\left(\frac{t-2\cdot L}{L}\right) + \dots + \beta_5 \cdot T\left(\frac{t-5\cdot L}{L}\right)$$



- TENT parameters are easily interpreted as function values (e.g., L: TENT radius; β_2 = response (TENT height) at time t = 2L after stimulus onset)
- Relationship of TENT spacing L and TR ($L \ge TR$), e.g., with TR=2s, L=2, 4s
- In **uber_subject.py** or **3dDeconvolve** with **TENTzero**(0, D, n), specify duration (D) of HRF and number (n): radius L = D/(n-1) with (n-2) full tents, each TENT overlaps half tent with two neighboring ones.
 - In above example, D=12s, then L=2s n=7; covering 12s; TENTzero(0,12,7)

Tent Functions Create the HRF

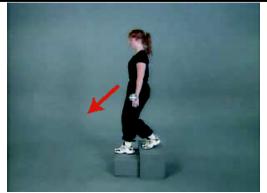
- And then the HRF is repeated for all stimuli of the same type
- In the example on the last slide, the HRF has 5 parameters (β s) to be estimated
- The β s determine the amplitude (percent signal change) *and* the shape of the HRF
- Each voxel in each subject gets a separate HRF shape now, not just a separate amplitude
 - And if there are multiple types of tasks, each task gets a separate shape
- Stimulus times do *not* have to be exactly on the TR grid

Modeling with TENTs - Example

- Event-related study (Beauchamp et al., J Cogn Neurosci 15:991-1001)
 - ➤ 10 runs, 136 time points per run, TR=2 s
 - > Two factors
 - Object type: human vs. tool
 - Object form in videos: real image vs. points
 - ➤ 4 types (2x2 design) of stimuli (short videos)
 - Tools moving (e.g., a hammer pounding) ToolMovie
 - o People moving (e.g., jumping jacks) HumanMovie
 - o Points outlining tools moving (no objects, just points) ToolPoint
 - Points outlining people moving <u>HumanPoint</u>
 - ➤ Goal: find brain area that distinguishes natural motions (HumanMovie and HumanPoint) from simpler rigid motions (ToolMovie and ToolPoint)

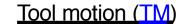
Experiment: 2 x 2 design

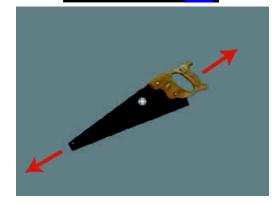
Human whole-body motion (HM)



Human point motion (HP)

From Figure 1
Beauchamp et al. 2003

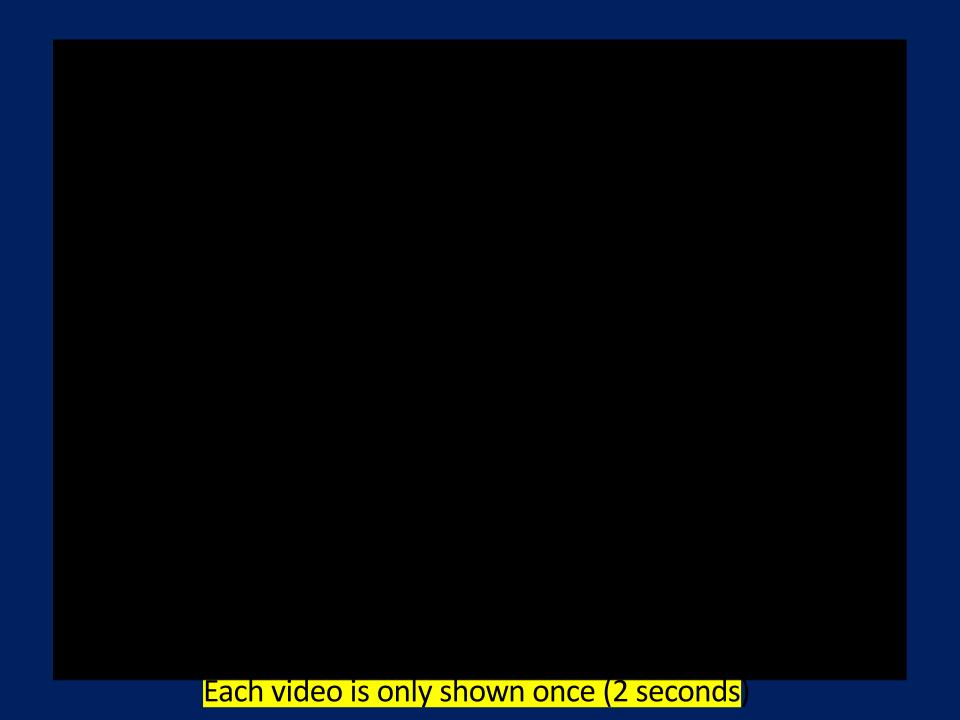




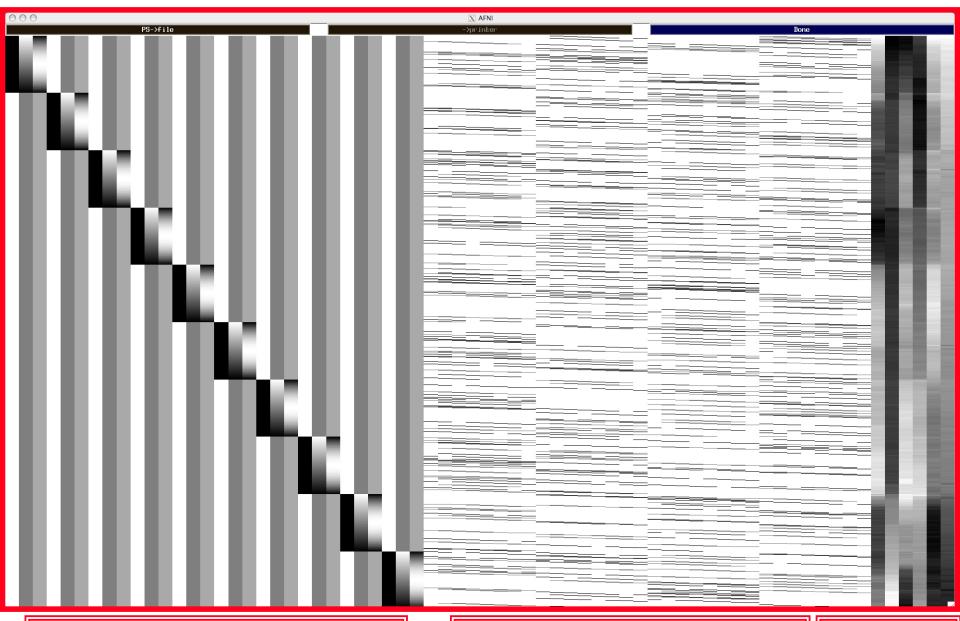
Tool point motion (TP)

Hypotheses to test:

- Which areas are differentially activated by any of these stimuli (main effect)?
 - opoint motion versus natural motion? (type of image)
 - ohuman-like versus tool-like motion? (type of motion)
- Interaction effects?
 - oPoint: human-like versus tool-like? Natural: human-like versus tool-like?
 - oHuman: point versus natural? Tool: point versus natural?



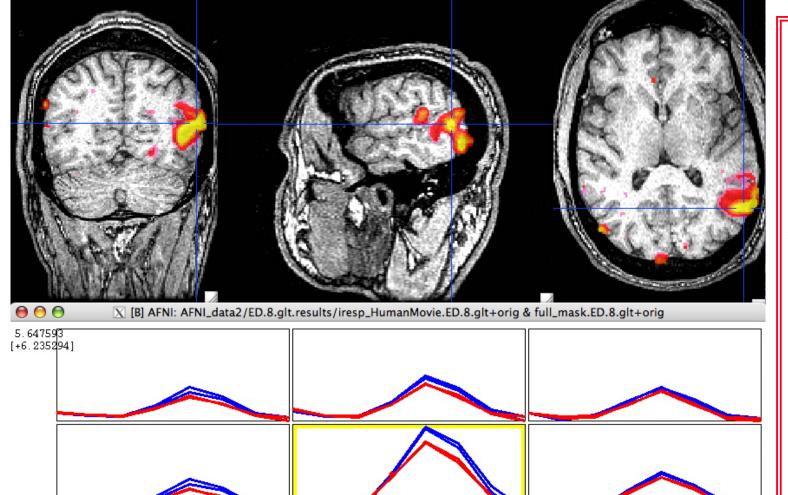
Design Matrix with TENTzero (0,16,9)



Baseline + quadratic trend for 10 runs

7 tents per condition × 4 conditions head motion

Results: Humans vs. Tools



- Color overlay: Human vs Tool $(\beta_{\text{HM}} + \beta_{\text{HP}} \beta_{\text{TM}})$
- Blue (upper): Human
- Red (lower): Tool

No Constraint on HRF Shape = Deconvolution

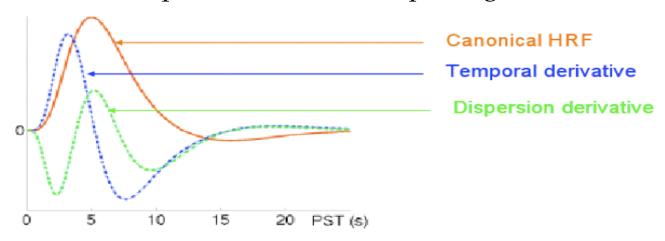
- Deconvolution perspectives: inverse process of convolution
 - ➤ HRF ⊗ stimulus = unit BOLD response
 - o Like multiplication, we have to know two and estimate the 3rd
 - Fixed-shape approach: Convolution + regression
 - o Known: HRF shape, stimulus
 - Use convolution to create regressors (hidden from user inside 3dDeconvolve program)
 - \circ Response strength (β) estimated via linear model with programs 3dDeconvolve or 3dREMLfit
 - ➤ Shape estimation: <u>Deconvolution</u> + regression
 - Known: stimulus + BOLD response; unknown: impulse response
 - HRF stimulus = BOLD response (note: HRF, not IRF)
 - HDR estimated as a linear combination of multiple basis functions: TENTs
 - Each TENT \bigotimes stimulus = one regressor column
 - Deconvolution: HRF = a set of β s estimated via regression

No Constraint on HRF Shape: Pros + Cons

- What is the approach good at?
 - Usually for event-related experiments, but can be used for BLOCK
 - o Multiple basis functions for blocks: within-block attenuation with time
 - Likely to have more accurate estimate on HDR shape across
 - o subject
 - o conditions/tasks
 - o brain regions
 - ➤ Likely to have better model fit (the goal in the sample experiment)
 - ➤ Likely to be statistically more powerful on test significance
 - For block design, may detect within-block attenuation
 - o Cross-block attenuation?
- Why is the approach not popular?
 - > Difficult to summarize at group level [see the program 3dMVM]
 - \triangleright Multiple parameters (β s) per task condition, instead of just one
 - ➤ More regressors than alternatives: DoF's per subject
 - ➤ Risk of highly correlated regressors: Multicollinearity
 - May need to reduce the number of basis functions
 - > Over-fitting: picking up something (head motion) unrelated to HDR

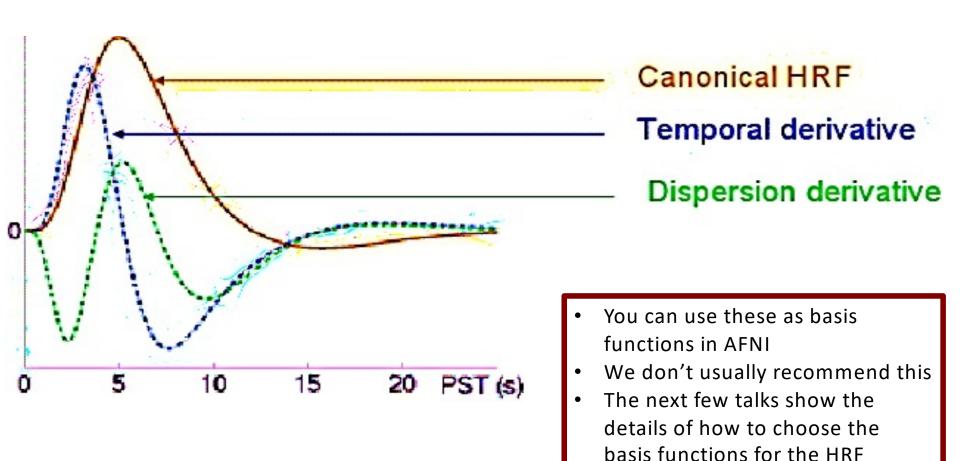
Intermediate Approach: SPMG1/2/3

- Use just a few basis functions
 - Constrain the HDR shape with a principal basis function
 - SPMG1 (similar to GAM in AFNI): $e^{-t}(a_1t^{p_1}-a_2t^{p_2})$ where $a_1 = 0.00833333333$ $p_1 = 5$ (main positive lobe) $a_2 = 1.274527e-13$ $p_2 = 15$ (undershoot part)
 - 2 or 3 basis functions: parsimonious, economical
 - SPMG1+SPMG2+SPMG3
 - SPMG2: temporal derivative capturing differences in peak latency
 - SPMG3: dispersion derivative capturing differences in peak width



SPMG1/2/3

[Ready for their closeup, Mr. DeMille]



Multicollinearity

- •Voxel-wise regression model: $y = X\beta + \varepsilon$
 - \triangleright Regressors in design matrix $\mathbf{X} = [1, t, t^2, x_1, x_2, ..., x_k, ...]$
- •Multicollinearity problem
 - > Two or more regressors highly correlated
 - \triangleright Difficult or impossible to distinguish the effects among these regressors (*i.e.*, get reliable β estimates)
- Multicollearity scenarios
 - ightharpoonup Collinearity xi= λxj = model specification error; e.g., 2 identical regressors (mistake in stimulus timing specifications)
 - ➤ Exact multicollinearity: linear dependence among multiple regressors = faulty design (rare)
 - \triangleright High degree of correlation (+ or -) among regressors = design problem (e.g., cue + movie watching)
 - ➤ Too many basis functions in response model
- Diagnosis tools: ExamineXmat.R, timing_tool.py, xmat_tool.py

Serial Correlation in Residuals

- Why temporal correlation?
 - ➤ In the residuals/noise (not the time series data)
 - Short-term physiological effects (breathing, heartbeat)
 - ➤ Other unknown reasons (scanner issues?)
- What is the impact of temporal correlation?
 - ➤ With white noise assumption, \(\beta \) are unbiased, but the statistics tend to be inflated
 - \triangleright Little impact on group analysis if only using β s from subjects
 - \triangleright May affect group analysis if considering effect reliability, as in AFNI's 3dMEMA program (where β s and ts are used)
- Approach in AFNI
 - ➤ ARMA(1,1) noise model for residual time series correlation
 - Slightly different from other packages:
 - ➤ Serial correlation model is computed voxelwise, not globally
 - ➤ Described in the Advanced Regression talk: 3dREMLfit

Dealing with Multiple Runs per Subject

- Possible approaches
 - ➤ Analyze each run separately: AFNI, FSL
 - Have to have enough task repetitions per run
 - Can test cross-run difference (trend, habituation) at group level
 - o Usually need to summarize multiple β 's before group analysis
 - ➤ Concatenate but analyze with separate regressors across runs for each condition type: AFNI, SPM
 - Can test cross-run difference (trend, habituation, etc.) at both individual and group level
 - \circ Still need to summarize multiple β 's before group analysis
 - ➤ Concatenate but analyze with same regressor across runs for each condition type: default in AFNI
 - Assumes no attenuation across runs
- Cross-block (or cross-event) attenuation
 - Method: IM or AM regression models
 - o cf. Advanced Regression talk

Percent Signal Change

- Why conversion/scaling for %? Comparable across subjects
 - ➤ MRI and BOLD data values don't have any useful physical/physiological meaning
 - ➤ Baseline is different across subjects (and possibly scaling)
 - ➤ It's the relative changes that can be compared across subjects
- AFNI approach
 - ➤ Pre-processing: data scaled by **voxelwise** mean
 - o % signal change relative to **mean**, not exactly to **base**line
 - o Difference is tiny: less than 5% (since BOLD effect is small)
 - > Tied with modeling baseline as additive effects in AFNI
 - Sometimes baseline explicitly modeled: in SPM and FSL
 - o Global mean scaling (multiplicative) for whole brain drift
 - \circ Grand mean scaling for cross-subject comparison: not %
 - Global and grand mean scaling, although not usually practiced, can be performed in AFNI if desired

Lackluster Performance in Modeling

- Essentially, all models are wrong, but some are useful (G.E.P. Box)
- ➤ Noisy data: too easy excuse!
- ➤ Regressors: idealized response model
 - We find what we're looking for
 - We may miss something when we fail to look for it
- ➤ Lots of variability across trials (response and noise)
 - Amplitude Modulation if behavioral data are available
 - Model each trial separately (Individual Modulation)
- Linearity assumptions
 - Data = baseline + drift + respone1 + resonse2 + ... + noise
 - When a trial is repeated, response is assumed same
 - Response for a block = linearity (no attenuation)
- ➤ Poor understanding of BOLD mechanism

Summary

- Basics of linear model
- FMRI data decomposition: three components
 - Baseline + slow drift; Effects of interest; Unknown
 - > Effects of interest understanding BOLD vs. stimulus: IRF
- Modeling with fixed-shape IRF: GAM(p,q), BLOCK(d,p)
- Modeling with no assumption about IRF shape
 - \triangleright TENT(b,c,n) or CSPLIN(b,c,n)
- Modeling with one major IRF plus shape adjustment
 - ➤ SPMG1/2/3
- Other issues
 - ➤ Multicollinearity
 - Catenation
 - > Percent signal change