Group Analysis

File: afni24_GroupAna.pdf

Gang Chen
SSCC/NIMH/NIH

Program List

- 3dttest++ (GLM: one-, two-sample, paired t, between-subjects variables)
- 3dMVM (generic AN(C)OVA)
- 3dLME (sophisticated cases: missing data, within-subject covariates)
- **3dMEMA** (similar to 3dttest++: measurement errors)
- 3dANOVA (one-way between-subject)
- 3dANOVA2 (one-way within-subject, 2-way between-subjects)
- 3dANOVA3 (2-way within-subject and mixed, 3-way between-subjects)
- **3dttest** (obsolete: one-sample, two-sample and paired *t*)
- 3dRegAna (obsolete: regression/correlation, covariates)
- GroupAna (obsolete: up to four-way ANOVA)
- 3dICC (intraclass correlation): prototype only
- 3dISC (intersubject correlation): prototype only

Preview

- Concepts and terminology
- Group analysis approaches
 - ∘ GLM: 3dttest++, 3dMEMA
 - o GLM, ANOVA, ANCOVA: 3dMVM
 - 。 LME: 3dLME
 - Presumed vs. estimated HDR
- Miscellaneous
 - Issues with covariates
 - Intra-Class Correlation (ICC)
 - Inter-Subject Correlation (ISC)

Why Group Analysis?

- Reproducibility and generalization
 - Summarization
 - Generalization: from current results to population level
 - Typically 10 or more subjects per group
 - o Individualized inferences: pre-surgical planning, lie detection, ...
- One model combining both steps?
 - + Ideal: less information loss, more accurate inferences
 - Historical
 - Computationally unmanageable, and very hard to set up
 - o Data quality check at individual level

Simplest case

- BOLD responses from a group of 20 subjects
 - o data: $(\beta_1, \beta_2, ..., \beta_{20})=(1.13, 0.87, ..., 0.72)$
 - o mean: 0.92
 - o standard deviation: 0.40, 0.90
 - o Do we have strong evidence for the effect?
- Modeling perspective
 - ∘ Simple GLM: one-sample *t*-test

$$\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

- $_{\circ}$ Statistical evidence *t*-test: $\hat{b}/(\hat{\sigma}/n)$
- \circ summarization: b (dimensional), sd, and t (dimensionless)

Terminology

- Response/outcome variable: left-hand side of model
 - \circ Regression β coefficients (plus measurement errors)
 - Structured: subjects, tasks, groups
- Explanatory variables: right-hand side of model
 - Categorical (factors) vs quantitative (covariates)
 - Fixed- vs random-effects: conventional statistics
- Models
 - Univariate GLM: Student's t-tests, regression, AN(C)OVA
 - Multivariate GLM: within-subject factors
 - LME: linear mixed-effects model
 - MEMA: mixed-effects multilevel analysis
 - BML (Bayesian multilevel model)

Terminology: categorical vs quantitative

- Factors
 - Number of levels: categories
 - Within-subject (repeated-measures): tasks, conditions
 - Between-subjects
 - patients/controls, genotypes, scanners/sites, handedness, ...
 - Each subject nested within a group
 - Subjects: random-effects factor measuring randomness
 - Of no interest: random samples from a population
- Quantitative variables
 - o numeric or continuous
 - o age, IQ, reaction time, brain volume, ...
 - 3 usages of covariate
 - Quantitative
 - No interest: qualitative (scanner/site, groups) or quantitative
 - Explanatory variable

Terminology: fixed vs random

- Fixed-effects variables
 - Of research interest
 - Visual vs auditory, age, ...
 - Unable to extend to something else
 - Modeled as constants, not random variables
 - Shared by all subjects
 - Not exchangeable/replaceable or extendable to something else
- Random-effects variables
 - o Of research interest?

$$\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

- Subjects: random samples
- Trials, regions?
- Modeled as random variables: Gaussian distributions
- Exchangeable, replaceable, generalizable
- Differentiations blurred under BML

Terminology: main effects

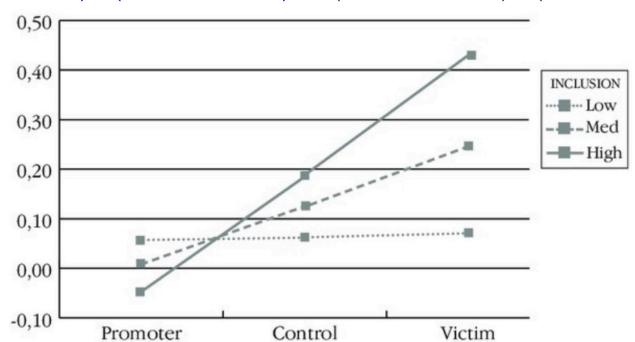
- Main effect for a fixed-effects factor
 - o Omnibus: overall inference or summarization
 - Evidence for differences across 3 levels
 - Conventional ANOVA framework
 - *F*-statistic: not detailed enough
 - Further partitions: post hoc inferences via pairwise comparisons
 - *F*-statistic as a two-sided test?

1)
$$A > B$$
, 2) $A < B$, 3) $A \ne B$

Terminology: interactions

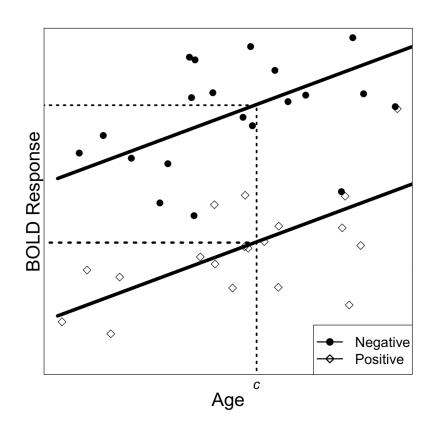
- Interaction effect between 2 or more factor
 - o Omnibus: overall inference or summarization
 - Conventional ANOVA framework
 - *F*-statistic: not detailed enough
 - Further partitions: post hoc inferences via pairwise comparisons
 - ∘ 2 × 2 design: difference of difference
 - *F*-test for interaction = *t*-test of

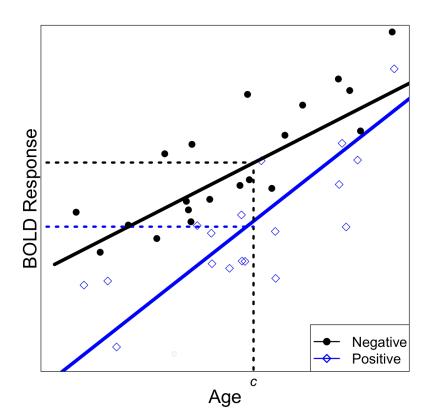
(A1B1 - A1B2) - (A2B1 - A2B2) or (A1B1 - A2B1) - (A1B2 - A2B2)



Terminology

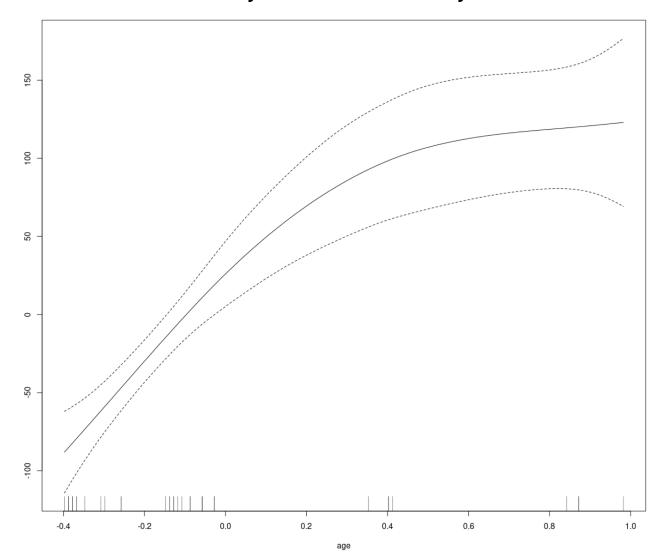
- Interaction effect involving a quantitative variable
 - By default: linearity (age, modulation, ...)
 - Controlling: misconception covariate out?
 - Effect of interest
 - Interaction between a factor and a quantitative variable





Terminology

- Interaction effect involving a quantitative variable
 Validity of linearity
 - Nonlinear: difficult! Polynomials? Theory-driven?



Example: 2 × 3 Mixed ANCOVA

- Explanatory variables
 - Factor A (Group): 2 levels (patient and control)
 - Factor B (Condition): 3 levels (pos, neg, neu)
 - Factor S (Subject): 15 ASD children and 15 healthy controls
 - Quantitative covariate: Age
- Piecemeal: multiple *t*-tests too tedious
 - Group comparison + age effect
 - Pairwise comparisons among three conditions
 - Assumption: same age effect across conditions
 - Difficulties with *t*-tests
 - Main effect of Condition: 3 levels plus age?
 - Interaction between Group and Condition
 - Age effect across three conditions?

Classical ANOVA: 2 × 3 Mixed ANOVA

- Factor A (Group): 2 levels (patient and control)
- Factor B (Condition): 3 levels (pos, neg, neu)
- Factor S (Subject): 15 ASD children and 15 healthy controls
- Covariate (Age): cannot be modeled; no correction for sphericity violation

$$F_{(a-1,a(n-1))}(A) = \frac{MSA}{MSS(A)},$$

$$F_{(b-1,a(b-1)(n-1))}(B) = \frac{MSB}{MSE},$$

$$G_{(a-1)(b-1),a(b-1)(n-1))}(AB) = \frac{MSAB}{MSE}$$

3dANOVA3 -type 5 (equal #

of subjects across groups)

where

$$MSA = \frac{SSA}{a-1} = \frac{1}{a-1} \left(\frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{abn} Y_{...}^{2} \right),$$

$$MSB = \frac{SSB}{b-1} = \frac{1}{b-1} \left(\frac{1}{an} \sum_{k=1}^{b} Y_{..k}^2 - \frac{1}{abn} Y_{...}^2 \right),$$

$$MSAB = \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)} \left(\frac{1}{n} \sum_{i=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{bn} \sum_{i=1}^{a} Y_{.j.}^{2} - \frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} + \frac{1}{abn} Y_{...}^{2}\right),$$

$$MSS(A) = \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)} \left(\frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2}\right),$$

$$MSE = \frac{1}{a(b-1)(n-1)} \left(\sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{ijk}^{2} - \frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} + \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} + \frac{1}{abn} Y_{...}^{2} \right)$$

Univariate GLM: 2 x 3 mixed ANOVA

Group: 2 levels (patient and control)

Condition: 3 levels (pos, neg, neu)

Difficult to incorporate covariates

Broken orthogonality of matrix

No correction for sphericity violation

Subject: 3 ASD children and 3 healthy controls

Subject: 5 ASD chitaren and 5 heateny controls														
Subj			X_0	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9		
1	β_{11}	. /	$^{\prime}$ 1	1	1	0	1	0	1	0	0	0		δ_{11}
1	β_{12}		1	1	0	1	0	1	1	0	0	0		δ_{12}
1	β_{13}		1	1	-1	-1	-1	-1	1	0	0	0		δ_{13}
2	β_{21}		1	1	1	0	1	0	0	1	0	0		δ_{21}
2	β_{22}		1	1	0	1	0	1	0	1	0	0	$/\alpha_0$	δ_{22}
2	β_{23}		1	1	-1	-1	-1	-1	0	1	0	0	α_1	δ_{23}
3	β_{31}		1	1	1	0	1	0	-1	-1	0	0	α_2	δ_{31}
3	β_{32}		1	1	0	1	0	1	-1	-1	0	0	α_3	δ_{32}
3	£ 20	=	1	1	-1	-1	-1	71	-1	-1	0	0	+	<i>J</i> 3;
4	β_{41}		1	-1	1	0	-1	0	0	0	1	0	\mathcal{Z}_5	\mathfrak{s}_{41}
4	β_{42}		1	-1	0	1	0	-1	0	0	1	0	α_6	δ_{42}
4	β_{43}		1	-1	-1	-1	1	1	0	0	1	0	α_7	δ_{43}
5	β_{51}		1	-1	1	0	-1	0	0	0	0	1	α_8	δ_{51}
5	β_{52}		1	-1	0	1	0	-1	0	0	0	1	$\setminus \alpha_9$	δ_{52}
5	β_{53}		1	-1	-1	-1	1	1	0	0	0	1		δ_{53}
6	β_{61}		1	-1	1	0	-1	0	0	0	-1	-1		δ_{61}
6	β_{62}		1	-1	0	1	0	-1	0	0	-1	-1		δ_{62}
6	β_{63}	\	1	-1	-1	-1	1	1	0	0	-1	-1	1	$\left\langle \delta_{63} \right\rangle$

Univariate GLM: problematic implementations

Two-way mixed ANOVA

Between-subjects Factor A (Group): 2 levels (patient, control)

Within-subject Factor B (Condition): 3 levels (pos, neg, neu)

1) Omnibus tests

$$F_A = rac{MSA}{MSA(C)}$$
Correct
 $F_A = rac{MSA}{MSE}$, Incorrect
 $F_B = rac{MSB}{MSE}$, $F_B = rac{MSB}{MSE}$,
 $F_{AB} = rac{MSAB}{MSE}$

- 2) Post hoc tests (contrasts)
- Incorrect t-tests for factor A due to incorrect denominator
- Incorrect t-tests for factor B or interaction effect AB when weights do not add up to 0

Univariate GLM: problematic implementations

Two-way repeated-measures ANOVA

Within-subjects Factor A (Object): 2 levels (house, face)

Within-subject Factor B (Condition): 3 levels (pos, neg, neu)

1) Omnibus tests

$$F_{A}=rac{MSA}{MSAC}, \ F_{A}=rac{MSA}{MSE}, \ F_{B}=rac{MSB}{MSE}, \ F_{AB}=rac{MSAB}{MSE}, \ F_{AB}=rac{MSB}{MSB}, \ F_{A$$

- 2) Post hoc tests (contrasts)
- **Incorrect** t-tests for both factors A and B due to incorrect denominator
- Incorrect t-tests for interaction effect AB if weights don't add up to 0

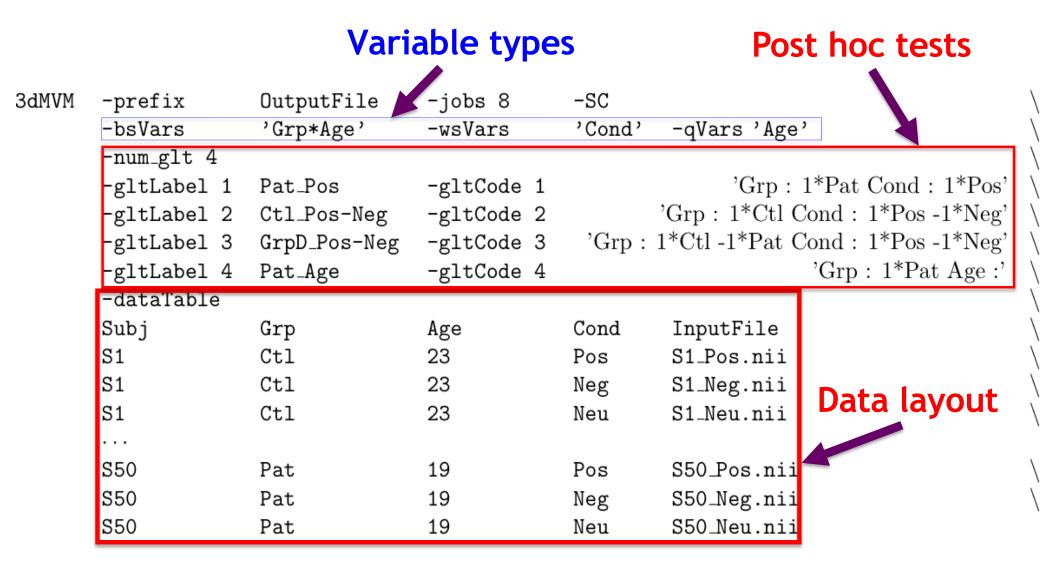
Better Approach: Multivariate GLM

- Group: 2 levels (patient and control)
- Condition: 3 levels (pos, neg, neu)
- Subject: 3 ASD children and 3 healthy controls
- Age: quantitative covariate

$$\boldsymbol{B}_{n\times m} = \boldsymbol{X}_{n\times q} \boldsymbol{A}_{q\times m} + \boldsymbol{D}_{n\times m}$$

MVM Implementation in AFNI

- Program 3dMVM
 - No dummy coding needed!
 - Symbolic coding for variables and post hoc testing



Improvement 1: precision information

- Conventional approach: β_s as response variable
 - Assumptions
 - no measurement errors
 - all subjects have same precision
 - All subjects are treated equally
- More precise method: β s plus precision
 - t-statistic contains precision
 - \circ β s and their *t*-stats as input
 - βs weighted based on precision
 - Only available for GLM types: 3dMEMA
 - Regions with substantial cross-subject variability
- Best approach: combining all subjects in one big model
 - Currently not feasible

One group: Example

• 3dttest++: β as input only

```
3dttest++ -prefix Vis -mask mask+tlrc -zskip
-setA 'FP+tlrc[Vrel#0_Coef]'

'FR+tlrc[Vrel#0_Coef]'

.....

Voxel value = 0 → treated it as missing
'GM+tlrc[Vrel#0_Coef]'
```

• **3dMEMA**: **\beta** and **t**-statistic as input

```
3dMEMA -prefix VisMEMA -mask mask+tlrc -setA Vis

FP 'FP+tlrc[Vrel#0_Coef]' 'FP+tlrc[Vrel#0_Tstat]'

FR 'FR+tlrc[Vrel#0_Coef]' 'FR+tlrc[Vrel#0_Tstat]'

.....

GM 'GM+tlrc[Vrel#0_Coef]' 'GM+tlrc[Vrel#0_Tstat]'

-missing_data 0 ✓ Voxel value = 0 → treated it as missing
```

Paired comparison: Example

• 3dttest++: comparing two conditions

```
3dttest++ -prefix Vis Aud
 -mask mask+tlrc -paired -zskip \
 -setA 'FP+tlrc[Vrel#0 Coef]'
       'FR+tlrc[Vrel#0 Coef]'
       'GM+tlrc[Vrel#0 Coef]'
 -setB 'FP+tlrc[Arel#0 Coef]'
       'FR+tlrc[Arel#0 Coef]'
       'GM+tlrc[Arel#0 Coef]'
```

Paired Comparison: Example

- 3dMEMA: accounting for differential accuracy
 - Contrast as input

```
3dMEMA -prefix Vis_Aud_MEMA
    -mask mask+tlrc -missing_data 0
    -setA Vis-Aud

FP 'FP+tlrc[Vrel-Arel#0_Coef]' 'FP+tlrc[Vrel-Arel#0_Tstat]' \
FR 'FR+tlrc[Vrel-Arel#0_Coef]' 'FR+tlrc[Vrel-Arel#0_Tstat]' \
......
GM 'GM+tlrc[Vrel-Arel#0_Coef]''GM+tlrc[Vrel-Arel#0_Tstat]'
```

• Conventional approach
$$f(t) = t^q e^{-t}/(q^q e^{-q}) (q=4)$$

- Presumed curve (empirical and approximate): BLOCK(d,1)
- Fixing HDR shape and capturing magnitude with one number
- \circ Simple and straightforward: one β per effect
- o Not ideal: HDR varies across regions, tasks/conditions, groups, subjects

More accurate HDR modeling

- o Data driven (no assumptions about HDR shape): TENTzero, CSPLINzero
- Estimating both shape and magnitude with multiple effect estimates
- \circ More complicated: multiple β s per task/condition
- More challenging: how to make inferences? H_0 : β_1 =0, β_2 =0, ..., β_k =0

Middle

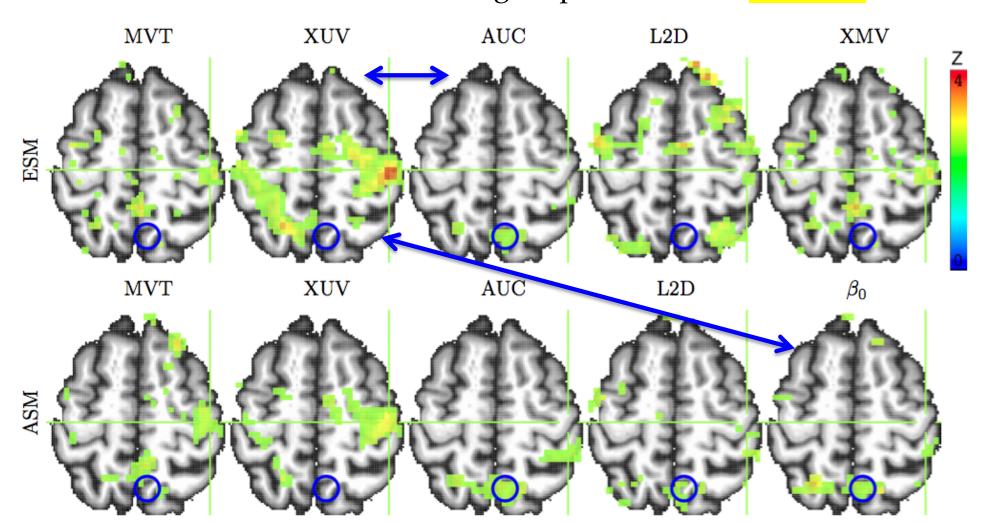
- Adjust major HDR curve with 2/3 auxiliary functions: SPMG2/3
- \circ Focus: magnitude (β) associated with major HDR curve

- Group analysis with HDR estimates: TENTzero, CSPLINzero
 - \circ NHST: H_0 : β_1 =0, β_2 =0, ..., β_k =0
 - Area under curve (AUC) approach
 - Reduce to one number: use area as magnitude approximation
 - Ignore shape subtleties
 - Shape information loss: (undershoot, peak location/width)
 - Better approach: maintaining shape integrity
 - Take individual β s to group analysis (MVM)
 - One group with one condition: 3dLME
 - Other scenarios: treat β s as levels of a factor (e.g., Time) $\frac{3dMVM}{}$ ** Task or group effect: F-stat for interaction between task group and

Time, complemented with main effect for task/group (AUC)

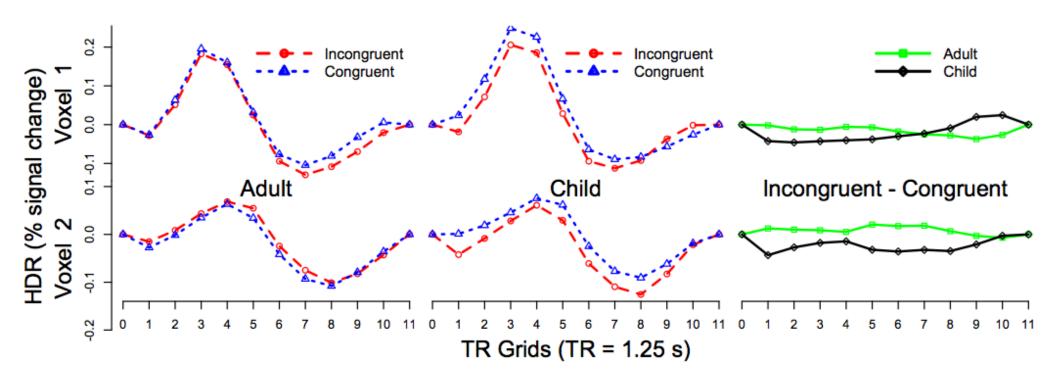
Chen et al. (2015). Detecting the subtle shape differences in hemodynamic responses at the group level. Front. Neurosci., 26 October 2015.

- 2 groups (children, adults), 2 conditions (congruent, incongruent), 1 quantitative covariate (age)
- 2 methods: HRF modeled by 10 (tents) and 3 (SPMG3) bases
- Effect of interaction: interaction group:condition 3dMVM



- Advantages of ESM over FSM
 - More likely to detect HDR shape subtleties
 - Visual verification of HDR signature shape (vs. relying significance testing: *p*-values)

Study: Adults/Children with Congruent/Incongruent stimuli (2 × 2)



Dealing with quantitative variables

Reasons to consider a covariate

- Effect of interest
- Model improvement: accounting for data variability

Frameworks

- o ANCOVA: between-subjects factor (e.g., group) + quantitative variable
- o Broader frameworks: regression, GLM, MVM, LME, BML
- Assumptions: linearity, homogeneity of slopes (interaction)

Interpretations

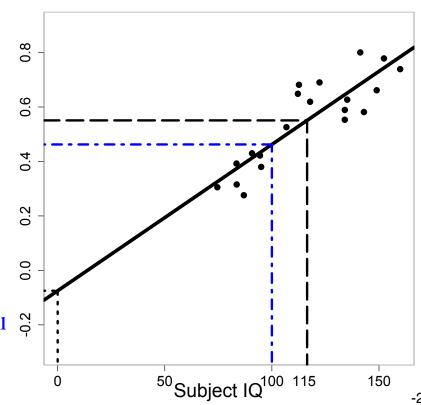
- Effect of interest: slope, rate, marginal effect
- Regress/covariate out x? head motion at individual level
- "Controlling x at ...", "holding x constant": centering

Quantitative variables: centering

Model

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \epsilon_i$$

- $\circ \alpha_1$, α_2 slope
- \circ α_0 intercept: group effect when x=0
 - Not necessarily meaningful
 - Linearity may not hold
 - Centering for interpretability
 - Mean or median centering?
- When a factor is involved
 - Complicated: within-level or grand centering



https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/STATISTICS/center.html

IntraClass Correlation (ICC)

- Reliability (consistency, agreement/reproducibility) across two or more measurements of a condition/task
 - sessions, scanners, sites, studies, twins
 - Classic example (Shrout and Fleiss, 1979): n targets are rated by k raters
 - Relationship with Pearson correlation
 - Pearson correlation: two different types of measure: e.g., BOLD response vs. RT
 - ICC: same measurement
 - Modeling frameworks: ANOVA, LME
 - 3 types ICC: ICC(1,1), ICC(2,1), ICC(3,1) one-, two-way random- and mixed-effects ANOVA
- Whole-brain voxel-level ICC
 - ∘ ICC(2,1): 3dLME –ICC or 3dLME –ICCb
 - o 3dICC: ICC(1,1), ICC(2,1) and ICC(3,1)

Chen et al. (2017), Human Brain Mapping 39(3) DOI:10.1002/hbm.23909

Naturalistic scanning

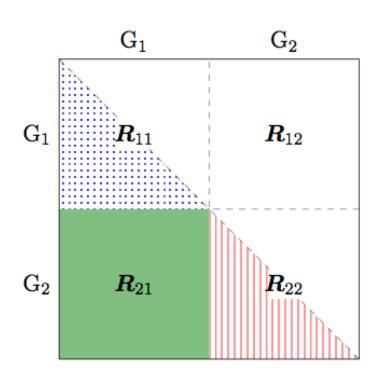
- Subjects view a natural scene during scanning
 - Visuoauditory movie clip (e.g., http://studyforrest.org/)
 - o Music, speech, games, ...
- Duration: a few minutes or more
- Close to naturalistic settings: minimally manipulated
- Effect of interest: intersubject correlation (ISC) 3dTcorrelate
 - Extent of synchronization/entrainment
- Whole-brain voxel-wise analysis: 3dISC

Hasson et al., 2004. Intersubject synchronization of cortical activity during natural vision. Science 303:1634-1640.

ISC group analysis

- Voxel-wise ISC matrix (usually Fisher-transformed)
 - o One group

- o Two groups
 - Within-group ISC: R11, R22
 - Inter-group ISC: R21
 - 3 group comparisons: R11 vs R22,
 R11 vs R21, R22 vs R21



Complexity of ISC analysis

- 2 ISC values associated with a common subject are correlated with each other: 5 subjects, 10 ISC values
- $\rho \neq 0$ characterizes non-independent relationship

	Z_{21}	Z_{31}	Z_{41}	Z_{51}	Z_{32}	Z_{42}	Z_{52}	Z_{43}	Z_{53}	Z_{54}
Z_{21}	$\int 1$	ρ	ρ	ρ	ρ	ρ	ρ	0	0	0
Z_{31}	ρ	1	ho	ρ	ρ	0	0	ρ	ρ	0
Z_{41}	ρ	ρ	1	ρ	0	ρ	0	ρ	0	ρ
Z_{51}	ρ	ρ	ρ	1	0	0	ho	0	ρ	ρ
Z_{32}	ρ	ρ	0	0	1	ho	ho	ho	ρ	0
Z_{42}	ρ	0	ρ	0	ho	1	ho	ρ	0	ρ
Z_{52}	ρ	0	0	ρ	ρ	ρ	1	0	ρ	ρ
Z_{43}	0	ρ	ρ	0	ho	ρ	0	1	ρ	ρ
Z_{53}	0	ρ	0	ho	ho	0	ho	ρ	1	ρ
Z_{54}	0	0	ρ	ho	0	ho	ho	ho	$\boldsymbol{\rho}$	1 /

Challenge: how to handle this irregular correlation matrix?

ISC: LME approach

Modeling via effect partitioning: crossed random-effects LME

$$z_{ij} = b_0 + \theta_i + \theta_j + \epsilon_{ij}, \quad i \neq j$$
 $\theta_i, \theta_j \overset{iid}{\sim} G(0, \zeta^2) \text{ and } \epsilon_{ij} \overset{iid}{\sim} G(0, \eta^2)$
cross-subject within-subject

Charactering the relatedness among ISCs via LME

$$\rho = Corr(z_{ij}, z_{jl}) = \frac{Cov(z_{ij}, z_{jl})}{\sqrt{Var(z_{ij})Var(z_{jl})}} = \frac{\zeta^2}{2\zeta^2 + \eta^2}$$
$$0 \le \rho = \frac{\zeta^2}{2\zeta^2 + \eta^2} = \frac{\zeta^2}{\sigma^2} \le 0.5$$

Chen et al, 2016. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling. Neuroimage. NeuroImage 147:825-840

Summary

- Concepts and terminology
- Group analysis approaches
 - ∘ GLM: 3dttest++, 3dMEMA
 - o GLM, ANOVA, ANCOVA: 3dMVM
 - 。 LME: 3dLME
 - Presumed vs. estimated HDR
- Miscellaneous
 - Issues with covariates
 - Intra-Class Correlation (ICC)
 - Inter-Subject Correlation (ISC)

Program List

- 3dttest +++ (GLM: one-, two-sample, paired t, between-subjects variables)
- 3dMVM (generic AN(C)OVA)
- 3dLME (sophisticated cases: missing data, within-subject covariates)
- **3dMEMA** (similar to 3dttest++: measurement errors)
- 3dANOVA (one-way between-subject)
- 3dANOVA2 (one-way within-subject, 2-way between-subjects)
- 3dANOVA3 (2-way within-subject and mixed, 3-way between-subjects)
- **3dttest** (obsolete: one-sample, two-sample and paired *t*)
- 3dRegAna (obsolete: regression/correlation, covariates)
- GroupAna (obsolete: up to four-way ANOVA)
- 3dICC (intraclass correlation): prototype only
- 3dISC (intersubject correlation): prototype only