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Preview
* Multiplicity problems in neuroimaging

* Improving modeling from two perspectives
o Weirdness of p-value
o Information waste and inefficient modeling

- Application #1: region-based analysis (RBA)
o Whole-brain voxel-wise group analysis
Program available in AFNI: BayesianGroupAna.py

» Application #2: matrix-based analysis (MBA)
o FMRI: inter-region correlation (IRC)
o DTI: white-matter properties (FA, MD, RD, AD, etc.)

o Naturalistic scanning: Inter-subject correlation (ISC)
Program available in AFNI: MBA



Conventional group analysis: voxel-wise

» Simple situations
o Student’s t-test: one-, two-sample, paired t-test

o General linear model (GLM) with between-subjects variables (sex, age, ...)
o 3dttest++ and 3dMVM in AFNI

» Situations with within-subject factors
o Univariate GLM for AN(C)OVA:
o Multivariate GLM: 3dMVM in AFNI

* Other complicated situations
o Missing data, within-subject quantitative covariates (reaction time, ...)
o Linear mixed-effects modeling: 3dLME in AFNI

- Headache: multiplicity!



Conventional matrix-based analysis

* Matrices from individual subjects
o Inter-region correlations (IRCs), inter-subject correction (ISC)
o White-matter properties: missing data
o Others: coherence, mutual information, entropyj, ...

* Group analysis
o Mirroring adoption of whole-brain analysis
o Univariate GLM:

o NBS, CONN, FSLNets in FSL, GIFT, Brain Connectivity Toolbox, ...
* Graph theory

o Arbitrary thresholding, artificial dichotomization
o Garden of forking paths: scores of metrics (hub, community, clique, small-world, ...)

* Headache: multiplicity!



4 multiplicity problems

* Element-wise modeling (multi-model problem)
o aka massively univariate modeling
o Perform whole-brain voxel-wise or element-wise in matrix analysis
o Pretend all spatial elements are isolated and unrelated to each other
o Recoup the false assumption through correction: heavy penalty and inefficient

* Sidedness testing
o Simultaneously infer both positive and negative effects: dominantly adopted

. Multiple comparisons (conventional concept)

o Simultaneously compare groups, conditions, and interactions
o Not much attention paid so far

* Multiverse problem: researcher degrees of freedom
o Thousands of options coexist: different preprocessing pipelines, modeling strategies, software
o Garden of forking paths: only reporting “significant discoveries”
o No easy solutions exist



Conventional statistical testing strategy
* Null hypothesis significance testing (NHST)

o We are all indoctrinated under the paradigm

o Build a strawman H,: nothing happens in brain
o Attack strawman H, with weirdness of data under H,: @

Type | error =P(reject H, | Hy) = false positive = p-value

Type Il error = P(accept Hy | H;) = false negative

o Dichotomize data based on magic number o.05

Courtroom
* Nice properties of NHST Hidden Truth
o Consistent with Karl Popper’s philosophy Innocent  Guilty
Falsification or refutation Reject H, S
Inductive: all swans are white (quilty) (defondant vary Corect
o Intuitive: innocent until proven guilty Fail to
o Economical/utility: categorization Reject H, oo S—

(defendant very happy)

ADHD, autism, emission test (pass vs fail), ... (not guilty)



Weirdness of p-value

- Strawman H,: artificial construct
o Witch hunt: usually of no interest
= Effect of absolute zeros? Who believes no effect everywhere in brain?

o Artificially binarize continuous world: innocent vs guilty
= “activated” vs “not activated”? Or strength of evidence for activation?

o IP-value flows in our blood: unaware of weirdness and troubles

o Disconnection/misinterpretation: P (weirdness| Hp)#P (Hy | data)
» P-value: P (weirdness | H,)

= Research interes@fect >0 or < 0| d@

* Problems with dichotomous decision
o P-value of 0.05 vs 0.055 or cluster of 54 vs 53 voxels?
Statistically insignificant = non-existing effect? Absence of evidence = evidence of absence?

Difference between “significant” & “insignificant” results: not necessarily significant
o Selection bias about effect estimates in results reporting
= Power analysis based on literature: not very useful other than pleasing grant reviewers

= One source of reproducibility problems: bil%/tall parents (violent men, engineers) have more sons;
beautiful parents (nurses) have more daughters; power posing
« Unreliable meta analyses: many potential effects unreported
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Clusters vs island

Threshold (sea level) 1

Presidio

Headlands

Richmond

Sunset
Coast

Merced

L Shores

Funston

V island

Big

Funston
Island

Geary
Sound

Cow
Landin:
Military =
Bay

Gou
19

Point
Hayes
Haight
Inlet

Duboce
Beach

lor
Lagoon

Russian
Lookout

s
Passage

Liberty
Rock

McLaren

Peninsula

Ceneva Escarpment

N

China
Beach

Market
Shoals

Potrero
Island

Beronio
Reef

Bernal Isle

°
Silver
Island

Cabo
Visitacion

to Uno

Hunters

Nsland

s: arbitrariness

Threshold (sea level) 2

Presidio

' Islands

Geary
Sound

Richmond

® Island

Cape
Judah

Ingleside
Island

University

Island

Alemany
Channel

Russian

Jackson
Island

r @

Divisidero

Pa

Haight
Straits

Castro Cape

Dolores

Noe
Shoals

Glen Pass

Excelsior
Lagoon

Island

Jelegraph
‘ Island

Nob
Island

ess
ssage

Market
Shoals

Potrero
Island

Mission
Gulf .

Beronio
Reef

&

Bernal Isle

Portola
Bay

Cabo
Visitacion

Hunters

Q Island

Candlestick
Island

U




Problems with clusters

* Cluster thresholding: “islands above sea level” approach
o Use cluster size as leverage in controlling overall false positives (FWE)

Monte Carlo simulations, RFT, combination of cluster size and signal strength

(@]

Hide everything below threshold
Arbitrary: regardless of rigor in FWE controllability

Penalize and discriminate small regions

= Unfair: 2 regions with same signal strength: one large and one small

(@]

= 2 regions with same signal strength: one distant and one contiguous

o Clusters are statistically defined
Do not respect anatomical structures
Lack spatial specificity: bleeding effect or forming huge clusters
Focus on statistically defined “peak” voxels

Sidedness for whole brain: one- or two-sided?

(@]



Problems with element-wise modeling
* First step: apply same model to all elements

o Pretend all elements are isolated and unrelated: false assumption
o Source of multi-model problem: number of models = number of elements

* Second step: correct for multi-model and false assumption
o Use cluster size as leverage in controlling overall false positives

Monte Carlo simulations, RFT, combination of cluster size and signal strength

* Problems
o Loss of efficiency due to split-modeling and false assumption
o Over-penalization
o Reinforcing arbitrary thresholding and dichotomization
* How can we do better? Prior knowledge: elements are not unrelated
* Conceptually P(weirdness| Hy)+#P(H,|data), but practically
P(weirdness| H, )=P(H,|data)?



How to incorporate prior knowledge?

* Priors are omnipresent in life

o Walking stairs, prejudices, stereotypes, etc.

* But priors are not always easy to digest!

» Infamy: subjective??? (6
o Arll‘eavrvr;yeastlilnézcctr;:mide for breakfast? 7T(9 ‘ y) — T‘-(y ‘ )ﬂ-( )

Both sides good  One side - Both sides -




How to incorporate prior knowledge?

* Kidney cancer distribution among U. S. counties

Highest rate lowest rate




How to incorporate prior knowledge?

* More examples
o LeBron James field goals percentage: 50.4%
o Monthly divorce rate, suicide rate

@)

» KISS principle

» Stein’s paradox (1956)
m(y | 0)m (6
Calibration T (9 ‘ y) — ( /J‘-(y)) ( )

* Free market vs regulations



Morals from kidney cancer data

* Multiplicity problem: > 3000 counties!
o Divide p-value by number of counties?
o Borrow idea from neuroimaging: leverage geographical relatedness?
* What can we learn from the example? Food for thought
o Care about the strawman H, (zero kidney rate), false positives, p-value?
o Trust individual county-wise estimates? Unbiased! BLUE

Incorrect sign errors (type S): some counties really have higher kidney cancer rate than others?

Incorrect magnitude (type M): some counties really have higher/lower cancer rate?
o Would correction for multiplicity help at all?

Useless in controlling for type S and M errors
* How can we do better?
o Information across spatial elements can be shared and regularized

o How???



What do we know about spatial elements?

* Element-wise modeling

o Pretend full ignorance: fully trust the data

o Uniform distribution: each element equally likely to have any value in (- o0, +0c0)

o Similar for variances: variances can be negative in ANOVA

* One crucial prior for spatial elements

o Reasonable to assume Gaussian distribution? i

o Gaussian assumption adopted ever

Subjects, residuals across TRs

o How can Gaussian assumption help?
Loosely constraining elements

No full trust for individual estimates

ere! |

.35

0.25
0.2

0.15

Information sharing: shrinkage or partial pooling o1

Controlling type S and M errors

0.05

0




Short summary: what we intend to achieve

* Abandon strawman and p-value
o Directly focus on research interest
* Build one model
o Incorporate all elements into a multilevel or hierarchical structure
o Loosely constrain elements: leverage prior knowledge
o Achieve higher modeling efficiency: no more multiplicity!
o Validate the model by comparing with potential competitors

o Be conservative on effect estimates by controlling type S and M errors: biased?
o Always be mindful of uncertainties: strength of evidence (no proof)

* Avoid dichotomous decisions

o Report full results if possible
o Highlight instead of hide based on gradient of evidence



Application #1: region-based analysis

* Dataset

o Subjects: n = 124 children; resting-state data (Xiao et al., 2019)

o Individual subjects: seed-based correlation for each subject
3D correlation between seed and whole brain (“functional connectivity”)

o Explanatory variable (behavior data): Theory of Mind Index x;

* Voxel-wise group analysis: GLMs
o Focus: association between x and seed-based correlation (z-score)
o Pretense: voxels unrelated - equal likelihood within (-oo, o)

o Information waste!
o GLMs: mass univariate - multiplicity

m = 100,000 voxels —
100,000 models

Xiao et al., 2019. Neuroimage 184:707-716

1st voxel: z1

2nd voxel: z9

mth voxel: z,,

Uniform distribution:
total freedom - each
parameter on its own

a1 +|b1x +|€;q

as +|box +| €2



https://www.ncbi.nlm.nih.gov/pubmed/30273714

GLMs: dealing with multiplicity!
* Voxel-based analysis: GLMs

o Penalty time for pretense: multiple testing (m = 100,000), magic 0.05

o Show time for various correction methods
Voxel-wise p, FWE, FDR, spatial smoothness, clusters, ...
Simulations, random field theory, permutations, ...

How would dataset turn out under GLM? _ manage to survive

voxel p || cluster threshold | surviving ROIs ROIs

0.001 28 2 R PCC, PCC/PrC

0.005 66 4 R PE€C, POC PyC.y ] IPL, 1. TPJ
0.01 106 4 R PCEC; PCC/ PxC., T IPL, I, TP]
0.05 467 4 R-ECC, PCC/PxC. L. 1PL; L TRJ




Switching from voxels to ROIs: still GLMs

* Region-wise analysis : GLMs
o Focus: association between and seed-based correlation (z-score)
o Pretense: ROIs unrelated

o GLMs: mass univariate

m = 21 ROIs S
21 m()dels parameter on its own.
o Penalty time for pretense:
multiple testing — what to do?
- Bonferroni? Unbearable
» What else? 1st ROIL: 21 = a1 +\bix +|€1

2nd ROI: 21 =G 1T bz.’B + €2

mth ROL: 2. =0 +\l£m HEm,




Switching from GLMs to LME

 Region-wise analysis : Linear Mixed-Effects (LME) model

o model integrates all regions
o ROIs loosely constrained instead of being unrelated

Gaussian distribution: Is it Tasfetched or subjective?
Similar to cross-subject variability

New components
o Goal: effect of interest b 5 -
idiosyncratic

o Differentiation: fixed vs/random Ovelall effect: effect of ith
Fixed: epistemic uncegftainty shar 2d by all ROIs subject

Random: aleatori certainty Uni.que effect
of jth ROI
o What can wg#get out of LME?
Conve S

Estimaftes for fixed effects
Variagices for random effects

o Dead end!




Switching from GLMs to BML

* Region-wise analysis : Bayesian multilevel (BML) model

o model integrates all regions: basically same as LME
o ROIs loosely constrained instead of being unrelated

Gaussian distribution: Is it far-fetched or subjective?

Similar to cross-subject variability
New components

o Goal: effect of interest by f3; *
o No more differentig#on: ﬁxed vs. random Idiosyncr&ic
All parameters: agfeatoric Overall effect: effect by ith

shared by all ROIs | suhject
and subjects Unique effect

o Same model as LME plus priors

Inferences vj \ by jth ;OI
_china!
o Ka-ching! zi; =|a + bx;|Hm) Hoy + Bixd b €

Uy N (077-2)7(043'763')1 %b (07 A)

Chen, et al, 2019. Handling Multiplicity in Neuroimaging through 6'&] ~U N(O 0-2), 7 = 1 2 s ’I’L, j — ]_, 2’ e

Bayesian Lenses with Multilevel Modeling. Neuroinformatics.



From GLMs to LME to BML

GLM: m separate GLMs
zit=a1+bxi+e€1,i=1,2,...n

Zio = a2 + bz.’I?i + €9, = ]., 2, ey n

Zim = m + +dmZTi + €im, t = L,2,..,n

I
[
[
[
Y

LME: one LME model

1=1,2,....m, 3=1,2,...,n

Y
BML: one BML model
zijla,b,x;, w5, B,
~N(a+bz; +m + o + [3j;1;,i,02)
1=1,2,....m, 7=1,2,....n

independence among regions:

uniform distribution U(—o0, +00)

Inferential

capabilities

estimates of ay,ao, ..., a,,

among ay, ag, ..., Ay,

and among by, b2, ....;m

zij=a+bx; +m + o + Bjxi + €ij -

Gaussian distributions:

e L N(0,72), (o, 8;)T % N(0,A%)

and bla b2, ey

Y

plus their standard errors

estimates of a, b, 72, A\

> and their standard errors

Gaussian priors:
Tk lfl\f’i (0,7-2)3 ((YJ,BJ)T %iN(()’ Az)
hypriors: a, b, 72, A*

but not p; = a+ «j,q; =b; + 5;

posterior distributions of

pj =a+aj,q; =bj+ S

Chen, et al, 2019. Handling Multiplicity in Neuroimaging through Bayesian Lenses with Multilevel Modeling. Neuroinformatics.



Inferences from BML. full distributions

I If\ |: \ I
* Region-based BML: 21 ROIs oo i: //\\ | JL

* Full report with richer information: )
LSFG\\ A G(ngh\

posterior distributions for each ROI :__Afm __d
- No dichotomization / - '?\f =N
No results hiding ngh llght not hide 176 (B

No discrimination against small regions

No ambiguities about spatial specificity \ e /

No inconvenient interpretation of confidence interval . | { fcc e = ac \‘ .
Evidence for each ROI: P (effect > 0 | data) e oo : :

. = —
02
1
*: 1
PCC/P dePF LTPJ 1
T T
ok a02, )

- 8ROIs with strong evidence of effect

compared to

= Region-wise GLM with Bonferroni correction 2 oo o amen
» Voxel-wise GLM at cluster level: 4 clusters WH { Il ;
How about Left SFG? L b J

ToMI effect




Inferences from BML. uncertainty

* ROI-based BML: 21 ROIs
* Full report with bar graph uncertainty intervals

Nothing hidden under sea level How about Left 76
- 8 ROIs with strong evidence for effect oﬁm—

Highlight, ™ |

not hide
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BML. model validations

 ROI-based BML with 21 ROls:
cross-validation

o Leave-one-out information
criterion (LOOIC)

Cross-validation

LOOIC SE
GLM -300.39 98.25
BML -2247 .06 86.42

GLM - BML 1946.67 96.35
o Posterior predictive checking

» Effects of BML

o Regularizing ROIs: don't fully
trust individual ROI data

o Sacrificing fit at each ROI;
achieving better overall fit

20

GLM 2.01

BML

n

tn

o

likelihood

likelihood

Realizations
from fitted

0.51
\ model

0.04 \_

-0.5 0.0 0.5 1.0
Z-score

05

0.0

05 0.0 05 1.0
z-score
(a) GLM posterior predictive density (b) BHM posterior predictive density

0.00 0.25 0.50 0.75 1.00
Uniform

0.00 0.25 0.50 0.75 1.00
Uniform

(¢) GLM cross-validation: Q-Q plot (uniform) (d) BHM cross-validation: Q-Q plot (uniform)



BML: Whole-brain vs. region-base analysis

* Region-based analysis
+ high region specificity: region definitions considered as priors
+ low computational cost
+ avoiding potential alignment issues by defining regions in native space
- not all regions have been defined
- information loss due to averaging within each region

- region definitions can be tricky

relying on results accuracy in literature (e.g., publication bias)
different atlases/parcellations

* Whole-brain analysis
+ independent of region definitions
+ less likely to miss small regions that are not in available atlases/parcellations
: Vulnerabf]e to poor alignment across subjects
- region specificity problem
Voxel-wise results do not respect region definitions

- Computationally challenging
hopeful: within-chain parallelization and GPU usage



Application #2. matrix-based analysis
o Subjects: n = 41 subjects; response-conflict task (C
o Individual subjects: correlation matrix among m
GLM for each element in correlation matrix: NBS, CONN, FSLNets in FSL, GIFT
Binarization approach: graph theory
- (IRC): FMRI
(FA MD .): DTI
ther matrices (e.g., coherence, entropy, mutual information)
* Focus on GLM

« Dataset: correlation matrix
“erors
o How to go about %roup analysis?
o More broadly: matrix-based analgsm (MBA) (“network modeling”)
o Student t-test or GLM on each element

M =120 massively univariate models R Ry Rz -+ Rnp
o Pretense again: alf’elements are unrelated Ry /= 2z 213k 0 21k
o Equal likelithood within (-0, c0) w2 | T 22mk
o In ormation waste P O

o Penalty time again: permutations? FDR?

Choi et al., 2012. Neuroimage 59(2):1912-1923 B Nemik Zmak Zmak 00—



Dealing with inter-region correlations (IRCs)

* Complexities of IRCs
o Some region pairs are unrelated, but others are correlated
o Correlation structure is intricate
o0 p <05
o Can we do a better job than GLMs or dichotomization?
- Challenge: How to characterize the complex structure?
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IRC: switching from GLM to LME

* IRC analysis through linear mixed-effects (LME) modeling
o One model integrates all ROIs: LME
o ROIs loosely constrained instead of being unrelated

Gaussian distributioh: Is it far-fetched?

Similar to cross-subject variability

o Differentiation: fixed ys. random
Fixed: epistemic uncqrtainty

Unique effect

at ith & jth ROI

Random: aleatoric undgrtainty

o Effects of interest erall effect:
- region pair: bo+&+&+m); shayed by all

region: 0.5%b,+¢;

ROIs\and subject

o LME wouldn’t work! ;
Dead end! Zijk ¥ bo +

Unique

effect of RP

Unique effect
at ith & jth

ROI for kth

subject

unique effect
by kth subject

&+ & + i + G + Cik + Tr [+ €k

Eusj 'L}\SiN(O’ >‘2)7 772_7 NN(O: ,U,2), Czkac_]k NN(O) V2)a Tk %N(O)T2)a eijk NN(O)U2)
i,i=1,2,om (@ >75), k=1,2,...,n



IRC: one more jump from LME to BML

* IRC analysis through Bayesian multilevel (BML) modeling
o One model integrates all ROIs: BML (essentially same as LME)

o ROIs loosely constrained instead of being unrelated

Gaussian distribution: Is it far-fetched?
Similar to cross-subject variability

Unique effect _
at ith & jth ROI||UNIqUE

o No differentiation: fixed vs. random

All parameters: aleatoric uncertainty effect of RP|[ Unique effect
Effects of interest at ith & jth

© . —_ overall effect: ROl for kth | 1, hique effect
region palr;b ot$ é-+f i |shared by all subject by kth subject
FeBion: 05 f’+ ! ROIs and subject

o LME Elus priors ;

. Posterior distribution®ijk = bo + & + gj T Mij + Gik + Cj kT Tk [T €ijk
@) I(ﬂ-Ching! &;,Ej zfz\si N(O, )\2), Mij ~ N(O, ,U'2)’ Cik:a Cjk o N(O) V2)’ Tk %N(Oa72)a €ijk "~ N(O’J2)

i,j=1,2,..m@GE>j), k=1,2,..,n

Chen, et al, 2019. An integrative Bayesian approach to matix-based analysis in neuroimaging. bioRxiv.



From GLMs to LME to BML

GLM1: M separate GLMs

2k = 51 +ek, k=1,2,...,n

z?k :ﬁQ +62k7 k= 1-,27"'7” B

ZME=DPMm +emk, k=1,2,....n

T
1
1
1

Y

independence among regions and

region pairs: uniform distribution

U(—00,+00) among py, P2, -+, Pm

Inferential

capabilities

| estimates of py, pa, ..., P

and their standard errors

LME3: one LME model

Gaussian distributions:

. 1id iid
zijk = bo + & + & + nij + Gk + Gk + Tk + €k o T8, §G N(0,7?), n;; ~ (0, u?)
ih,j=1,2...m (i #j), k=1,2,...,n Cik» Cjk S (0,v%), m lflvd./\/(O, 72)
:
v

2’7_2

estimates of by, A2, 2, v
and their standard errors, but
not pi; = bo + & +&; + mijs

;= %bo =+ €’i

BML3: one BML model

Zijk|bo, &is &5y Mij, Ciks Gk, Tk

~N(bo + & + & + mij + Cik + Gk + T, 0?)

iji=12..m@i>j), k=12,..,

n

Gaussian priors:

iid iid

SLEJ NN(O/\2) Nij N (01 /12)
Gik, Gjk Y N(0,v2), “ N(0,72)

hypriors: by, A2, u?, v%, 72

posterior distributions of

> Pij = bo + & + & + M,

ri = 3bo + &

Chen, et al, 2019. An integrative Bayesian approach to matix-based analysis in neuroimaging. bioRxiv.




IRC-ROI effect from BML. full distributions

Posterior Density Distribution of Threat vs. Safe

* ROI-based BML: 16 ROls . {Nm % i
A 1N
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IRC- RP effect from BML. full distributions

120 RPs
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IRC- RP effect from BML
* ROI-based BML: 16 ROls

* Full report for all region pairs (RPs)

* Comparisons with GLMs:
+ 63 RPs identified by GLMs with p of 0.05: none survived after correction with NBS via permutations

» B3 RPs with strong evidence under BML
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BML. model validations
« ROI-based BML with IRD of 16
ROIs: cross-validation
> Leave-one-out information
griterion (LOOIC)

Cross-validation

Model LOOIC SE GLM
GLM -2808.31 101.65
BMLO -4543.77 102.97

2.01

o Posterior predictive checkingmmp

o Effects of BML

o Regularizing ROIs: don't fully trust
individual ROI data

o Sacrificing fit at each ROI; achieving o5
better overall fit

54

likelihood

0.01

-0.5 0.0 0.5 1.0
Z-score

likelihood

2.0 1

o

0.51

0.0

=]

BML

0.0
Z-score
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Summary
* Multiplicity problems in neuroimaging

* Improved modeling from two perspectives
o Weirdness of p-value
o Information waste and inefficient modeling

- Application #1: region-based analysis (RBA)
o Task-related experiment or resting state (seed-based correlation analysis)
Program available in AFNI: BayesianGroupAna.py

» Application #2: matrix-based analysis (MBA)
o FMRI: inter-region correlation (IRC)
o DTI: white matter properties (FA, MD, etc.)

o Naturalistic scanning: Inter-subject correlation (ISC)
Program available in AFNI: MBA



Keep Kidney Cancer in Mind!

* Kidney cancer distribution among counties

Highest rate lowest rate
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