# Do We Have to Deal with Multiple Comparisons in Neuroimaging?

## Gang Chen

Scientific and Statistical Computing Core National Institute of Mental Health National Institutes of Health, USA

afni26\_ROI-based-modeling.pdf



## Preview

## Multiplicity problems in neuroimaging

### Improving modeling from two perspectives

- Weirdness of *p*-value
- Information waste and inefficient modeling

### • Application #1: region-based analysis (RBA)

Whole-brain voxel-wise group analysis
 Program available in AFNI: BayesianGroupAna.py

### • Application #2: matrix-based analysis (MBA)

- FMRI: inter-region correlation (IRC)
- DTI: white-matter properties (FA, MD, RD, AD, etc.)
- Naturalistic scanning: Inter-subject correlation (ISC)
   Program available in AFNI: MBA

# **Conventional group analysis: voxel-wise**

### Simple situations

- Student's *t*-test: one-, two-sample, paired *t*-test
- General linear model (GLM) with between-subjects variables (sex, age, ...)
- **3dttest++** and **3dMVM** in AFNI

## • Situations with within-subject factors

- Univariate GLM for AN(C)OVA: not always performed correctly
- Multivariate GLM: **3dMVM** in AFNI

### Other complicated situations

- Missing data, within-subject quantitative covariates (reaction time, ...)
- Linear mixed-effects modeling: **3dLME** in AFNI

## • Headache: multiplicity!

# **Conventional matrix-based analysis**

### Matrices from individual subjects

- Inter-region correlations (IRCs), inter-subject correction (ISC)
- White-matter properties: missing data
- Others: coherence, mutual information, entropy, ...

### • Group analysis

- Mirroring adoption of whole-brain analysis
- Univariate GLM: treating matrix elements as isolated entities
- NBS, CONN, FSLNets in FSL, GIFT, Brain Connectivity Toolbox, ...

## • Graph theory

- Arbitrary thresholding, artificial dichotomization
- Garden of forking paths: scores of metrics (hub, community, clique, small-world, ...)

## Headache: multiplicity!

# 4 multiplicity problems

#### • Element-wise modeling (multi-model problem)

- $_{\circ}~$  aka massively univariate modeling
- Perform whole-brain voxel-wise or element-wise in matrix analysis
- Pretend all spatial elements are isolated and unrelated to each other
- Recoup the false assumption through correction: heavy penalty and inefficient

#### Sidedness testing

• Simultaneously infer both positive and negative effects: dominantly adopted

#### • Multiple comparisons (conventional concept)

- Simultaneously compare groups, conditions, and interactions
- Not much attention paid so far

#### • Multiverse problem: researcher degrees of freedom

- Thousands of options coexist: different preprocessing pipelines, modeling strategies, software
- Garden of forking paths: only reporting "significant discoveries"
- No easy solutions exist

## **Conventional statistical testing strategy**

#### Null hypothesis significance testing (NHST)

- $_{\circ}~$  We are all indoctrinated under the paradigm
- Build a strawman H<sub>0</sub>: nothing happens in brain
- Attack strawman  $H_0$  with weirdness of data under  $H_0$ : p-value
  - **Type I error** = P(reject  $H_0 | H_0$ ) = false positive = *p*-value
  - **Type II error** = P(accept  $H_0 | H_1$ ) = false negative
- Dichotomize data based on magic number 0.05

### • Nice properties of NHST

- Consistent with Karl Popper's philosophy
  - Falsification or refutation
  - Inductive: all swans are white
- Intuitive: innocent until proven guilty
- Economical/utility: categorization
  - ADHD, autism, emission test (pass vs fail), ...





# Weirdness of *p*-value

#### • Strawman *H*<sub>0</sub>: artificial construct

- Witch hunt: usually of no interest
  - Effect of absolute zeros? Who believes no effect everywhere in brain?
- 0
  - Artificially binarize continuous world: innocent vs guilty
    "activated" vs "not activated"? Or strength of evidence for activation?
- *P*-value flows in our blood: unaware of weirdness and troubles
- Disconnection/misinterpretation: P (weirdness |  $H_0$ )  $\neq P$  ( $H_0$  | data) 0
  - *P*-value: *P* (weirdness | *H*<sub>0</sub>)
  - Research interest: **P** (effect > 0 or < 0| data)

#### Problems with dichotomous decision

- $\circ$  *P*-value of 0.05 vs 0.055 or cluster of 54 vs 53 voxels?
- Statistically insignificant = non-existing effect? Absence of evidence = evidence of absence? 0
- Difference between "significant" & "insignificant" results: not necessarily significant
- Selection bias about effect estimates in results reporting 0
  - Power analysis based on literature: not very useful other than pleasing grant reviewers
  - One source of reproducibility problems: big/tall parents (violent men, engineers) have more sons; beautiful parents (nurses) have more daughters; power posing
  - Unreliable meta analyses: many potential effects unreported



#### Clusters vs islands: arbitrariness

#### Threshold (sea level) 1

#### Threshold (sea level) 2



## **Problems with clusters**

### • Cluster thresholding: "islands above sea level" approach

- Use cluster size as leverage in controlling overall false positives (FWE)
  - Monte Carlo simulations, RFT, combination of cluster size and signal strength
- Hide everything below threshold
  - Arbitrary: regardless of rigor in FWE controllability
- Penalize and discriminate small regions
  - Unfair: 2 regions with same signal strength: one large and one small
  - 2 regions with same signal strength: one distant and one contiguous
- Clusters are statistically defined
  - Do not respect anatomical structures
  - Lack spatial specificity: bleeding effect or forming huge clusters
  - Focus on statistically defined "peak" voxels
- o Sidedness for whole brain: one- or two-sided?

# **Problems with element-wise modeling**

### • First step: apply same model to all elements

- Pretend all elements are isolated and unrelated: false assumption
- Source of multi-model problem: number of models = number of elements

### • Second step: correct for multi-model and false assumption

- Use cluster size as leverage in controlling overall false positives
  - Monte Carlo simulations, RFT, combination of cluster size and signal strength

### Problems

- Loss of efficiency due to split-modeling and false assumption
- Over-penalization
- Reinforcing arbitrary thresholding and dichotomization
- How can we do better? Prior knowledge: elements are not unrelated
- Conceptually  $P(\text{weirdness} | H_0) \neq P(H_0 | \text{data})$ , but practically  $P(\text{weirdness} | H_0) \cong P(H_0 | \text{data})$ ?

## How to incorporate prior knowledge?

T

### • Priors are omnipresent in life

- Walking stairs, prejudices, stereotypes, etc.
- But priors are not always easy to digest!
  - o Infamy: subjective???
  - Are we eating acrylamide for breakfast?

$$\pi(\theta \mid y) = \frac{\pi(y \mid \theta)\pi(\theta)}{\pi(y)}$$





## How to incorporate prior knowledge? • Kidney cancer distribution among U. S. counties

**Highest rate** 

**lowest rate** 



## How to incorporate prior knowledge?

#### More examples

- LeBron James field goals percentage: 50.4%
- Monthly divorce rate, suicide rate

0 ...

- KISS principle
- Stein's paradox (1956)

$$\frac{\text{Calibration}}{\pi(\theta \mid y)} = \frac{\pi(y \mid \theta)\pi(\theta)}{\pi(y)}$$

• Free market vs regulations

# Morals from kidney cancer data

### • Multiplicity problem: > 3000 counties!

- Divide *p*-value by number of counties?
- Borrow idea from neuroimaging: leverage geographical relatedness?

### • What can we learn from the example? Food for thought

- Care about the strawman  $H_0$  (zero kidney rate), false positives, *p*-value?
- Trust individual county-wise estimates? Unbiased! BLUE
  - **Incorrect sign errors** (type S): some counties really have higher kidney cancer rate than others?
  - **Incorrect magnitude** (type M): some counties really have higher/lower cancer rate?
- Would correction for multiplicity help at all?
  - Useless in controlling for type S and M errors

### • How can we do better?

- Information across spatial elements can be shared and regularized
- How???

# What do we know about spatial elements?

### • Element-wise modeling

- Pretend full ignorance: fully trust the data
- Uniform distribution: each element equally likely to have any value in  $(-\infty, +\infty)$
- Similar for variances: variances can be negative in ANOVA

### • One crucial prior for spatial elements

- Reasonable to assume Gaussian distribution?
- Gaussian assumption adopted everywhere!
  - Subjects, residuals across TRs
- How can Gaussian assumption help?
  - Loosely constraining elements
  - No full trust for individual estimates
  - Information sharing: shrinkage or partial pooling 0.1
  - Controlling type S and M errors



## Short summary: what we intend to achieve

### • Abandon strawman and *p*-value

• Directly focus on research interest P (effect > 0 | data)

#### • Build one model

- o Incorporate all elements into a multilevel or hierarchical structure
- Loosely constrain elements: leverage prior knowledge
- Achieve higher modeling efficiency: no more multiplicity!
- $_{\circ}~$  Validate the model by comparing with potential competitors
- Be conservative on effect estimates by controlling type S and M errors: **biased**?
- Always be mindful of uncertainties: strength of evidence (no proof)

### Avoid dichotomous decisions

- Report full results if possible
- Highlight instead of hide based on gradient of evidence

# **Application #1: region-based analysis**

#### • Dataset

- Subjects: *n* = 124 children; resting-state data (Xiao et al., 2019)
- Individual subjects: seed-based correlation for each subject
  - 3D correlation between seed and whole brain ("functional connectivity")
- Explanatory variable (behavior data): Theory of Mind Index  $x_i$

#### Voxel-wise group analysis: GLMs

- Focus: association between *x* and seed-based correlation (*z*-score)
- Pretense: voxels unrelated equal likelihood within  $(-\infty, \infty)$
- Information waste!
- GLMs: mass univariate multiplicity
- $m = 100,000 \text{ voxels} \rightarrow$ 
  - 100,000 models

Xiao et al., 2019. <u>Neuroimage</u> 184:707-716

Uniform distribution: total freedom - each parameter on its own

mth voxel: 
$$\boldsymbol{z}_m = a_m + b_m \boldsymbol{x} + \boldsymbol{\epsilon}_m$$

1st voxel:  $\boldsymbol{z}_1 = a_1 + b_1 \boldsymbol{x} + \boldsymbol{\epsilon}_1$ 2nd voxel:  $\boldsymbol{z}_2 = a_2 + b_2 \boldsymbol{x} + \boldsymbol{\epsilon}_2$ ...

# **GLMs: dealing with multiplicity!**

#### • Voxel-based analysis: GLMs

- Penalty time for pretense: multiple testing (m = 100,000), magic 0.05
- Show time for various correction methods
  - Voxel-wise *p*, FWE, FDR, spatial smoothness, clusters, ...
  - Simulations, random field theory, permutations, ...
  - How would dataset turn out under GLM? 4 lucky clusters manage to survive

| voxel $p$ | cluster threshold | surviving ROIs | ROIs                          |
|-----------|-------------------|----------------|-------------------------------|
| 0.001     | 28                | 2              | R PCC, PCC/PrC                |
| 0.005     | 66                | 4              | R PCC, PCC/PrC., L IPL, L TPJ |
| 0.01      | 106               | 4              | R PCC, PCC/PrC., L IPL, L TPJ |
| 0.05      | 467               | 4              | R PCC, PCC/PrC., L IPL, L TPJ |

# Switching from voxels to ROIs: still GLMs

### • Region-wise analysis : GLMs

- Focus: association between and seed-based correlation (z-score)
- Pretense: ROIs unrelated
- GLMs: mass univariate
  - $m = 21 \text{ ROIs} \rightarrow$ 
    - 21 models
- Penalty time for pretense: multiple testing – what to do?
  - Bonferroni? Unbearable
  - What else?



## Switching from GLMs to LME

#### • Region-wise analysis : Linear Mixed-Effects (LME) model

- One model integrates all regions
- ROIs loosely constrained instead of being unrelated
  - Gaussian distribution: Is it far fetched or subjective?



## Switching from GLMs to BML

#### • Region-wise analysis : Bayesian multilevel (BML) model

- One model integrates all regions: basically same as LME
- ROIs loosely constrained instead of being unrelated
  - Gaussian distribution: Is it far-fetched or subjective?
  - Similar to cross-subject variability





Chen, et al, 2019. Handling Multiplicity in Neuroimaging through Bayesian Lenses with Multilevel Modeling. Neuroinformatics.

## Inferences from BML: full distributions

- Region-based BML: 21 ROIs
- Full report with richer information: posterior distributions for each ROI
  - No dichotomization
  - No results hiding
- Highlight, not hide
- No discrimination against small regions
- No ambiguities about spatial specificity
- No inconvenient interpretation of confidence interval
- Evidence for each ROI: *P*(effect > 0 | data)
- <mark>8 ROIs</mark> with strong evidence of effect compared to
  - Region-wise GLM with Bonferroni correction
  - Voxel-wise GLM at cluster level: 4 clusters

How about Left SFG?



### Inferences from BML: uncertainty

How about Left SFG?

- ROI-based BML: 21 ROIs
- Full report with bar graph uncertainty intervals
  - o Nothing hidden under sea level
- 8 ROIs with strong evidence for effect of interest



## **BML**: model validations

- ROI-based BML with 21 ROIs: cross-validation
  - Leave-one-out information
     criterion (LOOIC)
     Cross-validation

|     |   |     | LOOIC    | SE    |
|-----|---|-----|----------|-------|
| GLM |   |     | -300.39  | 98.25 |
| BML |   |     | -2247.06 | 86.42 |
| GLM | _ | BML | 1946.67  | 96.35 |

Posterior predictive checking

#### • Effects of BML

- Regularizing ROIs: don't fully trust individual ROI data
- Sacrificing fit at each ROI; achieving better overall fit



## BML: Whole-brain vs. region-base analysis

#### Region-based analysis

- + high region specificity: region definitions considered as priors
- + low computational cost
- + avoiding potential alignment issues by defining regions in native space not all regions have been defined
- information loss due to averaging within each region
- region definitions can be tricky
  - relying on results accuracy in literature (e.g., publication bias)
  - different atlases/parcellations

### • Whole-brain analysis

- + independent of region definitions
- + less likely to miss small regions that are not in available atlases/parcellations
- vulnerable to poor alignment across subjects
- region specificity problem
  - Voxel-wise results do not respect region definitions
- Computationally challenging
  - hopeful: within-chain parallelization and GPU usage

## **Application #2. matrix-based analysis**

#### Dataset: correlation matrix

- Subjects: n = 41 subjects; response-conflict task (Choi et al., 2012)
- Individual subjects: correlation matrix among m = 16 ROIs
  How to go about group analysis?
- - GLM for each element in correlation matrix: NBS, CONN, FSLNets in FSL, GIFT
  - Binarization approach: graph theory
- More broadly: matrix-based analysis (MBA) ("network modeling")
   Inter-region correlation (IRC): FMRI

  - White matter properties (FA, MD, ...): DTI
    Other matrices (e.g., coherence, entropy, mutual information)

#### Focus on GLM

- Student *t*-test or GLM on each element

Choi et al., 2012. Neuroimage 59(2):1912-1923



## **Dealing with inter-region correlations (IRCs)**

### Complexities of IRCs

- Some region pairs are unrelated, but others are correlated
- Correlation structure is intricate
- $_{\circ}~0\leq~
  ho~\leq0.5$
- Can we do a better job than GLMs or dichotomization?
  - Challenge: How to characterize the complex structure?



## **IRC: switching from GLM to LME**

#### • IRC analysis through linear mixed-effects (LME) modeling

- One model integrates all ROIs: LME
- ROIs loosely constrained instead of being unrelated
  - Gaussian distribution: Is it far-fetched?



# IRC: one more jump from LME to BML

#### • IRC analysis through Bayesian multilevel (BML) modeling

- One model integrates all ROIs: BML (essentially same as LME)
- ROIs loosely constrained instead of being unrelated
  - Gaussian distribution: Is it far-fetched?
  - Similar to cross-subject variability



Chen, et al, 2019. An integrative Bayesian approach to matix-based analysis in neuroimaging. bioRxiv.



Chen, et al, 2019. An integrative Bayesian approach to matix-based analysis in neuroimaging. bioRxiv.

## IRC – ROI effect from BML: full distributions

BNST

0.04 0.08

0.04

0.02

MA

-0.04 0.00 0.04

0.08

-0.04 0.00

-0.06 -0.02

J.00

0.08 -0.04

0.06

0.05

0.04

Posterior Density Distribution of Threat vs. Safe ROI-based BML: 16 ROIs BF I ENST • Full report with richer information: -0.04 0.00 0.04 0.08 -0.04 0.00 0.04 0.08 -0.04 0.00 0.04 0.08 posterior distributions for each ROI alns 0.08 -0.04 0.10 0.04 0.00 No dichotomization Nothing hidden under sea level -0.06 -0.02 -0.06 -0.02 0.02 0.06 -0.04 0.04 0.00 • 4 ROIs with strong evidence of effect 0.00 0.04 Region Effect 0.08 -0.05 compared to -0.04 0.00 0.00 Region effect inferences: unavailable from GLM and graph theory Highlight, Hubness? How about Left & not hide **Right Anterior Insula?** 

### IRC – RP effect from BML: full distributions



## **IRC- RP effect from BML**

- ROI-based BML: 16 ROIs
- Full report for all region pairs (RPs)
- Comparisons with GLMs: nothing hidden under sea level
  - 63 RPs identified by GLMs with *p* of 0.05: none survived after correction with NBS via permutations
  - 33 RPs with strong evidence under BML

BML



## **BML**: model validations

#### • ROI-based BML with IRD of 16 ROIs: cross-validation

• Leave-one-out information

<mark>criterion</mark> (LOOIC)

#### **Cross-validation**

| Model | LOOIC    | SE     |
|-------|----------|--------|
| GLM   | -2808.31 | 101.65 |
| BMLO  | -4543.77 | 102.97 |

Posterior predictive checking

#### • Effects of BML

- Regularizing ROIs: don't fully trust individual ROI data
- Sacrificing fit at each ROI; achieving better overall fit



## Summary

## Multiplicity problems in neuroimaging

## Improved modeling from two perspectives

- Weirdness of *p*-value
- Information waste and inefficient modeling

## • Application #1: region-based analysis (RBA)

Task-related experiment or resting state (seed-based correlation analysis)
 Program available in AFNI: *BayesianGroupAna.py*

### • Application #2: matrix-based analysis (MBA)

- FMRI: inter-region correlation (IRC)
- DTI: white matter properties (FA, MD, etc.)
- Naturalistic scanning: Inter-subject correlation (ISC)

Program available in AFNI: MBA

## Keep Kidney Cancer in Mind! • Kidney cancer distribution among counties

**Highest rate** 

**lowest rate** 



## Acknowledgements

- Paul-Christian Bürkner (Department of Psychology, University of Münster)
- Andrew Gelman (Columbia University), Stan Development Team, R Foundation
- Yaqiong Xiao, Elizabeth Redcay, Tracy Riggins, Fengji Geng
- Luiz Pessoa, Joshua Kinnison (Depart of Psychology, University of Maryland)
- Zhihao Li (School of Psychology and Sociology, Shenzhen University, China)
   Lijun Yin (Department of Psychology, Sun Yat-sen University, China)
- Emily Finn, Daniel Handwerker (SFIM/NIMH, National Institutes of Health)
- Paul A. Taylor, Daniel R. Glen, Justin K. Rajendra, Richard C. Reynolds, Robert W. Cox (SSCC/NIMH, National Institutes of Health)