
-1-

What is a volumetric data set?

-2-

Abbrevs used here

abbrev = abbreviation
AKA = also known as
anat = anatomical
diff = difference
dset = dataset
e.g. = exempli gratia (= “for example”)
EPI = echo planar image
Ex = example
FOV = field of view
i.e. = id est (= “that is”)
ijk = coordinate indices (integer)
NB = nota bene (= “note well”)
phys = physics or physical
ref = reference
subj = subject
vol = volume
vox = voxel(s)
xyz = physical coordinates (units of mm)

-3-

• What is a volumetric data set?

Volumetric data structure

-4-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

Volumetric data structure

3D grid

dx
dy

dz

voxel

ed
ge

s

-5-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

Volumetric data structure

3D grid

2 ways to describe each voxel location
+ “i, j, k”: integer indices, counting voxels from one corner

 - independent of voxel size (just storage indices on disk)
+ “x, y, z”: units of mm, physical location of voxel centroid

 - depends on voxel size (dx, dy, dz)

dx
dy

dzcentroid

voxel

ed
ge

s

-6-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).

Volumetric data structure

3D grid

2 ways to describe each voxel location
+ “i, j, k”: integer indices, counting voxels from one corner

 - independent of voxel size (just storage indices on disk)
+ “x, y, z”: units of mm, physical location of voxel centroid

 - depends on voxel size (dx, dy, dz)

dx
dy

dzcentroid

voxel

ed
ge

s

4

color mapping

-7-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

Volumetric data structure

3D grid

2 ways to describe each voxel location
+ “i, j, k”: integer indices, counting voxels from one corner

 - independent of voxel size (just storage indices on disk)
+ “x, y, z”: units of mm, physical location of voxel centroid

 - depends on voxel size (dx, dy, dz)

dx
dy

dzcentroid

voxel

ed
ge

s

4

color mapping

-8-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

…

-9-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

…

3D grid + time dimension
 “→ 4D data set”

+ Can talk about time as “t”
in physical units of seconds, or
as “n” in index units of simple
counting.

-10-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

…

3D grid + time dimension
 “→ 4D data set”

+ Can talk about time as “t”
in physical units of seconds, or
as “n” in index units of simple
counting.
+ Also say that each voxel
contains a “time series”, e.g.:

-11-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

AFNI terminology sidenote

3D grid

…

We often refer to a 3D volume as a brick,
because, well, it is an example of a solid,
similar-looking 3D shape.

-12-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

AFNI terminology sidenote

3D grid

…

We often refer to a 3D volume as a brick,
because, well, it is an example of a solid,
similar-looking 3D shape.

Particularly in the context of 4D data sets,
we also call a 3D volume a sub-brick.

This is an odd lingual quirk. But to date,
this appears to be the only quirk in the
AFNI software (or its developers).

-13-

• Sub-brick selection by volume index
AFNI has a convenience feature of being able to select subset(s) of volumes for
copying, calculation, etc. from a 4D set.
This works by putting the index or index range in square brackets and quotation
marks "[]" ("" keep the terminal from interpreting the square brackets specially).

AFNI terminology sidenote

-14-

• Sub-brick selection by volume index
AFNI has a convenience feature of being able to select subset(s) of volumes for
copying, calculation, etc. from a 4D set.
This works by putting the index or index range in square brackets and quotation
marks "[]" ("" keep the terminal from interpreting the square brackets specially).
A comma separates indices, and two dots .. specifies an (inclusive) range; $ means
final volume. Ex.:

DSET"[0]" # initial subbrick (NB: count from 0!)

DSET"[0..5]" # subbricks 0,1,2,3,4,5

DSET"[3,5..8,19]" # subbricks 3,5,6,7,8,19

DSET"[1,14,29..$]" # subbricks 1,14,29-to-the-last

DSET[0,4,5,15] # ERROR in tcsh (no quotes); OK in bash

Ex. application, to copy out subset:
3dcalc -a DSET "[3,5..8,19]" -expr 'a' -prefix DSET_NEW

Fun fact: there are other forms of subbrick selection (brik label, voxel value...).

AFNI terminology sidenote

-15-

• What are the grid’s properties?

Grids

-16-

• What are the grid’s properties?
 → One is “size.” Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
 - independent of voxel size

2 vox,

6 vox

3 vox,

-17-

• What are the grid’s properties?
 → One is “size.” Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
 - independent of voxel size

2) field of view (FOV): units of mm, 3D phys vol of all voxels
 - depends on voxel size (dx, dy, dz)

2 vox,

6 vox, 6*dx (mm)

3 vox,

x

yz

2*dz
(mm)

3*dy
(mm)

-18-

• What are the grid’s properties?
 → One is “size.” Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
 - independent of voxel size

2) field of view (FOV): units of mm, 3D phys vol of all voxels
 - depends on voxel size (dx, dy, dz)
3) slab: units of mm, phys dist between first & last centroids

 - e.g., dist between [0]th and [ni-1]th centroid

2 vox,

6 vox, 6*dx (mm)

3 vox,

x

yz 5*dx (mm)

1*dz
(mm) 2*dy

(mm)

2*dz
(mm)

3*dy
(mm)

-19-

• Who are a voxel’s neighbors?

Sidenote: Getting to know your neighbors

-20-

• Who are a voxel’s neighbors?
 → This is used for blurring, clustering and several other steps.

 → Different softwares define this differently by default (o-o-o-of course…).

Sidenote: Getting to know your neighbors

NB: One can choose any of these three definitions in AFNI,
typically with the “NN” specification.

(NN=1) (NN=2) (NN=3)

-21-

• How is a 3D vol stored on the computer?

Dataset storage: origin and orientation

-22-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

-23-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

Example,
2D grid

dset origin:
(i, j) = (0, 0)

 → stored on comp: ...

not dset origin:
(x, y) = (0, 0)

RL

I

S

-24-

dset origin:
(i, j) = (0, 0)

not dset origin:
(x, y) = (0, 0)

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

Example,
2D grid

read order:

 → stored on comp: ...

RL

I

S

 → orientation: LI

-25-

dset origin:
(i, j) = (0, 0)

not dset origin:
(x, y) = (0, 0)

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

Example,
2D grid

read order:

 → stored on comp: ...

RL

I

S

 → orientation: IL

-26-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

RL
A

P

I

S

Ex: orientation = LAI

 → stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:
Q1: So where is the origin here?

-27-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = LAI

 → stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:

Q2: So how is the data read into storage?

-28-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = LAI

 → stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:

-29-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = AIL

 → stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:

(NB: the arrows point
“into” slide here...)

-30-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At the origin: (i, j, k) = (0, 0, 0); and (x, y, z) = (x

0
, y

0
, z

0
), probably not (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = RPI

 → stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:

-31-

• Where is information stored in files?
 → A file contains two categories of information:
– data block: the numbers stored at each voxel
– header: organizational information about the dset, like origin, orient,

dimensions, voxel size, TR, labeltables, etc.

Volumetric data sets: files

-32-

• Where is information stored in files?
 → A file contains two categories of information:
– data block: the numbers stored at each voxel
– header: organizational information about the dset, like origin, orient,

dimensions, voxel size, TR, labeltables, etc.

 → There are multiple volumetric file formats. In AFNI, we mostly use two:
– BRIK-HEAD: pair of files, e.g., DSET+orig.HEAD and DSET+orig.BRIK

• *.BRIK file contains data block (only)
• *.HEAD file contains header info (only)

– NIFTI: single file, e.g., DSET.nii, or (compressed) DSET.nii.gz
• both header and data block in the same file

Volumetric data sets: files

-33-

• SPACE and VIEW properties in a header
Longtime AFNI users will notice that there is extra info in BRIK/HEAD file names:
– DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.

• This is the ("AFNI") "view" and describes if the dset is in original/native/acquired
coordinates, or has been aligned to a template space (or AC-PC aligned).

AFNI terminology sidenote

-34-

• SPACE and VIEW properties in a header
Longtime AFNI users will notice that there is extra info in BRIK/HEAD file names:
– DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.

• This is the ("AFNI") "view" and describes if the dset is in original/native/acquired
coordinates, or has been aligned to a template space (or AC-PC aligned).

• The "space" property carries the specific name of which space (MNI, etc.) it is in.

 3dinfo -space -av_space DSET # 'av_space' = AFNI view space

AFNI terminology sidenote

-35-

• SPACE and VIEW properties in a header
Longtime AFNI users will notice that there is extra info in BRIK/HEAD file names:
– DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.

• This is the ("AFNI") "view" and describes if the dset is in original/native/acquired
coordinates, or has been aligned to a template space (or AC-PC aligned).

• The "space" property carries the specific name of which space (MNI, etc.) it is in.

 3dinfo -space -av_space DSET # 'av_space' = AFNI view space

• In the GUI, tlrc dsets have special features like "whereami" and atlas access.

• Dsets of different spaces cannot be overlayed in the GUI.

AFNI terminology sidenote

-36-

• SPACE and VIEW properties in a header
Longtime AFNI users will notice that there is extra info in BRIK/HEAD file names:
– DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.

• This is the ("AFNI") "view" and describes if the dset is in original/native/acquired
coordinates, or has been aligned to a template space (or AC-PC aligned).

• The "space" property carries the specific name of which space (MNI, etc.) it is in.

 3dinfo -space -av_space DSET # 'av_space' = AFNI view space

• In the GUI, tlrc dsets have special features like "whereami" and atlas access.

• Dsets of different spaces cannot be overlayed in the GUI.

• Ex.: VIEW SPACE
orig ORIG # some original space
tlrc TLRC # mapped to a template space, called TLRC

tlrc MNI # mapped to a template space, called MNI
tlrc HaskinsPeds # mapped to a template space, called HaskinsPeds

Note: "tlrc" view label is generic, while "TLRC" space name is specific to a template.

Fun fact: these properties also map onto NIFTI sform and qform codes directly.

AFNI terminology sidenote

-37-

• AFNI can read/transform other data set formats
+ ANALYZE (.hdr/.img file pairs), such as from SPM, FSL; e.g., 3dcopy
+ MINC-1 (.mnc), such as from mnitools [but not MINC-2]; e.g., 3dMINCtoAFNI

+ CTF (.mri, .svl), from MEG analysis volumes
+ BrainVoyager (.vmr), from BrainVoyager; e.g., 3dBRAIN_VOYAGERtoAFNI
+ ASCII text (.1D): just numbers arranged into columns; e.g., 3dUndump

• Note that these other formats may be missing some standard header information,
which may need to be borrowed/used from other known files in NII or BRIK/HEAD
format (e.g., 3dUndump to get grid)

• AFNI has some conversion programs to write out MINC-1, ANALYZE (3dAFNItoMINC,
3dAFNItoANALYZE, 3dmaskdump, etc.)

• For fuller related program list, see:

• Always check your results carefully when converting to other format/software!

Other data set formats

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#copy-convert-manipulate-dsets

-38-

• Data are often aquired as DICOM files

• AFNI has several programs for creating BRIK-HEAD and NIFTI files from DICOMs

• One has to be careful with DICOMs- not really standardized (booo!), fields/structure
can change across scanner vendor, across version numbers, across acquisition
sequences, and on the 3rd Tuesday after a blue moon.

• Some AFNI programs:
+ dcm2niix_afni: Chris Rorden's popular program, distributed in AFNI (thanks, Chris!)
 - very general use, can create whole collection of dsets

 - NB: NIFTI does not store complicated slice timings, so even if dcm2niix_afni can
find it, it can't be stored

 - AFNI's 3drefit can be used to add slice timing info to the AFNI header extension

+ Dimon: R Reynold's creation, originally for sending "realtime FMRI" direct to AFNI
+ fat_proc_convert_dcm_{anat,dwis}: wrappers of dcm2niix_afni for DWI proc
+ and:

• *Always* check your results carefully (left-right flips!) when converting from
DICOM!

Creating dsets from DICOM files

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#dicom-info-and-conversion

-39-

AFNI program note on dset and grid properties

To simply find out what the dset’s grid, orientation, origin, etc.
properties are, 3dinfo is the way to go. Ex.:
 3dinfo -orient -o3 DSET

-40-

AFNI program note on dset and grid properties

To simply find out what the dset’s grid, orientation, origin, etc.
properties are, 3dinfo is the way to go. Ex.:
 3dinfo -orient -o3 DSET

To alter dset/grid properties:
In AFNI, the program 3dresample is useful for starting with one input
and making a dset with a new grid, orientation, origin, etc. The
program assumes that the starting information (both header and brick
info) are correct. Ex.:
 3dresample -orient RAI -prefix DSET_NEW -inset DSET

To change grid, orientation, origin, etc. properties when the header
information is incorrect, then the program 3drefit is useful. Ex.:
 3drefit -orient RAI -inset DSET

Note the different purposes of 3dresample and 3drefit.

-41-

Dataset orientation

Note: there are (at least) two uses of dset “orientation”
1) Storage order: how data is stored on disk (3dinfo -orient DSET).
2) Reporting order: describing the physical location coordinates.
 Ex: “We found a cluster with peak at (25, -30, 20).”
 - common cases: RAI (DICOM, and AFNI default), LPI (SPM)
 - in AFNI GUI:

-42-

Dataset orientation

When reporting:
+ Must also report orient, because
numbers change:

 “→ ... (25, -30, 20) in RAI-DICOM”
 = “... (-25, 30, 20) in LPI coords”
+ But better/best is to report
locations unambiguously:

 “→ ... (25L, 30A, 20S)”, which
applied to either RAI, LPS, or other!

Note: there are (at least) two uses of dset “orientation”
1) Storage order: how data is stored on disk (3dinfo -orient DSET).
2) Reporting order: describing the physical location coordinates.
 Ex: “We found a cluster with peak at (25, -30, 20).”
 - common cases: RAI (DICOM, and AFNI default), LPI (SPM)
 - in AFNI GUI:

-43-

Sidenote: non-volumetric files

-44-

*.1D files

1D files: text file, columns and/or rows of numbers
+ can represent time series, alignment/motion parameters,
 voxel locations, etc.
+ might include "# commented regions" at the top

Ways to view
+ open in text editor: "afni_open -t FILE.1D"
+ view in terminal: less, cat
+ plot: AFNI's 1dplot or 1dplot.py

- each column is one time series
- Ex.: 1dplot file.1D
 1dplot.py -infiles file.1D -prefix OUT.jpg

Useful programs for these types of dsets
+ 1dcat, 1dtranspose, 1d_tool.py, cat_matvec, 1deval, …
+ see:

 1
 2
 3
 1
-1
-2
 3
 1
 5.1
 0
-3

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#deal-with-1d-time-series

-45-

*.txt and/or *.dat files

TXT/DAT files: text file, could be numbers, could be words/strings
+ e.g., stimulus timing files with numbers and symbols
+ might include "# commented regions" at the top

Ways to view
+ open in text editor: "afni_open -t FILE.1D"
+ view in terminal: less, cat

-46-

*.json files

JSON files: text file, stores dictionaries and lists of information
+ general/standard file format, stands for JavaScript Object Notation
+ increasingly commonly used in neuroimaging to include extra/meta
 information about datasets

Ways to view
+ open in text editor: "afni_open -t FILE.1D"
+ view in terminal: less, cat
++ but to read/write/use: very common to use Python functionality

-47-

*.niml.dset and *.gii files

GII (GifTI): surface equivalent of NifTI files; standard format
NIML-DSET: surface data file format used in AFNI

 → for both, will deal more with these in the SUMA talks
(SUMA also has other intermediate/useful files *.niml*)

Useful programs for these types of dsets
+ See:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#suma-surface-calculations-formats-and-viewing

-48-

*.niml.lt files

“labeltable” files made by and used in AFNI
+ files to associate a label (text string) with an ROI value (integer)
+ e.g., store names of ROIs in an atlas, such as FS parcellation
+ discussed more in the ROI talks

If you can’t wait to read more
+ See @MakeLabelTable’s help:

+ See ROI demo examples in AFNI doc tutorials:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/rois_corr_vis/main_toc.html

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/@MakeLabelTable_sphx.html#ahelp-makelabeltable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

