Connectivity Analysis in AFNI

File: Connectivity.pdf

Gang Chen SSCC/NIMH/NIH/HHS

Why connectivity?

- Understanding communications in brain networks
 - More interesting than regional activations
 - □ May indicate some abnormal situations (ASD, schizophrenia)
 - Connectome!!!
- Many connectivity methods
 - People try to squeeze the data as hard as possible
 - Unlike activation detection, connectivity analysis methods are usually controversial
 - Two aspects: poor data and poor models
 - Publication bias
 - Only a few introduced here
 - Focus more on understanding methods than recommending

Structure of this lecture

- Two categories of connectivity analysis
 - Seed-based (vs. functional connectivity)
 - □ Network-based (vs. effective connectivity)
- Seed-based analysis
 - Simple correlation
 - Context-dependent correlation (PPI)
 - Seed-based bivariate autoregression (Granger)
- Network-based analysis
 - Structural equation modeling (SEM)
 - □ Vector autoregression (VAR) (aka Granger causality)
 - □ Structural vector autogression (SVAR)

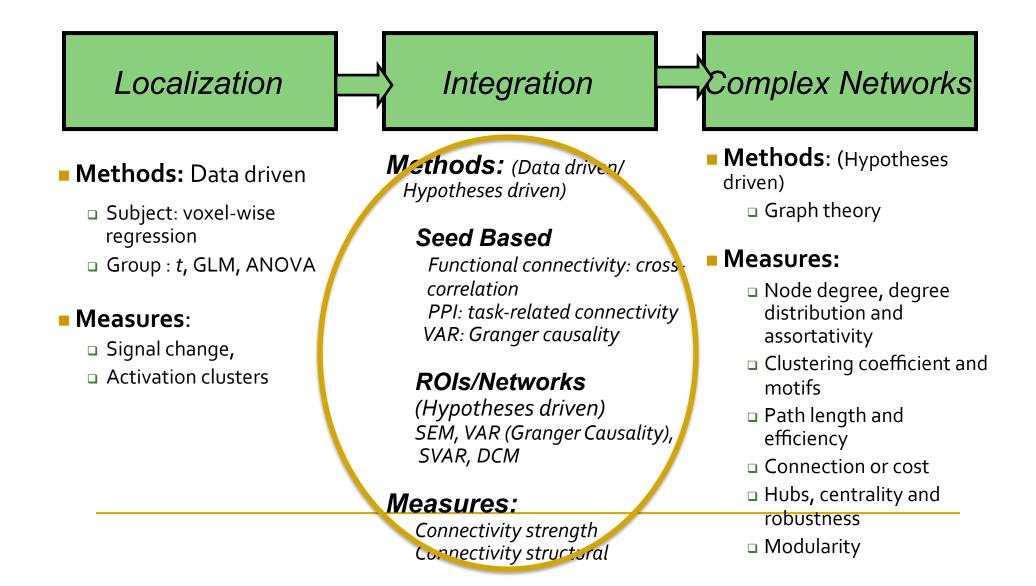
Overview: Connectivity analysis

- Typical FMRI data analysis
 - Massively univariate (voxel-wise) regression: $y = X\beta + \epsilon$
 - Relatively robust and reliable
 - May infer regions involved in a task/state, but can't say much about the details of a network

Network analysis

- Information
 - Seed region, some or all regions in a network
 - Neuroimaging data (FMRI, MEG, EEG): regional time series
- Inferring interregional communications
 - Inverse problem: infer neural processes from BOLD signal
 - Based on response similarity (and sequence)
 - Difficult and usually not so reliable

FMRI Methods and Measures

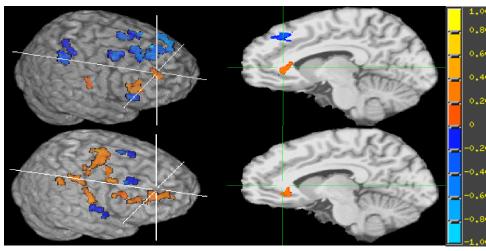


Overview: Connectivity analysis

- Two types of network analysis
 - Not sure about ALL the regions involved
 - Seed-based: use a seed region to search for other ROIs
 - □ If all regions in a network known
 - Prior knowledge
 - Network-based: A network with all relevant regions known
 - Everything is relative: No network is fully self-contained
- Currently most methods are crude
 - Models: underlying assumptions not met
 - Data quality: temporal resolution, low signal-to-noise ratio, poor understanding of FMRI signal

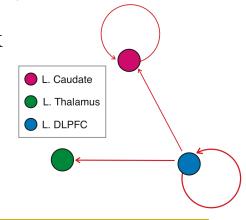
Seed-based analysis: ROI search

- Regions involved in a network are unknown
 - □ Bi-regional (seed vs. whole brain) (**3d***): brain volume as input
 - □ Mainly for ROI search
 - Popular name: functional connectivity
 - □ Basic, coarse, exploratory with weak assumptions
 - □ Methodologies: simple correlation, PPI, bivariate autoregression
 - Weak interpretation: may or may not indicate directionality/causality



Network-based analysis

- Regions in a network are known
 - Multi-regional (1d*): ROI data as input
 - Model strategy
 - Model validation + connectivity strength testing
 - Data driven
 - Popular name: effective or structural connectivity
 - Strong assumptions: specific, but with high risk
 - □ Methodologies: SEM, VAR, SVAR, DCM
 - Directionality, causality (?)
- Graph Theory: neither



Common Preparatory Steps

- Warp brain to standard space
 - Uber_subject.py, uber_align_test.py, adwarp, @auto-tlrc, align_epi_anat.py
- Create ROI
 - Peak voxel or sphere around a peak voxel: 3dUndump --master ... --srad ...
 - Activation cluster-based (biased unless from independent data?)
 - Anatomical database or manual drawing
- Extract ROI time series
 - Average over ROI: 3dmaskave —quiet —mask, or 3dROIstats -quiet —mask
 - Principal component among voxels within ROI: 3dmaskdump, then 1dsvd
 - □ Seed voxel with peak activation: **3dmaskdump** -noijk -dbox
- Remove effects of no interest
 - **3dSynthesize** (effects of no interest) and **3dcalc** (effects of interest)
 - **3dDetrend** –polort (trend removal)
 - **RETROICORR/RetroTS.m** (physiological confounds)
 - **3dBandpass** (bandpass filtering)
 - **CANATICOR** (resting state data)

Simple Correlation Analysis

- Resting state data analysis: seed vs. rest of brain
- ROI search based on response similarity
 - Looking for regions with similar signal to seed: spontaneous fluctuations
- **Correlation** at individual subject level
 - Usually have to control for effects of no interest: drift, head motion, physiological variables, censored time points, tasks of no interest, *etc*.
- Applying to experiment types
 - Straightforward for resting state experiment: default mode network (DMN)
 - With tasks: correlation under a specific condition or resting state?

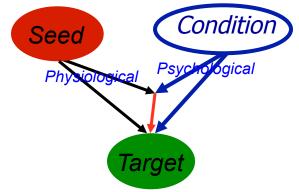
Program: 3dDeconvolve or afni_proc.py

- Original regression: $y = X \mathcal{W} + \mathcal{W}(t)$
- New model: $y = [X S(t)] \times + \times (t)$
- r: linear correlation; slope for standardized Y and X
- β : slope, amount of **linear** change in Y when X increases by 1 unit
- Example 9 in afni_proc.py -help

Simple Correlation Analysis

- Group analysis
 - □ Run Fisher-transformation of *r* to *Z*-score and *t*-test: **3dttest++**
- Interactive tools in AFNI and SUMA: uber_subj.py, InstaCor, GroupInstaCor
- Report effect size: convert z-score back to r
- **Caveats**: don't over-interpret
 - Correlation: crude measurement at the presence of significant noise
 - Only linearity relationship
 - □ Correlation does not necessarily mean causation: no proof for anatomical connectivity (*e.g.*, more than two regions in a network)
 - □ No golden standard procedure and so many versions in analysis: seed region selection, confounds, head motions, preprocessing steps, ...
 - Measurement error problem: underestimation, attenuated bias

- Popular name: Psycho-Physiological Interaction (PPI)
- Regression analysis at individual level
 - Brain response varies in magnitude across multiple trials (repetitions)
 - Habituations, random fluctuations, ...
 - Regresson only accounts for the AVERAGE response across trials
 - Trial-to-trial fluctuations treated as noise (residuals)
 - Do the fluctuations provide some information about the brain network?
- Image three components
 - Main effect of condition (or contrast): C(t)
 - Main effect of seed on target: S(t)
 - □ Interaction between the two effects: I(C(t), S(t))
 - Implicit directionality assumption here!



- Model for each subject
 - Original regression: y(t) = [C(t) Others] / (t)
 - New model: $y(t) = [C(t) S(t) I(C(t), S(t)) \text{ Others}] \mathcal{Y} + \mathcal{Y}(t)$
 - C(t) and S(t): like main effects in a two-way ANOVA
 - I(C(t), S(t)): interaction (regressor of interest)
 - □ 2 more regressors than original model: S(t), I(C(t), S(t))
 - Should effects of no interest be included in the model?
 - Others NOT included in SPM
 - What we care for: β for I(C(t), S(t))
 - □ I(C(t), S(t)) accounts for the variability in addition to C(t) and S(t)
 - Symmetrical modulation

- How to formulate interaction I(C(t), S(t))?
 - □ Interaction at neuronal, not BOLD (an indirect measure), level
 - **Deconvolution**: derive neuronal response from BOLD response
 - Assuming standard (fixed) impulse response
 - **3dTfitter**: Impulse Neural events = BOLD response; Gamma $\mathbb{N} \mathbb{N} \mathbb{E}(t) = S(t)$
 - 3dTfitter RHS ... FALTUNG ... 012 2 12lasso 6
 - Deconvolution matters more for event-related than block experiments
 - □ Interaction at neuronal level **3dcalc**: $NE(t) \times C(t) = NI(t)$
 - **timing_tool.py** converts stimulus timing into 0s and 1s
 - 1s and -1s for contrast, and 1s and 0s for condition vs. baseline

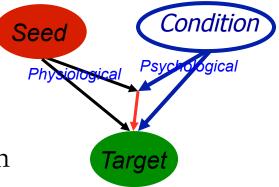
- How to formulate interaction I(C(t), S(t))?
 - □ Interaction at BOLD level convolution **waver**: Gamma ⊠ NI(t) = I(C(t), S(t))
 - □ If stimuli presented in a higher resolution than TR not TR-locked
 - Up-sample first: use **ldUpsample n** to interpolate $S(t) \ n$ **M** finer before deconvolution **3dTffiter**
 - Down-sample interaction I(C(t), S(t)) back to original TR: **1dcat** with selector ' $\{0..\$(n)\}$ '
 - □ Regression: y(t) = [C(t) S(t) I(C(t), S(t)) Others] M + M(t) 3dDeconvolve
 - □ Website: <u>http://afni.nimh.nih.gov/sscc/gangc/CD-CorrAna.html</u>
- Group analysis: Take β (+*t*): **3dttest** (**3dMEMA**)

Generalized PPI

- Conventional PPI
 - One interaction regressor + seed regressor
 - □ Student's *t*-test at the group level
- **gPPI** at the individual subject level
 - □ For each condition, create one interaction regressor
 - Difference: no more contrast
 - \square # regressors of interest in original individual subject analysis: N
 - \Box N interaction regressors in gPPI + seed regressor
- gPPI at the Group analysis
 - \Box AN(C)OVA

PPI Caveats

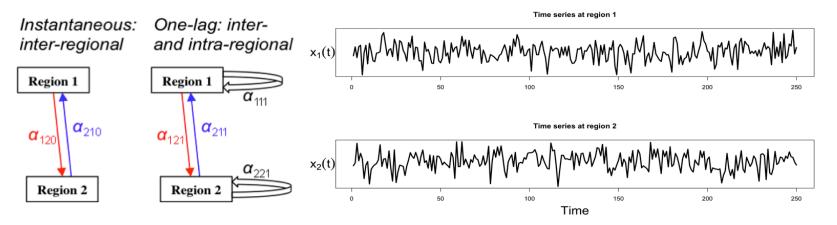
- No proof for anatomical connectivity
 - Correlation does not necessarily mean causation
 - Only modeling interactions between two regions
- Big noise: measurement error in regression
 - Poor understanding of BOLD



- Neural response hard to decode: Deconvolution is not so reliable, with assumption of a fixed-shape HRF, same across trials/conditions/regions/subjects/groups
- □ Noisy seed time series: attenuation or regression dilution
- Directionality presumption
- No information about interaction between condition and target on seed
- No differentiation whether modulation is
 - Condition on neuronal connectivity from seed to target, or
 - □ Neural connectivity from seed to target on condition effect

Network-Based Modeling: a toy example

• A network with two regions: both contemporaneous and delayed



- Within-region effects: lagged correlation
- Cross-regions effects: both instantaneous and lagged

$$x_1(t) = c_1 + \alpha_{120} x_2(t) + \alpha_{111} x_1(t-1) + \alpha_{121} x_2(t-1) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{210} x_1(t) + \alpha_{211} x_1(t-1) + \alpha_{221} x_2(t-1) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - Estimate and make inferences about the connections (α values)?

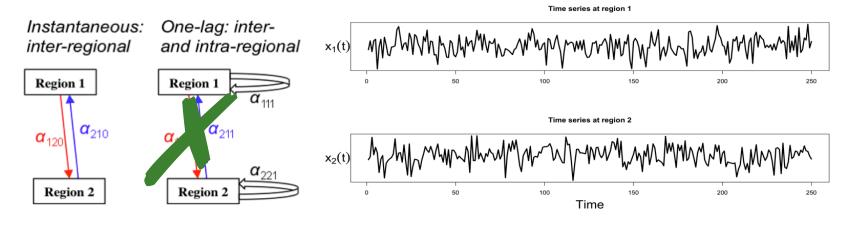
Structure Equation Modeling (SEM): a toy example

- A network with two regions: no delayed effects
 - □ No within-region effects: no lagged effects no temporal correlation!
 - Cross-region effects: instantaneous correlation only; no lagged effects

$$x_{1}(t) = c_{1} + \alpha_{120} x_{2}(t) + \varepsilon_{1}(t)$$

$$x_{2}(t) = c_{2} + \alpha_{210} x_{1}(t) + \varepsilon_{2}(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - Estimate and make inferences about the α values?



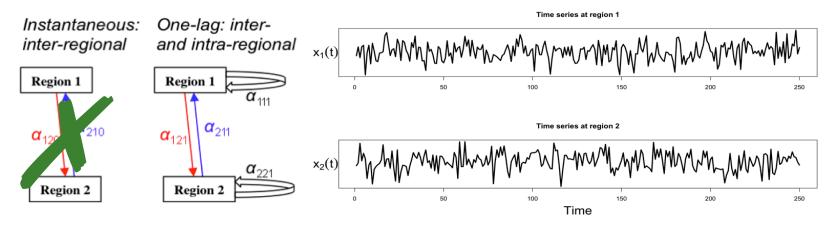
Vector Autoregressive (VAR) Modeling: a toy example

- A network with two regions: no contemporaneous effects
 - □ Within-region effects: lagged effects
 - Cross-regions effects: lagged effects only; no instantaneous effects

$$x_1(t) = c_1 + \alpha_{111} x_1(t-1) + \alpha_{121} x_2(t-1) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{211} x_1(t-1) + \alpha_{221} x_2(t-1) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - \Box Estimate and make inferences about the α values?

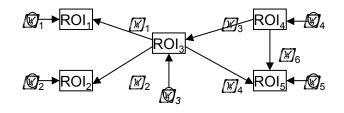


Structure Equation Modeling (SEM) or Path Analysis

- General model for a network of *n* regions $X^*(t) = A_0 X^*(t) + \varepsilon(t)$
 - Only consider instantaneous effects; assumes no delayed effects
 - Data centered around mean; if possible, remove all confounding effects
 - □ Parameters in A_0 code for cross-region path strength; zero diagonals
 - $\Box \quad \mathcal{E}(t) \sim N(0, \Psi), \Psi$: diagonal matrix (interregional correlations: A_0)
- Solving SEM: guess directional connections based on correlations
 - Compare covariance matrix from data,, X'X, with the one from the model

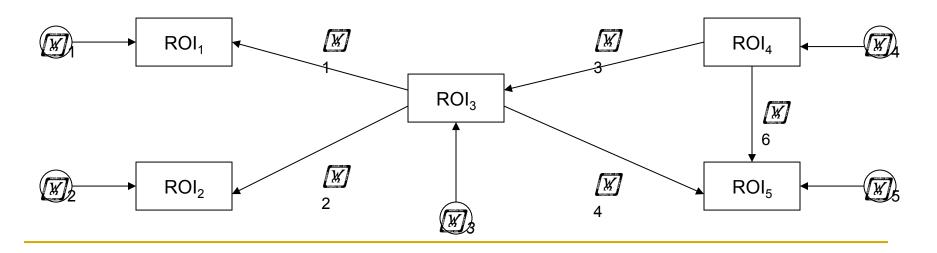
$$\Sigma = (I - A_0)^{-1} \varepsilon \varepsilon^T (I - A_0)^{-T} = (I - A_0)^{-1} \Psi (I - A_0)^{-T}$$

- One problem: can't solve SEM if all parameters in A_0 are unknown!
 - Totally n(n+1)/2 simultaneous equations; $n(n-1)+n=n^2$ unknowns!
 - Can only allow at most n(n-1)/2 paths, half of the off-diagonals
 - Fix the rest paths (at least n(n-1)/2) to 0 or known values



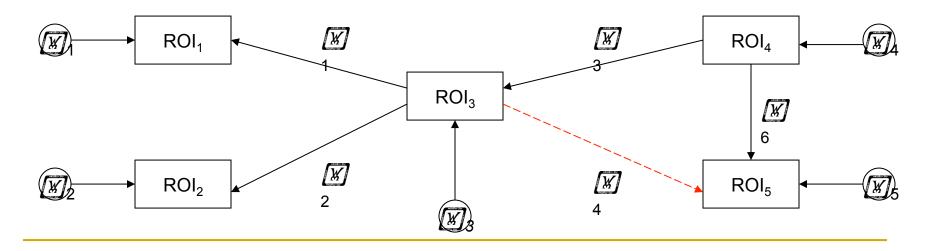
SEM: Model Validation

- Null hypothesis H_0 : It's a good model about instantaneous network
 - □ Knowing directional connectivity btw ROIs, does data support model?
 - Want to see model (H_0) not rejected
 - $\chi^2(n(n-1)/2-k)$ -test: badness-of-fit
 - Fit indices (AIC, CFI, GFI,): balance between optimization and model complexity
 - □ Input: model specification, covariance/correlation matrix, etc.
 - If H_0 is **not** rejected, estimate path strengths



SEM: Model Comparison and Search

- Comparing two nested models through $\chi^2(1)$ -test
 - For example, not sure about one specific path
- Search all possible models
 - □ Sounds appealing: often seen in literature
 - Deroblematic: data-driven vs. theory-based
 - □ Learn from data, and don't let data be your master!



SEM: Serious Problems

- Aaron Levenstein: Models are like bikini!
- Correlations as input in SEM: popular practice
 - Usually practiced in social science studies for scaling issues
 - □ Save DFs in FMRI data analysis
 - Path coefficients not interpretable
 - Can't make statistical inferences: *t*-stat and CI, if provided, are incorrect
- Assumption of no delayed effects
 - Within-region temporal correlations ignored
 - Cross-regions: delayed interactions ignored
- Data preprocessing: Have to remove all confounding effects
- Individual subjects vs. group
 - How to combine multiple multiple subjects
 - Fixed vs. random-effects analysis

Vector Autoregression (VAR)

- General model for a network of *n* regions VAR(*p*)

 - Only focus on lagged effects: Current state depends linearly on history
 - Instantaneous effects modeled, but left in residuals as effects of no interest
 - Confounding (exogenous) effects can be incorporated as part of the model
 - Slow drift, head motion, physiological confounds, time breaks, conditions of no interest
 - Unlike SEM, only minimal pre-processing needed (slice timing + motion correction)
 - Parameters in A_i code for cross-region path strength: Meaning of path coefficients
 - Assumptions
 - Linearity; Stationarity/invariance: mean, variance, and auto-covariance
 - $\mathcal{E}(t) \sim N(0, \Psi), \Psi$: not diagonal matrix (positive definite contemporaneous covariance); no serial correlation in individual residual time series
- Rationale for VAR(p)
 - **Response to stimuli does not occur simultaneously across brain: latency**
 - However, is data time resolution fine enough with TR = 2 sec???

Solving VAR

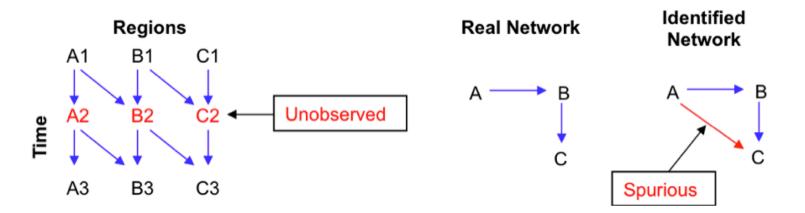
- Model $X(t) = A_1 X(t-1) + \ldots + A_p X(t-p) + \mathbf{c}_1 z_1(t) + \ldots + \mathbf{c}_q z_q(t) + \boldsymbol{\varepsilon}(t)$
 - Order selection with 4 criteria (1st two tend to overestimate)
 - AIC: Akaike Information Criterion
 - FPE: Final Prediction Error
 - HQ: Hannan-Quinn
 - SC: Schwartz Criterion
- Solve VAR with OLS
 - No need to specify connections as in SEM
 - Obtain estimates of all elements in A_i , and make statistical inferences based on *t*-statistic for each path
 - **Data driven** instead of model validation?
 - Model tuning when some covariates are not significant
- VAR as a seed-based analysis
 - Bivariate autogression: use seed to search for regions that may form a network with the seed
 - **3dGC** (vs. 1dGC): should have been called 3dVAR (vs. 1dVAR)

VAR Model Quality Check

- Stationarity: VAR(p) $Y(t) = \mathbf{\alpha} + A_1 Y(t-1) + \ldots + A_p Y(t-p) + \mathbf{\varepsilon}(t)$
 - Check characteristic polynomial $\det(I_n A_1 z \dots A_p z^p) \neq 0$ for $|z| \leq 1$
- Residuals normality test
 - Gaussian process: Jarque-Bera test (dependent on variable order)
 - Skewness (symmetric or tilted?)
 - □ Kurtosis (leptokurtic or spread-out?)
- Residual autocorrelation
 - Portmanteau test (asymptotic and adjusted)
 - Breusch-Godfrey LM test
 - \Box Edgerton-Shukur F test
- Autoregressive conditional heteroskedasticity (ARCH)
 - Time-varying volatility
- Structural stability/stationarity detection
 - □ Is there any structural change in the data?
 - Based on residuals or path coefficients

VAR: Serious Problems

- Data sampling rate: time resolution
 - Cross-region interactions occur probably at ms level, but usually TR = 2s in FMRI time series (TR could be 100-200 ms with single-slice scanning)
 - □ Will VAR(1) catch the real lagged effects across regions???



- With coarse sampling, the instantaneous effects will more likely reveal the real network than the lagged effects
- Endogeneity problem or over-fitting: data driven

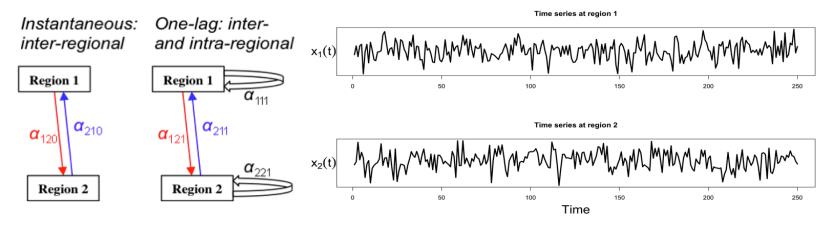
Network-Based Modeling: a toy example

- A network with two regions: both contemporaneous and delayed
 - Within-region effects: lagged correlation
 - Cross-regions effects: both instantaneous and lagged

$$x_1(t) = c_1 + \alpha_{120} x_2(t) + \alpha_{111} x_1(t-1) + \alpha_{121} x_2(t-1) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{210} x_1(t) + \alpha_{211} x_1(t-1) + \alpha_{221} x_2(t-1) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - Estimate and make inferences about the α values?



One World United Under One Flag!

- Why don't we just combine SEM and VAR?
 - No reason we shouldn't or cannot
 - □ Called Structural Vector Autoregression (SVAR)!
 - Accounts for variability from both instantaneous and lagged effects
 - Improves model quality and statistical power
 - Incorporates covariates, and involves minimum pre-processing
- General SVAR(p) model
 - $= X(t) = A_0 X(t) + A_1 X(t-1) + \dots + A_p X(t-p) + \mathbf{c}_1 z_1(t) + \dots + \mathbf{c}_q z_q(t) + B \boldsymbol{\varepsilon}(t)$
 - \square A_0 represents the cross-region instantaneous effects
 - Diagonals are 0
 - A_i represents both within-region and cross-region lagged effects
 - **D** B is a diagonal matrix so that $\boldsymbol{\varepsilon}(t) \sim N(0, I)$
 - All the cross-region instantaneous effects are contained in A_0

Solving SVAR

$$X(t) = A_0 X(t) + A_1 X(t-1) + \ldots + A_p X(t-p) + \mathbf{c}_1 \chi_1(t) + \ldots + \mathbf{c}_q \chi_q(t) + B \boldsymbol{\varepsilon}(t)$$

• Equivalence to a reduced VAR(*p*) model

 $X(t) = A_1^* X(t-1) + \dots + A_p^* X(t-p) + \mathbf{c}_1^* z_1(t) + \dots + \mathbf{c}_q^* z_q(t) + \varepsilon^*(t)$

$$A_{i}^{*} = (I - A_{0})^{-1} A_{i}, \mathbf{c}_{j}^{*} = (I - A_{0})^{-1} \mathbf{c}_{j}, \mathbf{M}^{*}(t) = (I - A_{0})^{-1} B \mathbf{\varepsilon} (t)$$

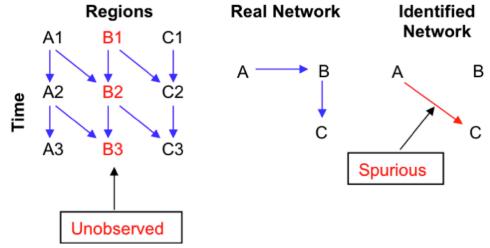
- Solve the reduced VAR(p), obtain estimates of A_i^* , \mathbf{c}_j^* , and residual covariance $\mathbf{W}_{\mathbf{W}^*}$
- □ Solve $(I A_0)^{-1}BB(I A_0)^{-T} = \mathbb{W}_{\mathbb{W}^*}$ through ML. Similar to SEM:
 - Totally n(n+1)/2 simultaneous equations; $n(n-1)+n=n^2$ unknowns!
 - Can only allow at most n(n-1)/2 paths in A_0 , half of the off-diagonals
 - Have to fix the rest paths (at least n(n-1)/2) to 0 or known values
 - Model validation, comparison, and search for the instantaneous network A_0
- Finally update A_i (and \mathbf{c}_j) for the lagged effects
- AFNI program 1dSVAR.R

What can we do with 1dSVAR

- If time resolution is too coarse (*e.g.*, FMRI): Model validation/ comparison/search of the instantaneous network while accounting for the lagged effects
 - □ Knowing directional connectivity btw ROIs, does data support model?
 - □ Want to see model (H_0) not rejected
 - $\chi^2(n(n-1)/2-k)$ -test: badness-of-fit
 - Fit indices (AIC, CFI, GFI,): balance between optimization and model complexity
 - If H_0 is **not** rejected, what are the path strengths?
- If time resolution is good (e.g., MEG/EEG)
 - Both instantaneous and lagged effects are of interest?
- SEM+VAR
 - Lagged effects: data-driven; safe but inefficient (over-fitting)
 - □ Instantaneous effects: theory/hypothesis-based; powerful but risky
 - Various possibilities: *e.g.*, borrow DFs for instantaneous effects from lagged effects?
- Group analysis: MEMA

SVAR: caveats

- Assumptions (stationarity, linearity, Gaussian residuals, no serial correlations in residuals, etc.)
- Accurate ROI selection: If an essential region is missing



- Sensitive to lags
- Confounding latency due to HDR variability and vascular confounds
- Overfitting
- Model comparison/search
 - Learn from data, but don't let data be your teacher!

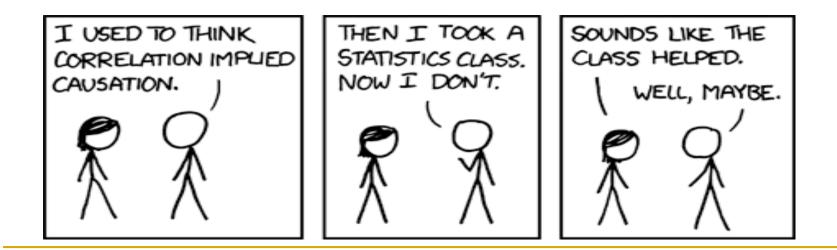
SVAR applied to FMRI

Resting state

- □ Ideal situation: no cut and paste involved
- Physiological data maybe essential?
- Block experiments
 - Duration \geq 5 seconds?
 - Extraction via cut and paste
 - Important especially when handling confounding effects
 - Tricky: where to cut especially when blocks not well-separated?
- Event-related design
 - With rapid event-related, might not need to cut and paste (at least impractical)
 - Other tasks/conditions as confounding effects

SVAR: Why not Granger Causality

- Causality: philosophical and physiological/anatomical; effective?
- Granger causality: A Granger causes B if time series at A provides statistically significant information about time series at B at some time delays (order)
 - Causes must temporally precede effects
 - □ Causality can be inferred from an *F* or *P*-test that shows the amount of variability of overall lagged effects each connection accounts for
- Both instantaneous and lagged effects are modeled in SVAR



Network-based Analysis in AFNI

- Exploratory: ROI searching with **3dGC**
 - Seed vs. rest of brain
 - Bivariate model
 - □ 3 paths: seed to target, target to seed, and self-effect
 - Group analysis with **3dMEMA** or **3dttest**
- Path strength significance testing in network: **1dSVAR**
 - Pre-selected ROIs
 - SVAR model
 - Multiple comparisons issue
 - Group analysis
 - path coefficients only
 - path coefficients + standard error
 - *F*-statistic (BrainVoyager)

Linear Dynamic System for fMRI (LDSf)

- Features: Further development from DCM
 - Deterministic vs stochastic system: capture variability across trials
 - Constant vs varying across time
 - One vs mixture of models
- Literature
 - Smith et al., Front. Syst. Neurosci. (2012) Vol 5:104
 - □ Smith et al., NeuroImage 52 (2010) 1027-1040
- Regarding Matlab package LDSf (Jason Smith), contact
 Barry Horwitz (horwitzb@mail.nih.gov)

Keep in mind

- Statisticians, like artists, have the bad habit of falling in love with their models. (George Box)
- If you torture the data enough, nature will always confess. (Ronald Coase)
- Models are bikinis!