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Outline

+ Why Function+Structure

+ DWI and DTl (— local structures)
- Brief diffusion imaging basics and parameters
- Role of noise — DTI parameter uncertainty

+ Using tractography (— estimate extended structures)
- goals of tracking.

- algorithms/properties

- final thoughts on interpretation



FMRI: GM Networks
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FMRI: GM Networks

Functional connectivity
networks of distinct GM
regions, from BOLD
time series during task
or rest/no task.

+ Quantify GM properties:
ALFF, fALFF, RSFA, o,
ReHo, GMV, eftc.

+ Quantify network props:
seedbased correlation,
ICA, graph theoretical
measures, efc.
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Sidenote:

Mention of a few of the FMRI tools



Functional processing, 3

For {RS- | TB-}FMRI: correlation matrices

+ calculated post-processing, input time series data + network maps
- can be multi-brick maps, 1 network per brick
- calculate average time series per ROI, correlation among network ROls
- outputs correlation matrix/matrices, (can also do Fisher-Z transform output)

++ Can also calculate ReHo, ALFF, fALFF, etc.
in FATCAT/AFNI.



DTIl: WM structure

DTl-based parameters characterize some local structural
properties and also show the presence of spatially-extended
WM structures.

Can quantify structural
(esp. WM) properties
using:

FA, MD, RD, L1, etc.

Can investigate (and
Quantify?) network
relations with:
tractography (x10° mm?/s)




Structural connections in the brain

The (schematic) structure of neurons

Dendrite Axon
tearminal
button

Soma (cell body)

Mucleus

Myelin sheath

Extended white matter fibers,
often organized in bundles




Structure + Function

Simple example:

GM ROls
network:
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Structure + Function

Simple example:

GM ROls
network:

Somato- Dorsal Control Default

motor | aftention mode Raichle (2010, TiCS)

Associated WM ROIs

Our goal for tractography->
estimate likely/probable locations of WM associated with GM,
and relate ROI quantities with functional/GM properties



Combining FC and SC

+ How to combine quantitatively’?
- FMRI has measures of functional and
(e.g., correlation, network parameters)
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Combining FC and SC

+ How to combine quantitatively’?
- FMRI has measures of functional connectivity and 'strength’
(e.g., correlation, network parameters)

- DTI tracking between GM ROls-- we can have
'structural connectivity' strength, e.g., in terms of # of fibers?
-> will discuss more, but think this is not good road to be on
- how about:
find likely areas where WM is connecting GM regions,
and quantify properties in those regions (FA, MD, proton
density from structural images...)

— FC+SC provides sets of complementary quantities
to describe a network, and can be further combined
with behavioral/other measures (statistical modeling).




Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:
+ determining networks from FMRI (or other) data;
+ finding correlations and local properties of functional networks;
+ turning GM ROls into targets for tractography;
+ doing reasonable tractography to find WM ROls;
+ estimating stats on WM ROls...




Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:
+ determining networks from FMRI (or other) data;
+ finding correlations and local properties of functional networks;
+ turning GM ROls into targets for tractography;
+ doing reasonable tractography to find WM ROQOIs;
+ estimating stats on WM ROls...

FATCAT: Functional And Tractographic Connectivity Analysis Toolbox
(Taylor & Saad, 2013), available in AFNI with demo data+scripts.

*picture from google search, not from/of either author



FMRI scan DWI scan

1dDW_Grad_o_Mat,
@GradFlipTest

Preprocessing, motion correction,
filtering, smoothing, registration, eftc.

InstaCorr

3dRSFC

3dReHo| FMRItime
| series data

DWI data

DT estimation
(3dDWiItoDT)

e.g. correlation,

3dNetCorr GLM, ICA

Connectivity maps Set of DTs and

parameters
3dTrackiD
(DET),
InstaTract

3dMatch,
3dROIMaker

3dDWuUncert

Networks of GM
(and 'expanded’
GM) ROls

3dNetCorr

DT uncertainty
measures

3dTrackID
(MINIP, PROB)

Voxelwise
parametric
FC maps

Correlation
(FC) matrices

Voxelwise

- Networks of WM ROls,
statistics

tracts, and SC
matrices

Subject scores
and group
characteristics

fat_mat_sel.py,
suma

Multimodal
2D ('afni’) and
3D (‘suma’)
visualization

InstaTract

fat_lat| csv.py

Matrix (FC,
SC, etc.)
visualization

Latent suma, fat_mat_sel.py

variables
from factor
analysis

fat_mvm| prep.py

fat_mvm_

scripterpy = Constructed MVM model

of MRI parameters and
subject variables

Combined table of either
FC or SC matrices with
group data

3dMVM

Modeling results: 1) Network-level ANOVA
and 2) ROIl-level post hoc GLMs

Schematic for combining
FMRI and DTlI-tractography
via FATCAT

(Taylor, Chen, Cox & Saad, 20157?)
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Integrate with existing
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Be “simple” to implement

Be network-oriented,
when possible

Be efficient

Be flexible and able to
grow

(Taylor, Chen, Cox & Saad, 20157?)
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What is diffusion tensor imaging?

DTl is a particular kind of magnetic resonance imaging (MRI)

Diffusion: random motion of particles, tending to spread out

— here, hydrogen atoms in aqueous brain tissue

Tensor: a mathematical object (a matrix) to store information

— here, quantifying particle spread in all directions

Imaging: quantifying brain properties

— here, esp. for white matter




The DTI model:
Assumptions and relation to WM properties



Diffusion as environmental marker

Diffusion: random (Brownian) motion of particles — mixing or spreading

Ex: unstirred, steeping tea (in a large cup):
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Local Structure via Diffusion MRI

(In brief)

1) Random motion of molecules affected by local structures

2) Statistical motion measured using diffusion weighted MRI

3) Bulk features of local structure approximated with various reconstruction
models, mainly grouped by number of major structure directions/voxel:

+ one direction:
DTI (Diffusion Tensor Imaging)

+ >=1 direction:
HARDI (High Angular Resolution Diffusion Imaging)
Qball, DSI, ODFs, ball-and-stick, multi-tensor, CSD, ...




Diffusion in MRI

Mathematical properties
of the matrix/tensor:

(D11 D, D19
D=| D,; Dy, D,
\_D31 D35 Ds3)

Having: 3 eigenvectors: e,
3 eigenvalues: A

- Real-valued
- Positive definite (r'Dr > 0)
De, =\e;, A\>0
- Symmetric (D4, = D,,, etc),
6 independent values



Diffusion in MRI

Mathematical properties Geometrically, this describes
of the matrix/tensor: I an ellipsoid surface:
\
/D11 Dy3 Dss C =Dy x? + D,y,y? + Dys7% +
D =| Dy Dy Dy 2(D4oxy + Dy3xz + D,,yz)

D31 D3 D3y
isotropic case
Having: 3 eigenvectors: e, M=A= N

3 eigenvalues: A

- Real-valued
- Positive definite (r'Dr > 0) . .
anisotropic case i
Dei =}¥iei, }\«i > O 7¥1 > }¥2 > }\-3 3] L
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- Symmetric (D4, = D,,, etc),
6 independent values



DTI: ellipsoids

Important mathematical properties of the diffusion tensor:

+ Help to picture diffusion model:
tensor D — ellipsoid surface

eigenvectors — orientation in space \
eigenvalues — 'pointiness’ + 'size’ -
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DTI: ellipsoids

Important mathematical properties of the diffusion tensor:

+ Help to picture diffusion model: ’
tensor D — ellipsoid surface ‘
eigenvectors — orientation in space \
eigenvalues — 'pointiness’ + 'size' -
+ Determine the minimum number of \Q., D, D;J)
DWIs measures needed (6 + baseline) D,\D,, D,.
\D31 D53 D33/

+ Determine much of the processing and
noise minimization steps
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“Big 5" DTI ellipsoid parameters

Main quantities of diffusion (motion) surface

first eigenvalue, L1 first eigenvector, e,
(= )\l' Darallel/axial diffusivity, ADl (DT orientation In space)
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Fractional anisotropy, FA Mean diffusivity, MD
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“Big 5" DTI ellipsoid parameters

Main quantities of diffusion (motion) surface

first eigenvalue, L1

(=_A,. parallel/axial diffusivity, AD)

1

©

first eigenvector, e,
(DT orientation in space)

< &

Fractional anisotropy, FA
(stdev of eigenvalues)

e —

FA=O FA=1

Mean diffusivity, MD
(mean of eigenvalues)

R -
MD, > MD,

Radial diffusivity, RD
(= ()‘g+)‘§)/2)

RD, > RD,
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Cartoon examples: white matter < FA

:GM vs WM WM bundle organization
y £ ¥ FA

AT

WM bundle density WM maturation (myelination)

///




Interpreting D T1 parameters

General literature:
FA: measure of fiber bundle coherence and myelination
- In adults, FA>0.2 is proxy for WM
MD, L1, RD: local density of structure
: orientation of major bundles




Interpreting D T1 parameters

General literature:
FA: measure of fiber bundle coherence and myelination
- In adults, FA>0.2 is proxy for WM
MD, L1, RD: local density of structure
: orientation of major bundles

Cautionary notes:

e Degeneracies of structural interpretations
e Changes in myelination may have small effects on FA
e \WM bundle diameter << voxel size

- don't know location/multiplicity of underlying structures
e More to diffusion than structure-- e.qg., fluid properties
e Noise, distortions, etc. In measures



Acquiring DTI data:
diffusion weighted gradients in MRI



Diffusion weighted imaging

For a given voxel, observe relative diffusion along a given
3D spatial orientation (gradient)

DW gradient
g9,=(9,9,9,)
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Diffusion weighted imaging

For a given voxel, observe relative diffusion along a given
3D spatial orientation (gradient)

DV gradient MR signal is attenuated by diffusion
9, = (9, 9, 9,) throughout the voxel in that direction:

‘ S=8 e?970s

— ellipsoid equation
of diffusion surface:
C=r"D'r.




Diffusion weighted imaging

For a given voxel, observe relative diffusion along a given
3D spatial orientation (gradient)

DW gradient diffusion

g=09,9,9,) motion
ellipsoid:

s C,=r'D'r.
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Diffusion weighted imaging

For a given voxel, observe relative diffusion along a given
3D spatial orientation (gradient)

DW gradient diffusion
g=09,9,9,) motion
ellipsoid:
C,=r'D'r.
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Diffusion weighted imaging

For a given voxel, observe relative diffusion along a given
3D spatial orientation (gradient)

DW gradient diffusion
g=09,9,9,) motion
ellipsoid:
C,=rD'r.

Individual points — Fit ellipsoid surface
Individual signals — Solve for D



Sidenote: what DWIs look like

Unweighted Diffusion weighted images
reference (example: b=1000 s/mm?)
b=0 s/mm? — =




Sidenote: what DWIs look like

Unweighted Diffusion weighted images
reference (example: b=1000 s/mm?)
b=0 s/mm? — = ~

(Each DWI has a
different brightness
pattern: viewing
structures from
different angles.)



Noise in DW signals

MRI signals have additive noise
S=S,e®9' 0o +¢
where ¢ is (Rician) noise.
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Noise in DW signals

MRI signals have additive noise
S=S,e®9' 0o +¢
where ¢ is (Rician) noise.

— Leads to errors in surface fit, equivalent to
rotations and rescalings of ellipsoids:

Leads to standard:
+ 30 DWs (~12 clinical)
+ repetitions of b=0
+ DW b chosen by:
MD * b=0.84
+ nonlinear fitting

'Un-noisy' vs perturbed/noisy fit



Now discuss using local structure information
to generate/estimate nonlocal structures:
WM tractography



Tractography in brief

old, invasive

— new(er), theoretical

stain and preserve brain, get some
Idea of structure... non-ideal:

brain physiology changes postmortem,
also ‘mortem’ aspect

TAPETUM

(images from lowa Virtual Hospital
and Bammer et al. 2003)



Local DTs — extended tracts

Field of local diffusion parameters
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Local DTs — extended tracts

e

Field of local diffusion parameters Connect to form extended tracts



Tractography: connecting the brain

(looking at you) (looking downward)




Tractography

Estimate WM structure (fiber tract locations)

estimate spatial
extents of WM ‘tracts’
in Vivo

ellipsoid measures  some kind of algorithm
(~smoothing of for connecting
real structures)

(images from Bammer et al. 2003)



Diversity In tractography

Series of (mostly) logical, simple rules for estimating tracts

— many methods/algorithms and kinds of parameters to choose:
(Mori et al., 1999; Conturo et al. 1999; Weinstein et al. 1999;
Basser et al. 2000; Poupon et al. 2001; Mangin et al. 2002;
Lazar et al. 2003; Taylor et al. 2012; ....)

Propagation via, e.g.:
smoothing diffusion vectors and solving differential equations;
deflecting propagating tracts; allowing tracts themselves to
‘diffuse’; solving for global minimum energy of connections...

To date, no single 'best' algorithm, work continues:
- histology can’t give perfect answers.
- some test models (phantoms) exist, but not brain-complex



So, first question for using tractography in a study:

Which algorithm to choose?



Popular technique: FACT

« FACT = Fiber Assessment by Continuous Tracking (Mori
et al. 1999) [used more than 200 times in past 1.5 yrs]
— Start in voxel with FA>0.2 (proxy definition for WM)
— Follow 1st eigenvector/greatest diffusion direction to next voxel
— Continue If FA stays>0.2 and angle between e,s is <45 deg

Ex.: FACT (in 2D) FACT (in 3D)

Very simple, but actually, gives some decent results, e.g.many known
tracts
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Improving FACT->

- Start by thinking: what properties a ‘good’ algorithm should
have?

1)

2)

3)
4)

Should be independent of coordinate axes (i.e., results invariant to
rotation of data set)

Should improve with spatial resolution (convergence in resolution)
e.g., like in calculus, diagonals are better approximated with small grid steps

Should improve with SNR (converge in SNR)
Should not have strong instability with or dependence on noise



Improving FACT->

- Start by thinking: what properties a ‘good’ algorithm should

have?

1) Should be independent of coordinate axes (i.e., results invariant to
rotation of data set)

2) Should improve with spatial resolution (convergence in resolution)
e.g., like in calculus, diagonals are better approximated with small grid steps

3) Should improve with SNR (converge in SNR)
4) Should not have strong instability with or dependence on noise

Posit: including diagonal (ID) '
propagation helps 1 and 4,
check about other props.




FACTID (FACT Including Diagonals):

+ Utilize simple check for diagonals.

(2D) Schematic:

09006
N AN AN /N A

A S
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Propagate Test project  Accept diagonals Propagate

(Taylor, Cho, Lin & Biswal, 2012)



FACTID (FACT Including Diagonals):

+ Utilize simple check for diagonals.

(2D) Schematic:

(1 (7,
N N

A S
N IN AN AN

Propagate Test project  Accept diagonals

NB that in (3D) FACT, a single voxel has 6 neighbors for propagation,
while in FACTID, a voxel has 26 neighbors propagation.

(Taylor, Cho, Lin & Biswal, 2012)



Test 1: Rotational invariance

A test for consistency of results when axes of data have been rotated;
here, using data from a real subject (scan axes rotateqd)

FACTID

(0,0,10)

(0,0,40) (0,40,40)

S (000)

oy (0,0,10)

(0,0,20)

(0,0,40) (0,40,40)

(Taylor, Cho, Lin & Biswal, 2012)




Test 3: Noise sensitivity

Original

Original

SNR =10
FACTID DTI Query- RK4
(Taylor, Cho, Lin & Biswal, 2012)




Test 5: Phantom Set

Fillard etal. |A

‘ANSWER”
(2011, NI)
test phantom
FACT FACTID
B 11 1e 8 7 1 10 3 y
12 ‘*"L_ 9 )

3
13 ‘- B 4 (Taylor, Cho, Lin
I||—:‘ 15 Y & Biswal, 2012)

e.g. compare




In addition to tracking algorithms,
(great) care also has to be taken in
pre-processing the diffusion data.



Importance of being processed (in earnest)

NB words of wisdom from wikipedia GIGO entry:

On two occasions | have been asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come

out?" ...  am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

—Charles Babbage, Passages from the Life of a Philosopher




Importance of being processed (in earnest)

NB words of wisdom from wikipedia GIGO entry:

On two occasions | have been asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come

out?" ...  am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

—Charles Babbage, Passages from the Life of a Philosopher

In addition to the tracking algorithm, the quality of data
acquisition and preparation matter quite a bit
— see the TORTOISE tool (Pierpaoli et al., 2010)
https://science.nichd.nih.gov/confluence/display/nihpd/ TORTOISE



Importance of being processed (in earnest)

ORTOISEd unprocessed

= R N
Data from the morning session, same target ROI in brainstem.
Consider reach of tracts, symmetry, physiology, etc.



Cinematic side note:




Known Challenges for Tracking

+ Axon diameters are of order a few micrometers
+ MRI voxel size is of order millimeters

e

'\.—'A ® ::u‘;_ ‘,*.
‘. \,S- N S gJ‘mkH

(images of Eyewire data via NPR website)



Known Challenges for Tracking

+ Axon diameters are of order a few micrometers

+ MRI voxel size is of order millimeters

g, RGeS en, | gl
RN feasi il

(images of Eyewire data via NPR website)

+ WM regions are tightly packed, with many connections and
potentially complicated sub-voxel scale structure

Crossing/kissing fibers can:
- Lower FA (stop tracking)
- Redirect (or not) tracking
iIncorrectly.




Achievements of Tracking

+ Reproduction of many known pathways
+ In vivo vs post-mortem information

(slf/unc/
« ifo)

SPLENIUM

(Bammer et al., 2003)



Light at the end of the tunnel?

T S e
%—4 s

Tractography seems useful and logically consistent as follows:

1) GM ROQls are connected by WM skeleton.

2) We can use tracking to estimate and highlight WM likely to be
associated with GM ROls.

3) One can then use DTI parameters in the tracked 'WM ROIs' for
guantitative comparisons (or use ROIs as masks for other data).

4) Tractography can parcellate the WM skeleton based on the
subject's own data.

5) Avoid interpreting reconstructed tracks to represent literal,
underlying fibers.



Applying tractography



Structure + Function

Simple example:

FMRI provides:
maps of (GM) regions working together

GM ROls
network:

Somato- Dorsal Control Default

motor attention mode Raichle (2010, TiCS)
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Structure + Function

Simple example:

FMRI provides:
maps of (GM) regions working together

GM ROls
network:

Somato- Dorsal Control Default

motor | aftention mode Raichle (2010, TiCS)

Associated WM ROIs

Our goal for tractography->
estimate likely/probable locations of WM associated with GM,
and relate ROI quantities with functional/GM properties



Example: Tractographic selections of WM

Z>0 (map) Z>2.3 (mask)

1) Start with FMRI:
— threshold to obtain
networks of GM ROls




Example: Tractographic selections of WM

2) Use DTlI-tractography to

find likely location of WM
assoclated with these 'targets'

o)t P [ frec]

(Deterministic tracking using publicly available AFNI-FATCAT software)

Colerl ]l |




Example: Probabilistic tractography

More robust tracking method (many Monte Carlo iterations)

— 'most likely' locations of WM

orange = GM ROls
blue = WM estimates
(via AFNI-FATCAT)




Brings up next question for doing tractography:

How do we estimate tensor parameter
noise/uncertainty?



Noise in DW signals

MRI signals have additive noise
S=S,e®9' 0o +¢

where ¢ is (Rician) noise, with the effect of leading to errors in
surface fit, equivalent to rotations and rescalings of ellipsoids:

' h \\\ / //””Wrm/rr
L] P > ' ' |
| N e -
- P - ’ “
/ - n \ / - ' /
/ ~ -~ : \ / |
- ' ) l ’
* / l
P ¢ y, / . A : l !
| -~
L4 " ~~
, ' ~ ~
L4
’
L d

'Un-noisy' vs perturbed/noisy fit

EPI distortions, subject motion, et al. also warp ellipsoids.



DTI Uncertainty

« We use jackknife resampling (e.g., Efron 1982)

Other studies have used bootstrapping (e.g., Jones 2003), or
theoretical estimates (Jeong & Anderson 2008)

Jackknifing is efficient (just need one data set unlike bootstrap),
simpler than theory, since, e.g., SNR is likely not constant across
voxels



Jackknifing

* Basically, take M acquisitions
e.g.,M=12




Jackknifing

* Basically, take M acquisitions
e Randomly select M; < M to use

to calculate quantity of interest
— standard nonlinear fits

e.g.,M=12
M;=9

Dy Dy, Dyy Dy, Dy Dys] = ...



Jackknifing

Basically, take M acquisitions
Randomly select M, < M to use

to calculate quantity of interest
— standard nonlinear fits

Repeatedly subsample large
number (~103-104 times)

e.g.,M=12
M;=9

N

)
D23
)

B
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Jackknifing

Basically, take M acquisitions

Randomly select M; < M to use e.g., M=12

. . M;=9

to calculate quantity of interest

— standard nonlinear fits
Repeatedly subsample large
number (~103-104 times)
Analyze distribution of values
for estimator (mean) and D, D,, D,
confidence interval D, D,, D,,

— sort/%iles Dll Dzz D33

* (not so efficient)
— 1f Gaussian, e.g. u+2o
* simple




Uncertainty estimation

estimates bias and o
of first eigenvector e, (main direction

of diffusion), based on how much it
could tip toward either e, or e

i |
> ,
- .
eZ

.... and the bias and o of FA

1) Obtain M DWis.
' 1b) Estimate DT and

parameters from M DWis.
| 2) Make N, subsets
of M, DWIs.

It
\! |
{ I.

3) Estimate N, DTs.l

D,* D) .. D,*

4) Estimate set of
N, parameters.

{FA™ FAS, ..., FA "} {(Ae,)) ]} ...
lS) Find confidence

intervals.

97.5%

frequency




Uncertainty example

+ Can see difference in
e1 uncertainty along
e2 and e3

Standard deviation

+ Tissue-dependent
differences in FA
uncertainty




Mini-Probabillistic Tracking

+ Full probabilistic methods generate voxelwise brain maps without linear
track structure
+ 'Mini-probabilistic’ tracking performs a few extra iterations of' deterministic'
tracking on uncertainty-perturbed data sets

- track structure is retained,

- results generally exhibit more robust tracks and fewer false negatives

than deterministic tracking alone
- false positives tend to be isolated and visually apparent.

Deterministic (AND) with "-mini_prob 7'



Mini-Probabillistic Tracking

Deterministic vs mini-Probabilistic

Through
single ROI

AND logic
through
network, cf
with full-prob
results

(Taylor et al., 2014)



L ERLE

And thanks to collaborators:

UCT:

Ernesta M. Meintjes |
Alkathafi Alhamud
Chris Molteno
Fleur Warton
Mwape Mofya

CTLFASD Study:

Sandra W. Jacobson?ﬁ/ayne St.)
Joseph L. Jacobson (Wayne St.)
Andre van der Kouwe (Harvard/MGH)
Pia Wintermark (Montreal Children's)

AIMS:
Johan de Villiers

NJIT:

Bharat Biswal
Suril Gohel
Xin Di

NIMH/NIH:
Ziad Saad
Rick Reynolds
Gang Chen
Bob Cox
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Helen Mayberg
Justin Rajendra
Ki Sueng Choi
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