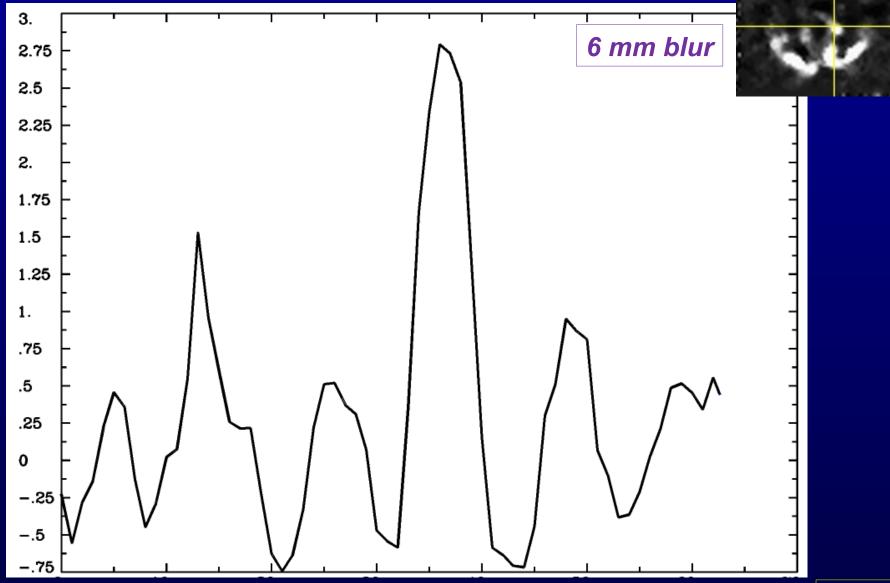
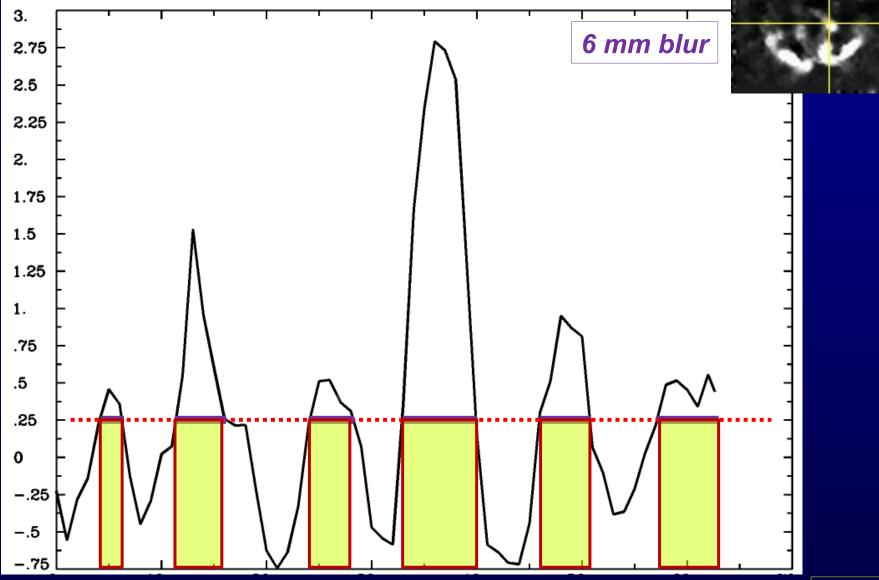

Equitable Thresholding And Clustering (ETAC)

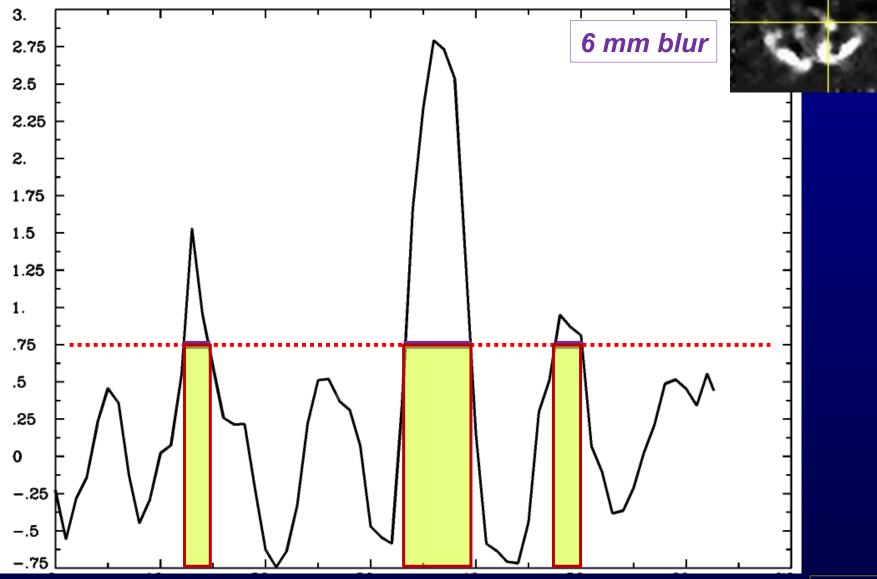
SSCC / NIMH / NIH / DHHS / USA / EARTH

https://afni.nimh.nih.gov

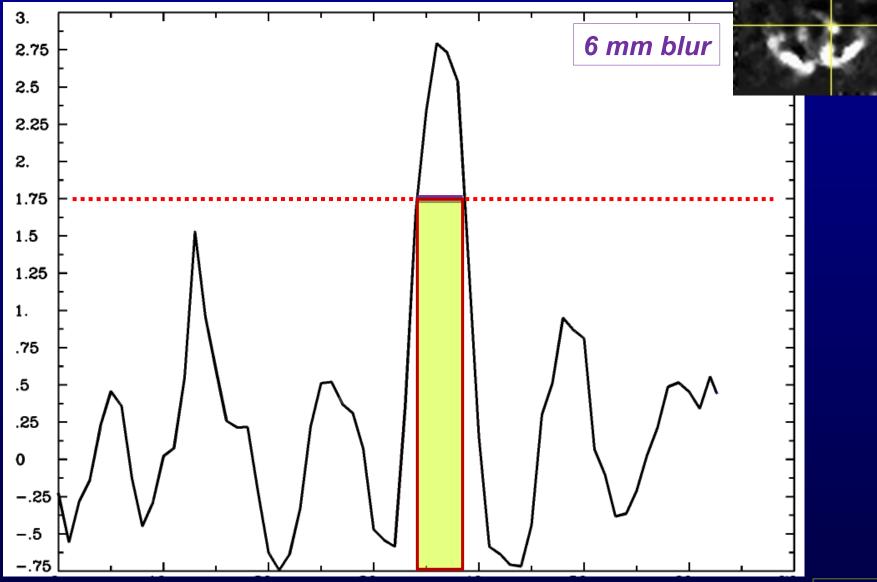
Voxel-Wise Group Analysis


- Do first level time series analysis on each subject's data separately
 - Transformed to common template (e.g., MNI)
 - Best with nonlinear transformation (3dQwarp)
 Can restrict analysis to dilated gray matter mask
- Second level group analysis on voxel β
 values = % signal change (*not* ROIs)
 - Can be as simple as *t*-tests (3dttest++)
 - Or a complicated model such as Linear Mixed Effects (3dLME), etc.


- Goal: control global False Positive Rate (FPR) – to 5% level (e.g.)
 - FPR = FWE = Family-Wise Error
 - = rate of errors across the family of voxel tests
 - "error" = when anything is found in noise-only data vs the null hypothesis (*i.e.*, no "activity")
- Different approach: to control the False
 Discovery Rate (FDR, voxel-wise)
 - = fraction of "discoveries" that are "errors"
 - Not what I'm going to talk about here
 - Difficult to allow for inter-voxel correlation in noise


- Voxel-wise thresholding on group *t*statistic is usually super conservative (to get global FPR≈5%)
 - Can estimate false non-discovery rate (FNDR of voxels) using adaptation of voxelwise FDR algorithm
 - Not highly accurate, nor widely used in FMRI
 - An algorithm for this estimate is hidden in AFNI
 - Typically 60-90% (or more)
 - Depends on number of subjects (*i.e.*, statistical power) figure above is for ≈20 subjects

- A Solution: form clusters of neighboring voxels, each above a lower (less strict) voxel-wise *t*-statistic (or *z*-statistic)
 - With a larger voxel-wise *p*-value (=smaller *t*)
- Then: threshold on cluster-size as well
 - Or some other cluster-FOM (Figure of Merit)
 - *e.g.*, Sum over cluster of voxel-wise z^2
 - Reject small/weak isolated clusters
 - Given voxel-wise *p*, adjust cluster-FOM threshold to get desired global FPR ⇒⇒…


- Double threshold method (voxel then cluster) can be weak (low power to detect)
- A Solution: use spatial blurring ≈ average nearby voxel β ("Coef") values together, in each subject, before group statistics
 - To reduce noise and reinforce commonality
 - To reduce effective number of independent statistical tests (but lose spatial resolution)
 - To select the *minimum* spatial scale of what we are hunting for

-11-

(Semi-) Arbitrary Choices

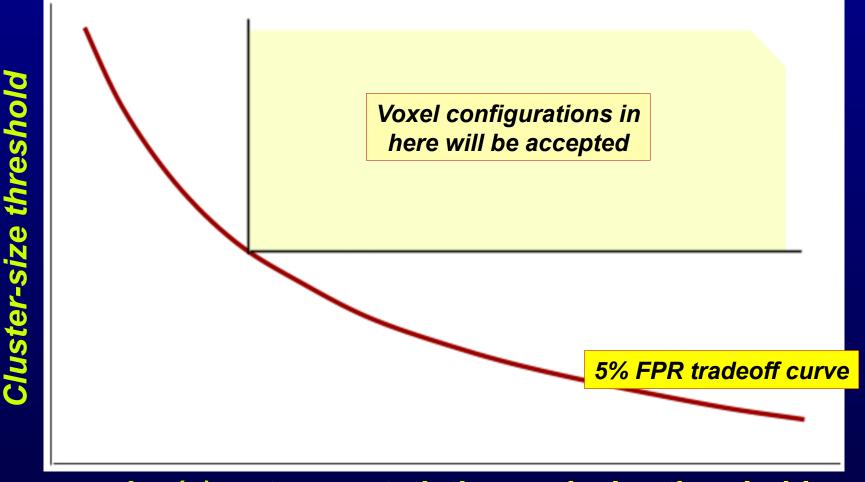
- I've mentioned two parameters that must be chosen by the researcher:
 - Voxel-wise *p*-value for first-level thresholding
 - Typical values range from 0.001 to 0.01
 - Amount of spatial blurring to add to data
 - Typical values range from 4 to 10 mm
- But there are no "best" values (B)
 - ETAC can rescue you! (from these choices) 😊

Old ClustSim - 1

- Spatial correlation of "noise" in FMRI data means no exact formula for cluster-FOM threshold, for a given *p* threshold
- So: Assume Gaussian-shape for spatial auto-correlation function (ACF) of noise
 - Fit Gaussian width parameter (Forman 1995)
 - Use approximate formula (SPM) or Monte-Carlo simulation (AFNI) to get cluster-size threshold
 - SPM method possible due to Gaussian ACF

Old ClustSim - 2

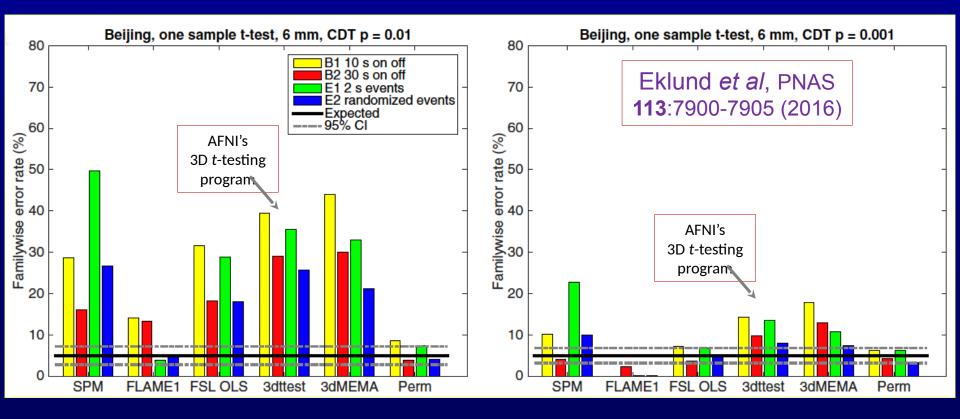
- 1) Generate random noise-only dataset with Gaussian ACF (with chosen FWHM)
- 2) Threshold at various per-voxel *p*-values
- 3) Find largest cluster *in brain mask*
- 4) Repeat steps 1-3 10,000+ times
- 5) For each per-voxel *p*-value, clustersize threshold is largest cluster size which occurs only in 5% (*e.g.*) of cases



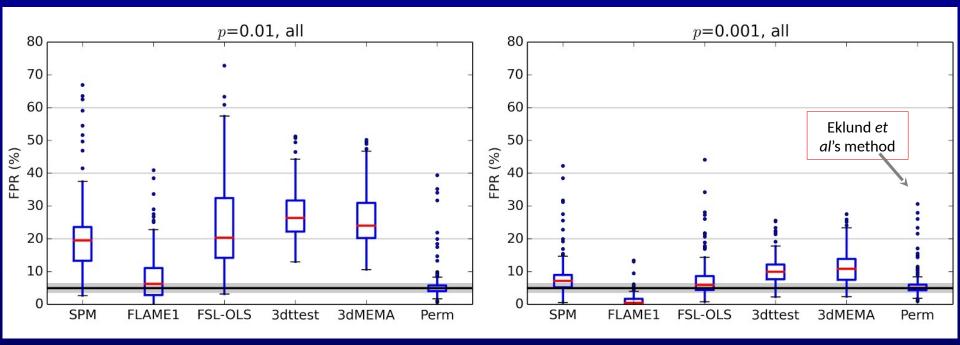
• **3dClustSim** outputs tables like this:

	#	# CLUSTER SIZE THRESHOLD(pthr,alpha)					
	#	-NN 2	alpha=1	Prob (Cl	uster >	given	size)
	#	pthr	.10000	.05000	.02000	.01000	
	#						
	0.	010000	50.3	57.2	66.3	73.6	
	0.	005000	34.4	39.5	46.3	51.6	_
≫	0.	.002000	22.1	25.7	30.4	34.1	J
	0.	.001000	16.0	19.0	22.8	26.0	
	0.	.000500	12.0	14.5	17.4	20.1	
	0.	.000200	8.1	10.0	12.6	14.6	
	0.	.000100	6.1	7.7	9.9	11.6	

-log(p) or t- or z-statistic voxel-wise threshold


FPR: Testing Some Method

- Eklund et al: use rsFMRI (FCON-1000) as null data
 - Analyze each of 198 x 2 subject collections (Beijing and Cambridge) with fake task timings
 - 2 x Block design, 2 x Event-related design
 - 4 x spatial blur levels (4, 6, 8, 10 mm)


- Carry out 1- and 2-sample t-tests between subsets of these collections – 1000 random subsets (per case, per collection, per diverse variations)
- Count clusters surviving the given software, get FPR estimate
- Scripts and tabular results available on GitHub

Old ClustSim - We Got Trouble

FPR>5%: notably for voxel-wise p=0.01
A lot of doom-crying about this in 2016: "Could Invalidate 15 Years of Brain Research"

<u>All Their Results Summarized</u>

- Box plots across all cases: 1- and 2-sample, various sample sizes, various "stimuli", various data sources
- "Up to 70%" FPR (triply-used quote from Eklund et al) is not a decent summary of the situation.

Rest: A Good Null for Task?

- Is rsFMRI data a good/valid null case for task-based analysis?
 - Perhaps it has some task-like temporal structure being uncovered by accident?
 - Is it more correlated in space than the noise (residuals) in task-based datasets?
 - Not in the datasets I've looked at (cursorily)

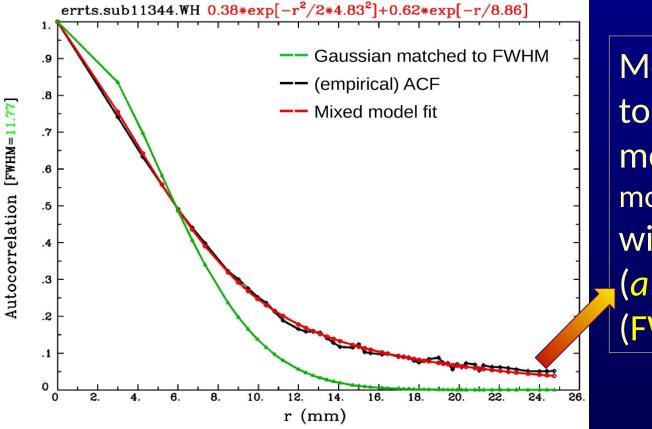
• My opinion:

• rsFMRI not perfect as a null, but as *real data*, it is reasonable to use it (*vs* simulations)

1 Fix + 3 Solutions in AFNI

- 0) Fix 3dClustSim bug found by Eklund
- 1) Extend ACF model in 3dClustSim to be more complicated than a Gaussian shape (the mixed model)
- 2) Eliminate ACF modeling by extending 3dClustSim to directly use residuals from 3dttest++ via randomization
- Generalize cluster-thresholding model in several more directions: ETAC

0) Bugs and Flaws


- **AFNI**'s cluster-size threshold calculating program (**3dClustSim**) had a bug
 - A big deal in the PNAS paper (and popular press)
 - Not actually that important (cf 5 slides ahead)
 - Forman method for FWHM estimate = another flaw (FHWM = Full Width at Half Maximum)
 - Using statistics of nearest-neighbor differences of noise to estimate FWHM of noise correlation

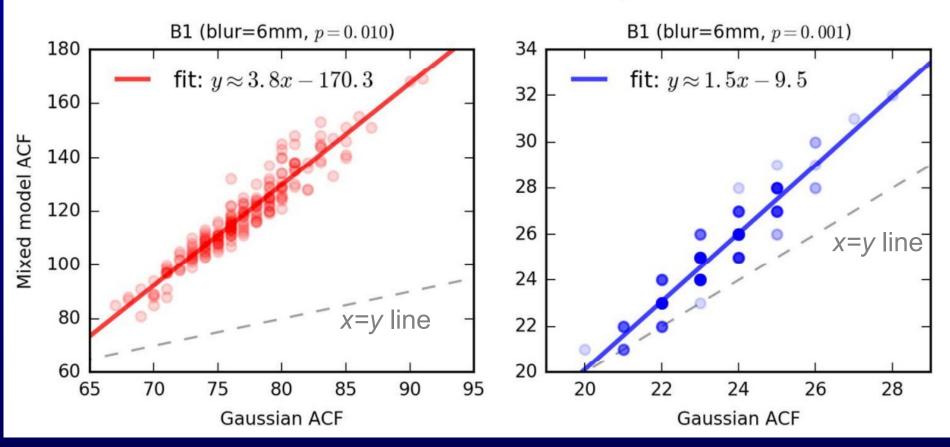
FWHM

0) Bugs and Flaws

- However, there was/is a much bigger flaw
 - Shared with FSL and SPM for unnumbered years
 - Assumption of **Gaussian shape** for spatial autocorrelation function (ACF) of the noise
 - ACF(r) describes how noise in one voxel is correlated with noise in another voxel (distance r away)
- We are interested in clusters caused by true differences in signal
- But we also have to study clusters caused by noise (signal fluctuations)
 - Estimate probability of results being "bad luck".

1) NonGaussianity in ACF ACF from single subject datasets has long tails – nonGaussian shape + 1st

Modify 3dClustSim to use mixed ACF model (Gaussian plus mono-exponential) with 3 parameters (*a*,*b*,*c*) instead of 1 (FWHM)

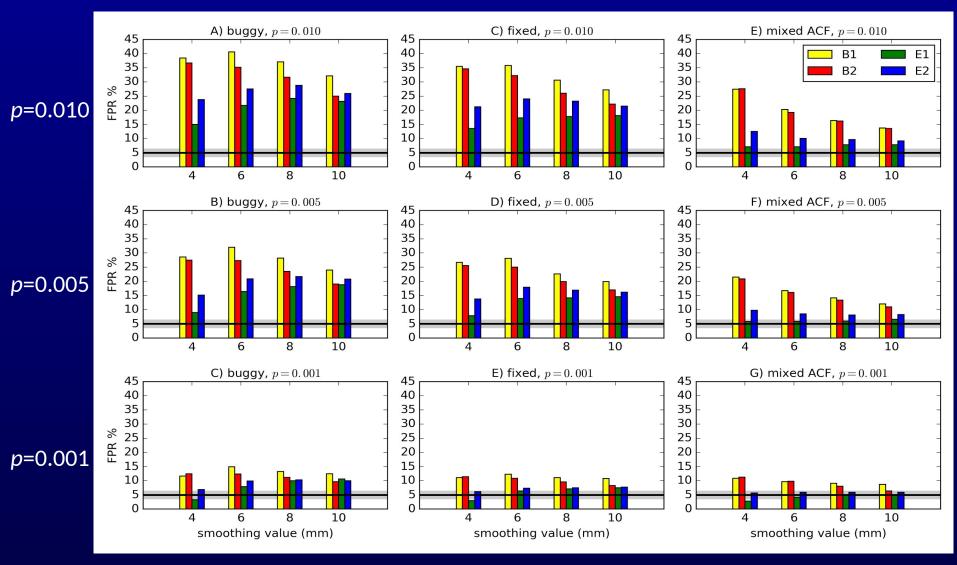

ACF(r)=exp[-)]

1) Updated ClustSim

- Program 3dFWHMx now estimates the mixed model (a,b,c) ACF parameters
 - No longer shows Forman estimates
- Program 3dClustSim takes ACF parameters and
 - Simulates random noise-only 3D dataset with mixed model ACF
 - A little slower than Gaussian ACF approach
 - Otherwise, the same method as before:
 - Builds tables of cluster sizes found

1) ; Do Long Tails Matter? Yes...

Cluster-size threshold: voxel count comparison


- Compare cluster-size thresholds for 198 subjects
- Computed via 3dClustSim using 2 different ACF models
- In words: don't use Gaussian ACF for FMRI (as is usually done)
 - NB: Gaussian FWHM taken from mixed model ACF (not Forman)

<u>0 & 1) AFNI Results Redux</u>

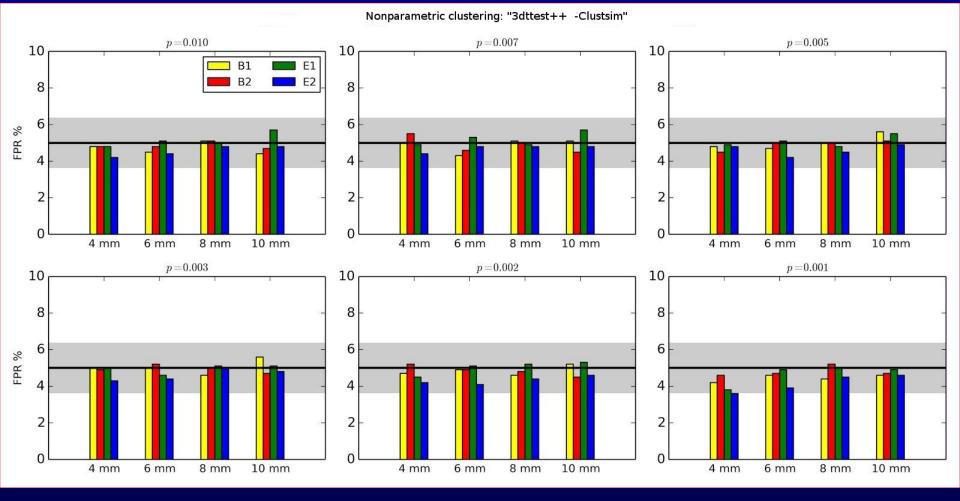
Pre-bug fix

Post-bug fix

Mixed-model ACF

1) How to: ACF method

- Run 3dFWHMx with '-acf' option to get (a,b,c) for each subject, from residuals dataset errts*+tlrc.HEAD
 - This calculation is done now in afni proc.py
 - Average each of the 3 ACF parameters across subjects (not automatic)
- Use **3dClustSim** with '-acf' option (giving it the 3 averaged parameters) to get cluster size threshold tables for group analysis
 - This method is OK, if per-voxel p 0.002


¿Why Is Model-Based FPR Still High?

- Using ACF mixed model improved results
 - So the wider ACF and longer tails are a part of the original problem – but not all of it
- Too short tails in the group *t*-statistics, caused by outlier subjects in the data
 - Also explained a part of it but not very much
- Spatial ACF is not stationary (same everywhere)

FWHM

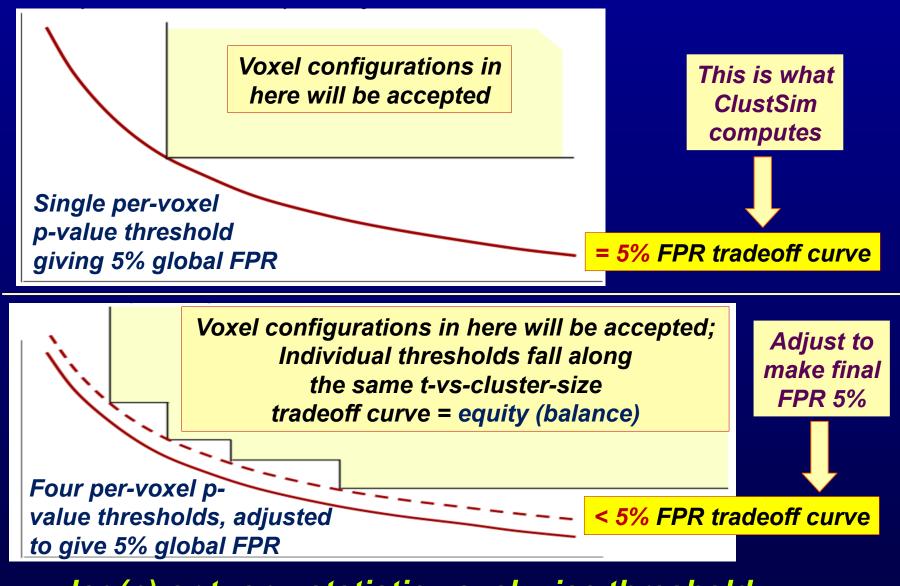
- Over-wide in some places
- Drives up FPR in those regions

2) A Different Solution: Nonparametric Clustering in AFNI

t-test residuals are permuted/randomized (10000 times)

-37-

10000 re-t-tests computed from residuals fed to 3dClustSim


2) How to: Nonparametric Clustering

- Only for *t*-tests at this time
 - Re-running many **3dLME** cases (*e.g.*) is too slow
- **3dttest++** with the **-Clustsim** option
- Gives excellent FPR control 🙂
- Has stringently large cluster-size thresholds (8)
 - Seems to be needed to deal with the extra-wide spatial ACF in some regions (notably, midline)
 - Cluster-size threshold is nonlinear in smoothness
 - Leads to the idea of making the cluster-size threshold depend on spatial location ⇒⇒…
 Feb 2017

<u>3) ETAC</u> ⁽²⁾ ⁽²⁾ ⁽²⁾

- Equitable Thresholding And Clustering
- Uses multiple sub-methods at same time
 - Equity = balancing FPRs of sub-methods
- 1) Voxel-wise thresholding at multiple *p*-values, then cluster-FOM thresholding
- 2) Multiple cases of spatial blurring
- 3) Different cluster-FOM thresholds in different brain regions (*vs* global thresh)
- No model for ACF: uses randomization

Equity: Multi-Thresholding

threshold

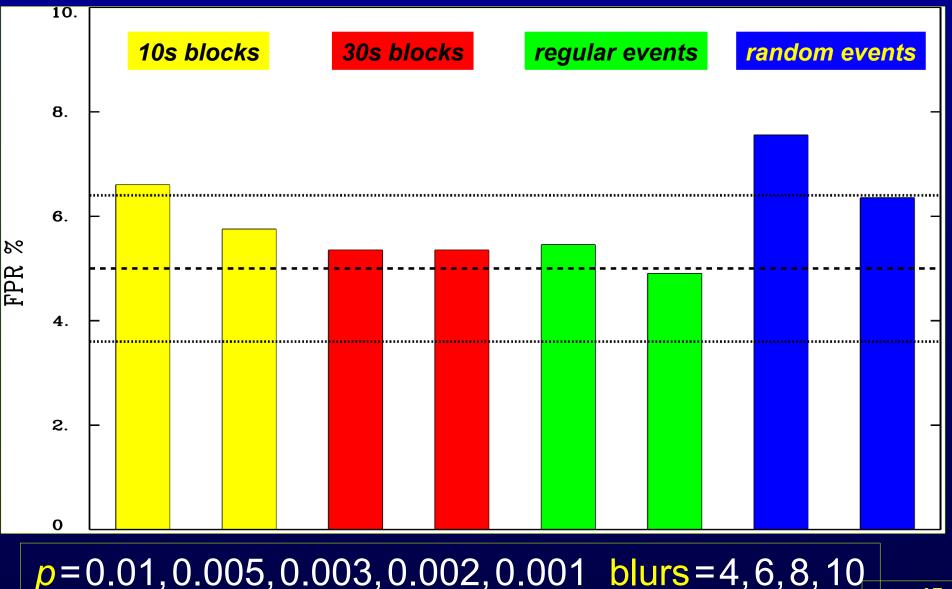
Cluster-size

-log(p) or t- or z-statistic voxel-wise threshold

-41-

Equity: Across Methods

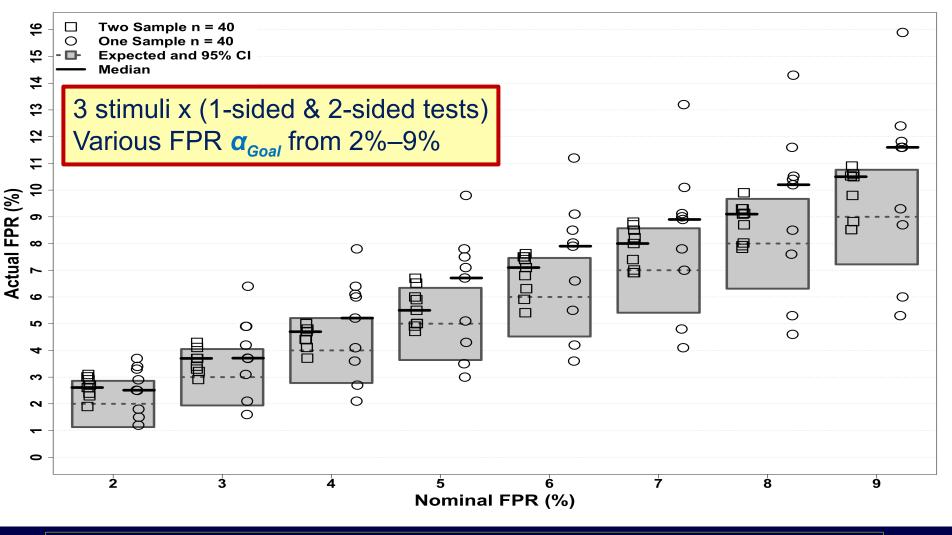
- Balancing can apply to any multi-choice method for selecting voxel clusters
 - Each sub-method has a cluster-FOM threshold adjustable to get desired FPR
 - Balance = choose each sub-method's cluster-FOM threshold to have the same global FPR $\alpha_0 < \alpha_{Goal}$ (e.g., 5%)
- ETAC method (set union): accept a voxel if it survives at least one sub-method
 - Adjust α_0 up or down to get final FPR = α_{Goal}


Equity: Across Blur Cases

- Blurring at (*e.g.*) 4, 6, 8, 10 mm
- Potential to detect both small intense clusters and larger weak clusters
 - Blur = 10 mm might "wash out" small cluster
 - Blur = 4 mm might not reduce noise enough to find larger weak cluster
- Combined with multi-thresholding (different *p*-values), reduces number of arbitrary choices to make in thresholding

Equity: Across Space

- Smoothness (ACF) of noise varies across the brain
 - Using same cluster threshold everywhere will make FPR non-uniform
 - Could try to differentially smooth to make ACF more uniform (not implemented in AFNI)
- ETAC method: Use different cluster-FOM thresholds at different locations
 - For each sub-method, produce a 3D map of the cluster-FOM threshold to use

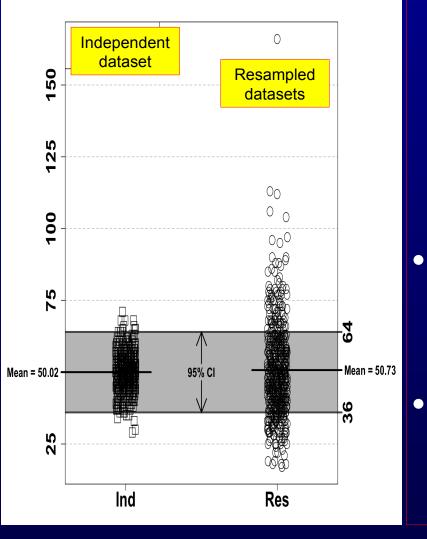

ETAC: Global FPR Control

-45-

ETAC: Global FPR Control

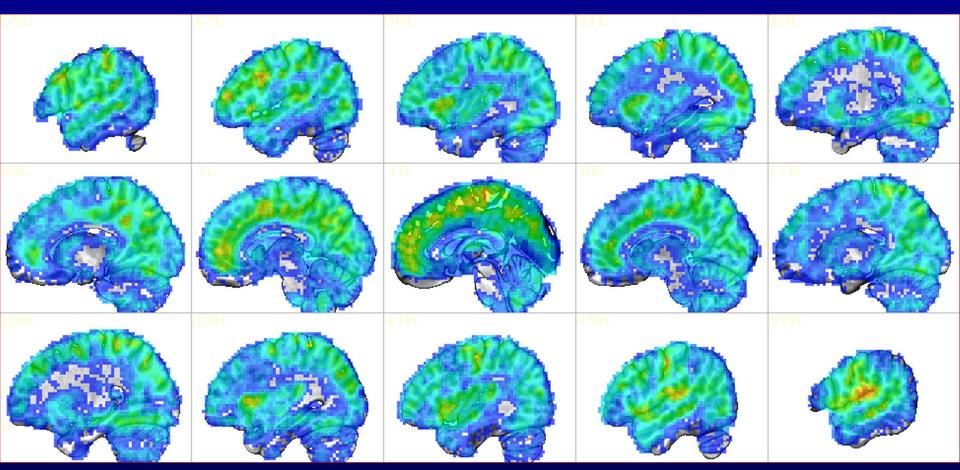
ETAC FPRs (Beijing-Zang Datasets)

p = 0.01, 0.005, 0.002, 0.001 blurs = 4, 7, 10

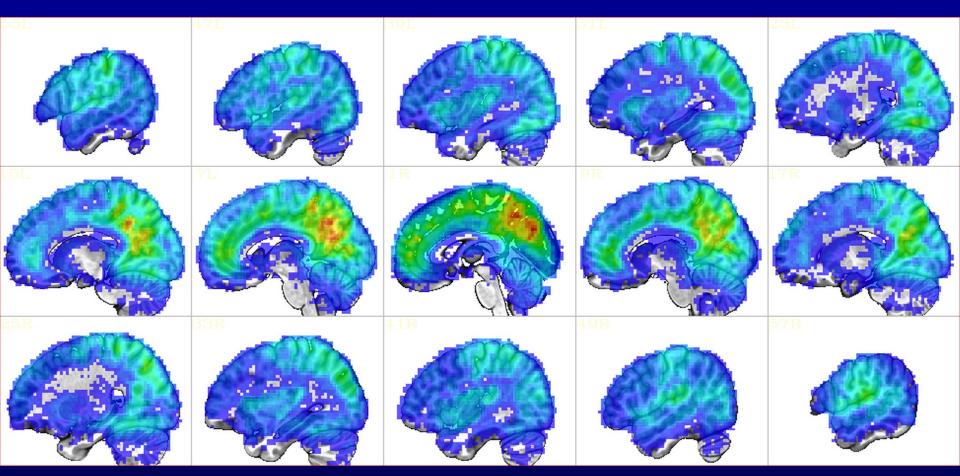

-48-

Dataset Resampling

- Eklund-Nichols resampling methodology:
 - Given 198 datasets, choose 40 of them
 - 1-sample tests = all 40 in one sample *t*-test
 - 2-sample tests = 20 per sample
 - Do this 1000 times
 - But ... the 1000 samples aren't independent
- In 1-sample tests, FPR results *much* wilder (bigger variance) than should be
 - Verified by doing yet more simulations ⇒ …

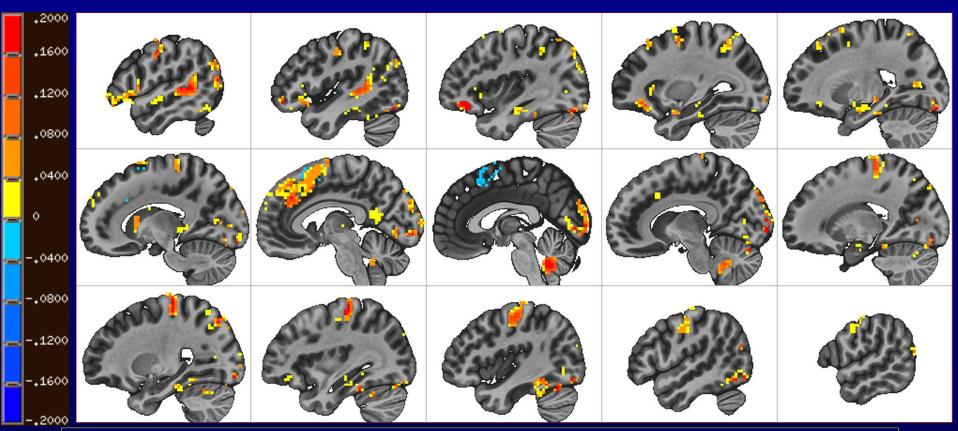

500 Noise-only Simulations

ETAC Something (Beijing-Zang Datasets)

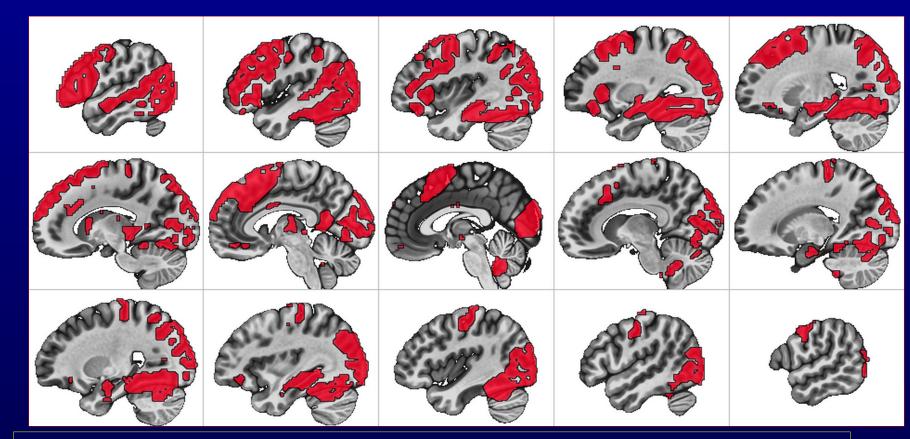

Each simulation runs 1000 3D t-test cases (40 datasets, 1 sample) and does cluster-detection (fixed cluster-size threshold, not ETAC – for speed) Left column: all 40,000 inputs are independent in each simulation **Right column: inputs** resampled from 198 datasets in each simulation

ETAC: FPR spatial density

small Fairly uniform in space max


Global Threshold: FPR density

small Not so uniform in space *max*


-53-

Task Detection Power: 500 simulations ETAC minus Global Threshold

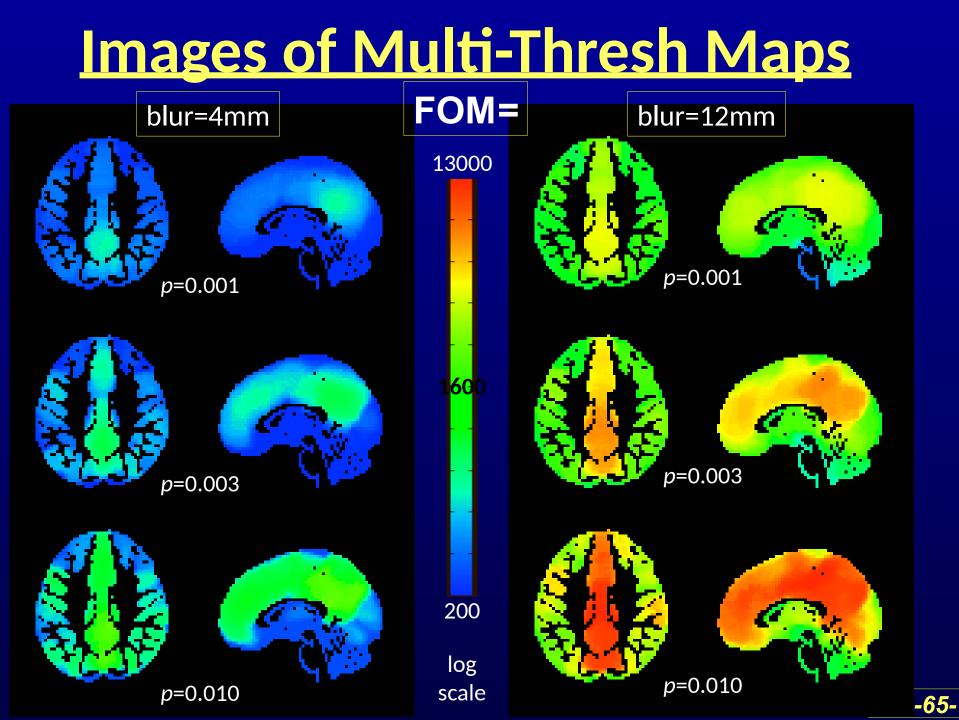
UCLA Phenomics study (*pamenc vs control task*) 20 (out of 81) subjects per test → data from OpenFMRI web site

ETAC activation mask (2% FPR, all 81 subjects)

UCLA Phenomics study (*pamenc vs control task*) 20 (out of 81) subjects per test → data from OpenFMRI web site

Using ETAC

- ETAC algorithm: program 3dXClustSim
- User adds options to 3dttest++ to run
 ETAC after the group *t*-tests are done
 - **-ETAC** to enable the algorithm
 - **-ETAC blur** to specify blur cases to use
 - -ETAC opt to specify thresholding options
 - To change from default per-voxel *p*-values of 0.0100 0.0056 0.0031 0.0018 0.0010
 - To change default clustering parameters NN=2 FOM= 2-sided tests $goal=\alpha_{Goal}=5\%$


ETAC Sample Command

3dttest++

- -setA datasets
- -setB datasets { other options here ... }
- -prefix Gtest.nii
- -prefix_clustsim GtestX
- -ETAC
- **-ETAC_blur 6 12** Combines with any other blurring
- -ETAC_opt
- sid=2:pthr=0.01,0.003,0.001:name=TestA
- -ETAC_opt
- sid=1:pthr=0.01,0.003,0.001:name=TestB

¿Using ClustSim with ETAC?

- Also in 3dttest++: option -Clustsim
 - Can combine with **-ETAC** for comparison
- ETAC and ClustSim use lots (40000) of randomized *t*-tests to create "noise-only" data for cluster FPR analysis (slow)
 - 1-sample test: randomize signs of *t*-test residuals
 - 2-sample test: & inter-sample permutations
 - Uses multiple CPUs to help with speed
- Why both? To compare results.

How ETAC Works

- More complex than ClustSim
- Must keep cluster-FOM tables for each sub-method and for each voxel
 - Some voxels don't get many "hits"
 - Clusters are dilated to get brain coverage
 - But FOM for cluster is based on original size
- How to apply spatially variable cluster-FOM to a given cluster in real data?
 - Sort thresholds for all voxels in real cluster
 - Use the 80% point (100% = maximum)

- Single-subject via mixed-model ACF
 - Spatially non-stationary? A little complex.
- ETAC algorithm *without* voxel equity
 - Multi-method with global cluster thresholds
- Implementation details (short term):
 ✓ Different α_{Goal}s in same run (e.g., 2% 3% 4% 5%)
 - Apply multi-thresholds to other *t*-volumes in
 3dttest++ output
 - e.g., 1-sample results in 2-sample tests
 - Other cluster-FOMs (*e.g.*, TFCE's)?

- Test more null cases for FPR
 - **3dttest++** options, such as covariates
 - Do multi-threshold maps from the main effect apply to the extra *t*-tests, such as covariates and 1-sample results in 2-sample tests?
 And give approximately the desired FPR?
 - Or does ETAC need to be run separately for each *t*-test included in the output? <a>®®
 - Resting state FMRI seed-based correlation maps (all tests up to now are task-based)
 - Other scenarios?

- Test more *positive* cases for power
 - Task-based and resting state
 - Need large number of subjects for this work
 - So can test subsets of different sizes
 - And draw lots of random sub-collections
 - For task cases, need a variety of conditions
 - So can cover large parts of brain
 - Including conditions with small (focal) activations, such as amygdala
 - Will **ETAC** work well for such cases?

- Extend method to work on surface domains, not just 3D volumes
 - Will need a lot of work 8 8 8 8 8 8 8 8
 - Need to write ClustSim for surfaces
 - Need to write ETAC (multi-thresholding and FPR solving) for surfaces
 - Or for mixed 2D+3D domains, as in the CIFTI-format data (*e.g.*, HCP)
 - Cortical surfaces plus basal ganglia volumes
 - ETAC is based on topology not on geometry

- Should ETAC output show you which sub-methods a voxel passed?
 - *e.g.*, which *p*-values, which blur cases?
- Need experience with actual users/actual studies to find things out:
 - What other outputs would be interesting?
 - How useful is **ETAC** *now*, compared to other methods for global thresholding?
- These 5 slides are just part of the list ...

Other Ruminations

- With many subjects in a study, does cluster-FOM thresholding continue to make sense?
 - More and more of brain will pass test
 - Unless looking at a restricted hypothesis, such as brain regions correlated with some subject behavior/condition
 - How to interpret such results?
- At what point does voxel-wise *only* thresholding become "reasonable"?

Conclusions (At Long Last/)

- If 3dttest++ can do your group analysis, ETAC might be your new friend
 - Fewer arbitrary thresholding choices
 - No loss of power
 - Not fully tested yet ⁽²⁾
 - No publication to cite yet 88
- If you need 3dLME, 3dMVM, etc., then the mixed model ACF method is decent
 - With per-voxel $p \le 0.002$
 - Publication you can cite

AFNI Clustering Papers

- Somewhere over the rainbow ETAC paper
 FMRI Clustering and False Positive Rates. PNAS 114: E3370–E3371, 2017.
 - <u>https://arxiv.org/abs/1702.04846</u>
 - https://doi.org/10.1073/pnas.1614961114
- FMRI Clustering in AFNI: False Positive Rates Redux. Brain Connectivity 7:152-171, 2017.
 - <u>https://arxiv.org/abs/1702.04845</u>
 <u>https://doi.org/10.1089/brain.2016.0475</u>

Where It Started

Clear Creek trail, Grand Canyon

Finally ... Thanks

 The list of people I should thank is not quite as large as Skewes' number* ...

MM Klosek. JS Hyde. JR Binder. EA DeYoe. SM Rao. EA Stein. A Jesmanowicz. MS Beauchamp. BD Ward. KM Donahue. PA Bandettini. AS Bloom. T Ross. M Huerta. ZS Saad. K Ropella. B Knutson. J Bobholz. G Chen. RM Birn. J Ratke. PSF Bellgowan. J Frost. K Bove-Bettis. R Doucette. RC Reynolds. PP Christidis. LR Frank. R Desimone. L Ungerleider. KR Hammett. DS Cohen. DA Jacobson. EC Wong. J Gonzalez-Castillo. D Glen. P Kundu (AKA IMoM). E Raab. A Martin. S Gotts. PA Taylor. And YOU, the suffering audience ...

Currently thought to be about 1.4×10³¹⁶