
-1-

-2-

Abbrevs used here

abbrev = abbreviation
AKA = also known as
anat = anatomical
diff = difference
dset = dataset
e.g. = exempli gratia (= “for example”)
EPI = echo planar image
Ex = example
FOV = field of view
i.e. = id est (= “that is”)
ijk = coordinate indices (integer)
NB = nota bene (= “note well”)
phys = physics or physical
ref = reference
subj = subject
vol = volume
vox = voxel(s)
xyz = physical coordinates (units of mm)

-3-

• Alignment (AKA registration): bringing separate objects into the same
space so that each location (e.g., voxel) within one object corresponds to
the same location in the other
– note: other software might refer to this process as “normalization,”

but not in AFNI; too many things can be “normalized” (e.g., a vol’s
brightness), so it is not descriptive enough on its own.

Alignment and its purpose(s)

-4-

• Alignment (AKA registration): bringing separate objects into the same
space so that each location (e.g., voxel) within one object corresponds to
the same location in the other

• Common types of alignment
 EPI-EPI: align a subject’s EPI vols across time (to a selected ref EPI)

• for motion “correction” (= “reduction” or “mitigation”)
 EPI-anat: align a subject’s EPI with anatomical vol

• to assign a location with a functional result
 anat-template: register a subject’s anatomical to a standard template

• for group level alignment, also compare/use locations from lit.
• can then utilize associated atlases (= maps of regions)

 and more:
• distortion correction (such as EPI distortion)
• “axialize”: rotate brain to standardize slice viewing
• quality control: check for left-right flipping
• ….

Alignment and its purpose(s)

-5-

• Several different tools exist for alignment
– choose based on properties of the images, what type of distortion/diff is

present, and the type of desired alignment
• Some important questions about each alignment:

– what is the purpose (e.g., undo distortion, or just overlay good volumes)?
– are we aligning data from the same or different subjects?
– do the data sets have similar or different appearance (both have bright

CSF? or opposite tissue contrast?)
– do both data sets have whole brain converage? do both data sets have

skull on or off?
• important concepts for selecting parameters include: contrast, smoothness,

detail, resolution, field of view (FOV), concatenation, source/base dsets, grid
• NB: afni_proc.py will take care of many of these details for FMRI processing (so

use it!), but it is still good to have some familiarity with them!

Mechanics of alignment

We highlight some alignment/registration programs in this presentation.
See the complete list on the AFNI website:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#align-register-warp-axialize-spatially

-6-

• Do the vols have similar or different tissue contrast?

Alignment concepts: tissue contrast

A) T2w B) T1w C) EPI

-7-

• Do the vols have similar or different tissue contrast?
 → determines what cost function we use (see slides 25-27).

Alignment concepts: tissue contrast

A) T2w B) T1w C) EPI

different

similar

different

-8-

• What kind of resolution do vols have (high/low)?

Alignment concepts: spatial resolution

A) T2w B) T1w C) EPI

-9-

• What kind of resolution do vols have (high/low)?
 → affects how we choose which vol is “source” (to-be-warped) and which is

“base” (=target) and level of warping

Alignment concepts: spatial resolution

A) T2w B) T1w C) EPI

high res low reshigh res

-10-

• What kind of coverage does the FOV have? Does it include the whole brain?

Alignment concepts: field of view (FOV) coverage

A) T2w B) T1w C) EPI

-11-

• What kind of coverage does the FOV have? Does it include the whole brain?
 → might need extra options, affects how we view quality of alignment, and we

might just expect some alignment problems

Alignment concepts: field of view (FOV) coverage

whole brain FOV
cut-off FOV
(both sup cortex
and cerebellum

whole brain FOV

A) T2w B) T1w C) EPI

-12-

• How far apart are the “source” and “base” dsets? Do they overlap in the GUI?

Alignment concepts: dset overlap

-13-

• How far apart are the “source” and “base” dsets? Do they overlap in the GUI?
 → large differences in location, rotation, size, etc. can make alignment tricky. The

greater the overlap/similarity of the dsets, the better the alignment prospects.

Alignment concepts: dset overlap

large rotation! large translation! pretty darn close

• To deal with large relative differences, one might need to use additional preprocessing
steps or options for the alignment programs. [See S1 at end of slides for image script.]

-14-

How is alignment transformation calculated?

• The fundamental aspects are the same across the tools:
Take two images, a base (=reference) and source (=to be adjusted)
1) quantify “how similar” they are,
2) if they are “similar enough,” then stop;
 otherwise, tweak/perturb the source image,
3) quantify “how similar” the new source and base are, … [repeat]

-15-

How is alignment transformation calculated?

• The fundamental aspects are the same across the tools:
Take two images, a base (=reference) and source (=to be adjusted)
1) quantify “how similar” they are,
2) if they are “similar enough,” then stop;
 otherwise, tweak/perturb the source image,
3) quantify “how similar” the new source and base are, … [repeat]

• To quantify how similar dsets are, we need a cost function
– the cost function is how we take values from both dsets and make an overall

assessment of a desired property; different functions yield different alignments
– For example, could:

• reward similarity or when peak values line up (e.g., for matching contrasts)
• reward when anti-peaks line up (e.g., for opposite contrasts)

-16-

Cost functions in AFNI

• There are many cost functions in AFNI, from historical development/evolution
but there are just a few we now recommend (from 3dAllineate’s help):

• “lpa” is basic choice for vols with similar contrast
• “lpc” is basic choice for vols with differing/opposite contrast

– and “lpc+ZZ” might be even better for awkward cases: robuster, but slower
• (“ls” is okay for simple EPI-EPI alignment in 3dvolreg)

 ls :: 1 - abs(Pearson correlation coefficient)
 sp :: 1 - abs(Spearman correlation coefficient)
 mi :: - Mutual Information = H(base,source)-H(base)-H(source)
 crM :: 1 - abs[CR(base,source) * CR(source,base)]
 nmi :: 1/Normalized MI = H(base,source)/[H(base)+H(source)]
 je :: H(base,source) = joint entropy of image pair
 hel :: - Hellinger distance(base,source)
 crA :: 1 - abs[CR(base,source) + CR(source,base)]
 crU :: CR(source,base) = Var(source|base) / Var(source)
 lss :: Pearson correlation coefficient between image pair
 lpc :: nonlinear average of Pearson cc over local neighborhoods
 lpa :: 1 - abs(lpc)
 lpc+:: lpc + hel + mi + nmi + crA + overlap
 ncd :: mutual compressibility (via zlib) -- doesn't work yet

-17-

Cost functions in AFNI

• “lpc” in action, EPI-to-anat (olay: edges from same EPI slice; ulay: matched anat):

ZS Saad, DR Glen, G Chen, MS Beauchamp, R Desai, RW Cox (2009). A new method for improving
functional-to-structural MRI alignment using local Pearson correlation. NeuroImage 44: 839-848.

-18-

How is alignment transformation calculated?

• The fundamental aspects are the same across the tools:
Take two images, a base (=reference) and source (=to be adjusted)
1) quantify “how similar” they are,
2) if they are “similar enough,” then stop;
 otherwise, tweak/perturb the source image,
3) quantify “how similar” the new source and base are, … [repeat]

• To quantify how similar dsets are, we need a cost function
– the cost function is how we take values from both dsets and make an overall

assessment of a desired property; different functions yield different alignments
– For example, could:

• reward similarity or when peak values line up (e.g., for matching contrasts)
• reward when anti-peaks line up (e.g., for opposite contrasts)

• To tweak/perturb the source, we need to know what kind of parameters to change
– rotations, translations, shear, scaling, higher order (determined by degrees of

freedom)
– and whether we are matching entire FOV or smaller pieces (family:

linear/affine or nonlinear)

-19-

View inside alignment process

Preprocess –
mask, weight

twopass?
Lots of
random
guesses –
follow best

Tweak
 parameters

Initial interpolation, cost

Transform &
Interpolate

Measure cost

Cost <
tolerance?

Save final data

O
pt

im
iz

at
io

n

• Preprocess – mask data, weight data
• If far off, take some random guesses (-twopass)
• Optimize parameters on initial or best sets

(6,12,39,1000's)
o Use new parameters to transform input

 Interpolate onto base data's grid
o Measure alignment error with cost functional

 Less than minimum error - finished
 Better - keep adjusting with same direction
 Worse – try other parameters

• Create final output by interpolating onto output
grid
o save datasets, transform parameters

-20-

Types of warps: Rigid body (average FOV fit)

original

rotation translation

There are two parameters in the
rigid body family of warps:

rotation translation

In 3D alignment, each parameter has
three degrees of freedom (DOFs):
+ rigid body (AKA “solid body”)
 6 DOF = 3 transl + 3 rot
 Ex: 3dvolreg

Parameters (applied globally)warped

-21-

Types of warps: Linear affine (average FOV fit)

original

scaling

rotation translation

shearing

There are four parameters in the
linear affine family of warps:

rotation translation
shearing scaling

In 3D alignment, each parameter has
three degrees of freedom (DOFs):
+ rigid body (AKA “solid body”)
 6 DOF = 3 transl + 3 rot
 Ex: 3dvolreg
+ linear affine
 12 DOF = 3*(transl + rot + scale + shear)
 Ex: 3dAllineate, align_epi_anat.py

Parameters (applied globally)warped

-22-

Types of warps: nonlinear (patch refinement)

nonlinear warps

Parameters (applied locally)

+ nonlinear warping
 12 DOF initially + hundreds (or thousands) more DOFs in refinement steps
 Ex: 3dQwarp, @SSwarper, @animal_warper, auto_warp.py

In nonlinear warping, a first pass is done
with simpler global alignment, and then
the matching is refined locally in
“patches” down to a certain length scale.

There are many more DOFs used here, and
one can match more features-- but details
also matter more (e.g., skullstripping)

original warped

-23-

Types of warps: example case “rigid”

PLOT: @snapshot_volreg TEMPLATE_VOL WARPED_VOL

ulay: base template
olay: warped dset (6DOF, linear, “rigid body”)

Compare alignment with
overlaying edges of warped
source dset on base template

“Base” volume in this case is
MNI template; “source” is
typical subject anat vol.

Overall fit: OK, some major
parts align, but brain shapes
are (and remain) different.

-24-

Types of warps: example case “linear affine”

PLOT: @snapshot_volreg TEMPLATE_VOL WARPED_VOL

ulay: base template
olay: warped dset (12DOF, affine)Compare alignment with

overlaying edges of warped
source dset on base template

“Base” volume in this case is
MNI template; “source” is
typical subject anat vol.

Overall fit: Good, general
shape and many sulci/gyri
match, but not all and many
are approximate.
Bonus Type -
rigid equivalent
6-parameters extracted.
"Axializing" subjects to template
of different size

-25-

Types of warps: example case “nonlinear”

PLOT: @snapshot_volreg TEMPLATE_VOL WARPED_VOL

ulay: base template
olay: warped dset (nonlinear, @SSwarper)

Compare alignment with
overlaying edges of warped
source dset on base template

“Base” volume in this case is
MNI template; “source” is
typical subject anat vol.

Overall fit: Very good, nearly
all sulci/gyri match closely
throughout.

-26-

Transformation and mapping

• What is a transformation (or warp)?
 → It is a rule for mapping information from a source dset S onto a base B’s grid.

 It says where a given spot (xB, yB, zB) in B pulls information from in S.

source S
data sets

T

For alignment, we want a transform T, such that
B’ = T(S) is similar to B.

base B

-27-

Transformation and mapping

• What is a transformation (or warp)?
 → It is a rule for mapping information from a source dset S onto a base B’s grid.

 It says where a given spot (xB, yB, zB) in B pulls information from in S.

source S
data sets

For alignment, we want a transform T, such that
B’ = T(S) is similar to B.
We choose how much warping T is allowed to do: match FOV
average or refine over smaller patches; and how much “freedom”
of movement.
Goal: maximize structure matching, and minimize smoothing.

T

base B

-28-

Transformation and mapping

• What is a transformation (or warp)?
 → It is a rule for mapping information from a source dset S onto a base B’s grid.

 It says where a given spot (xB, yB, zB) in B pulls information from in S.

base B source S
data sets

We often think of T as “sending”
values from S to B, but actually we
start from a point in B and ask,
“Where do I get my value from in S?”

T

-29-

Transformation and mapping

• What is a transformation (or warp)?
 → It is a rule for mapping information from a source dset S onto a base B’s grid.

 It says where a given spot (xB, yB, zB) in B pulls information from in S.

base B source S
data sets

T
Where to pull
data from here?

(zoom in)

We often think of T as “sending”
values from S to B, but actually we
start from a point in B and ask,
“Where do I get my value from in S?”

-30-

Mapping and Interpolation

Where exactly to pull data from?
Choose with interpolation (or resampling) mode

Basic case:
the location to pull data “from”
is not directly on a centroid, so
we interpolate with a weighted
average-- here a cubic spline
(in 3D)

Cu = “cubic Lagrange
 polynomial”

 → decent interp (bit
of smoothing)

1D vers:

-31-

Mapping and Interpolation

NN = “nearest
 neighbor”

 → preserve int
values (atlases!)

wsinc5 = “sinc
 function”

 → preserve edges and
sharpness (some ringing)

1D vers:

Cu = “cubic Lagrange
 polynomial”

 → decent interp (bit
of smoothing)

Where exactly to pull data from?
Choose with interpolation (or resampling) mode

(There are other modes, such as linear Li, etc.; see program help files.)

-32-

Applying transformations: moving ROIs

• How can we move ROIs between spaces?

ba
se

 B
so

ur
ce

 S

ROI map

-33-

Applying transformations: moving ROIs

• How can we move ROIs between spaces?
 → Once we have the mapping T from S to B, we can apply it to other dsets--

like an atlas, a map of ROIs, and more.

ba
se

 B
so

ur
ce

 S

ROI map

-34-

Applying transformations: moving ROIs

• How can we move ROIs between spaces?
 → Once we have the mapping T from S to B, we can apply it to other dsets--

like an atlas, a map of ROIs, and more.

ba
se

 B
so

ur
ce

 S

 T

ROI map

Estimate transformation T,
using the anatomical and
template volumes to find
the mapping between
locations in each space
(e.g., 12 DOF linear affine).

-35-

Applying transformations: moving ROIs

• How can we move ROIs between spaces?
 → Once we have the mapping T from S to B, we can apply it to other dsets--

like an atlas, a map of ROIs, and more.

ba
se

 B
so

ur
ce

 S

 T

ROI map

T
Apply transformation T to
the ROI map.
We also include an option to
make the interpolation be
“NN” (nearest neighbor) in
order to avoid smoothing of
ROIs: ints stay ints, so the
ROIs keep their identity.

-36-

Concatenating transforms

• Note: as observed earlier, any alignment/warping/interpolation/resampling leads to
smoothing of data.

• Therefore, when mapping data through several spaces (EPI anat template), we → →
DON’T want to regrid at each step; we concatenate the transforms into a single
one, and then have to only regrid once!

-37-

Concatenating transforms

• Note: as observed earlier, any alignment/warping/interpolation/resampling leads to
smoothing of data.

• Therefore, when mapping data through several spaces (EPI anat template), we → →
DON’T want to regrid at each step; we concatenate the transforms into a single
one, and then have to only regrid once!

• So, calculate individual transforms, such as within EPI (e.g., 3dvolreg), EPI-anat

(e.g., align_epi_anat.py) and anat-template (e.g. @SSwarper):

• but DON’T apply T0 to make a new dset, and then apply T1 to that, etc.

subj ref EPI subj anat template

T1 T2

subj EPIs

T0

-38-

Concatenating transforms

• Note: as observed earlier, any alignment/warping/interpolation/resampling leads to
smoothing of data.

• Therefore, when mapping data through several spaces (EPI anat template), we → →
DON’T want to regrid at each step; we concatenate the transforms into a single
one, and then have to only regrid once!

• So, calculate individual transforms, such as within EPI (e.g., 3dvolreg), EPI-anat

(e.g., align_epi_anat.py) and anat-template (e.g. @SSwarper):

• but DON’T apply T0 to make a new dset, and then apply T1 to that, etc.

• DO concatenate T0, T1, and T2 to make Tfull, and then apply Tfull to the EPIs to send
the data to the template space in a single step (i.e., only one regridding)

subj ref EPI subj anat template

T1 T2

subj EPIs

T0

Tfull

-39-

Concatenating transforms

• Note: as observed earlier, any alignment/warping/interpolation/resampling leads to
smoothing of data.

• Therefore, when mapping data through several spaces (EPI anat template), we → →
DON’T want to regrid at each step; we concatenate the transforms into a single
one, and then have to only regrid once!

• So, calculate individual transforms, such as within EPI (e.g., 3dvolreg), EPI-anat

(e.g., align_epi_anat.py) and anat-template (e.g. @SSwarper):

• but DON’T apply T0 to make a new dset, and then apply T1 to that, etc.

• DO concatenate T0, T1, and T2 to make Tfull, and then apply Tfull to the EPIs to send
the data to the template space in a single step (i.e., only one regridding)

• sidenote: probably don’t upsample the EPI data a lot, e.g., from 3.5mm to 2mm iso
– cannot “create” higher resolution information, no matter how it looks
– just makes larger dsets, more processing time, more disk space, etc.

subj ref EPI subj anat template

T1 T2

subj EPIs

T0

Tfull

-40-

Some warping guidelines

Warping guidelines
+ For most EPI-EPI alignment, ls cost function (via 3dvolreg) is fine

– for blip up-down EPI, there are nonlinear warping opts (lpa cost)
– always check subj motion profiles and censoring

+For all other warping, look to lpa (similar contrast) and lpc or lpc+ZZ
 (differing contrasts)
+ Use nonlinear warping when aligning anat data between different subjects
 (including subject to reference)

– consider @SSwarper for combined nonlinear warping + skullstripping
– can input results directly into afni_proc.py
– lots of templates are fine, but use one with good detail as base

+ Calculate all warps in a chain individually, then concatenate them into one
 before applying, to reduce smoothing (less regridding steps)
+ Use afni_proc.py when processing FMRI data

– concatenation and other tiny details are managed automatically

-41-

Considerations for:
within EPI (EPI-EPI) alignment

-42-

EPI time series: motion

 EPI vols: standard, interleave acquisition

EPI time series
+ see the motion
 effect(s)?
+ see differences
 between voxels?

without motion

 with motion

-43-

EPI time series: motion

Main tool: 3dvolreg (often via afni_proc.py). Use EPI-EPI alignment to:
 1) estimate motion “time series” (rigid body params: rot + transl) and
 2) use these “time series” as regressors and as censoring criteria

PLOT: 1dplot.py -sepscl -boxplot_on -reverse_order -ylabels VOLREG -xlabel vol \
 -title "motion regression" -prefix OUTPUT_NAME -infiles MOT_EST_VR.1D

“with motion”
subject from
above

-44-

EPI time series: motion

Can visualize motion’s effects in time series as a (normalized) “grayplot”:
+ each row is one time series (values translated to grayscale)
+ each col is one instant/volume in time
Probably large outlier fractions where motion occurs (→ censoring)

 PLOT: 3dGrayplot -mask mask+orig. -input FILE_TIMESERIES -prefix OUTPUT_NAME

--> time (vol)

-
-
>

s
p
a
c
e

(
v
o
x
e
l
)

“with motion”
subject from
above

-45-

EPI time series: censoring

Typically two measures to detect and censor motion
• enorm (Euclidean norm): based on 3dvolreg's motion parameter estimates

– suprathreshold enorm leads to censoring multiple vols

For each [i]th volume, use the derivatives of motion profiles to calc enorm:

enormi = (ΔdPi
2 + ΔdLi

2 + ΔdSi
2 + Δyawi

2 + Δpitchi
2 + Δrolli

2)0.5

… which is to say, where there are bigger changes in motion due to either
translation, rotation or both, the enorm value is larger.

• Enorm has units of ~mm (for human head radius, approx. 1deg ~1mm).
Can threshold with a preset value, e.g., 0.2 (~mm); since enorm is based on a
derivative (difference), two volumes get censored for suprathreshold values.

Ex. calculation from output of 3dvolreg:
1d_tool.py \
 -infile VOLREG_OUTPUT.1D -set_nruns 1 \
 -derivative -collapse_cols euclidean_norm \
 -write ENORM_OUTPUT

-46-

EPI time series: censoring

Typically two measures to detect and censor motion
• enorm (Euclidean norm): based on 3dvolreg's motion parameter estimates

– suprathreshold enorm leads to censoring multiple vols
• outliers: based on outliers from time series trends (total fraction in volume)

For each [i]th volume, count how many voxels have an outlier; record fraction:
outlier_fraci = (# vox with outlier)i / (# vox in automask)

• Outlier frac has no units; just has a range [0, 1].
Can threshold with a preset value, e.g., 0.05. Only one volume gets censored
for supratheshold values.

Ex. calculation from unprocessed data set:
3dToutcount \
 -automask -fraction -polort 3 -legendre \
 DSET > OUTLIER_FRAC.1D

-47-

EPI time series: censoring

Typically two measures to detect and censor motion
• enorm (Euclidean norm): based on 3dvolreg's motion parameter estimates

– suprathreshold enorm leads to censoring multiple vols
• outliers: based on outliers from time series trends (total fraction in volume)

PLOT (for motion-enorm, and similar for outlier frac):
 1dplot.py -boxplot_on -reverse_order -infiles MOT_ENORM.1D -censor_hline VAL \
 -censor_files CEN_FILE.1D -xlabel "vol index" -ylabels "enorm" \
 -title "Mot enorm (with limit) and all censored points" -prefix OUT_MOT.jpg

-48-

Example: 3dvolreg

Can run the following in “AFNI_data6/afni/”:
3dvolreg -base 3 -cubic -zpad 1 \
 -1Dfile dfile_vr.1D \
 -1Dmatrix_save mat_vr.aff12.1D \
 -prefix epi_r1_vrt \
 epi_r1+orig

• epi_r1+orig: (last entry) input time series to align

• -base 3: select brick [3] of input epi_r1+orig dset as reference vol
(NB: in afni_proc.py, one can select the ref vol to be the one with fewest
outliers, with keyword: MIN_OUTLIERS)

• -cubic: use cubic polynomial interpolation
• -zpad 1: put (intermed) layer of zeros around base vol, helps if large rotations exist

• -1Dfile ...: save motion estimates as columns of numbers in text (1D) file

• -1Dmatrix_save ...: save motion params (12 DOF in matrix form) to text (1D) file
• -prefix ...: save motion-corrected vol to new 4D volumetric dset

... and a quick view of motion estimates:
1dplot -volreg dfile_vr.1D &

-49-

Example: 3dvolreg (cont’d)

... and a quick calculation of ‘enorm’ (= Euclidean norm) and possible
censoring (see “1d_tool.py -help” for description of opts here):

1d_tool.py -infile dfile_vr.1D \
 -set_nruns 1 \
 -show_censor_count \
 -censor_prev_TR \
 -censor_motion 0.3 SUBJ

... with a quick view of those results (with censorline fanciness):
1dplot -one SUBJ_enorm.1D "1D: 152@0.3" &

and to see the (command line-usable) string of indices to be censored:
cat SUBJ_CENSORTR.txt

or pro-level fanciness combining the previous two:
1dplot -one `cat SUBJ_CENSORTR.txt` SUBJ_enorm.1D "1D: 152@0.3" &

-50-

Motion correction: caveats

• Alignment cannot fix motion; use motion pars as regressors (helps more, not total).

• Motion correction volume alignment regridding smoothing. → → →
• Check in the AFNI GUI to be sure the “corrected” data is not “bouncing” around
• Example: Monkey sips juice at stimulus time, and large jaw muscles move. If the

muscles are not masked, then motion correction may track muscles, not brain.

original 3dvolreg automask, 3dvolreg

[movies]→

-51-

• Motion occurs over slices and not volumes and moves data off original grid
• “Regressing out” – motion parameters, derivatives, displacement, euclidean

norm of derivatives (summary parameters)

• Censoring (“scrubbing”, “sweeping under the mat”,...)

• Experimental design – kids, monkeys, juice, talking, waving hands wildly....

• Interpreting results – differences in motion between groups or something
physiological

• Be on the lookout – activation following high contrast borders, bright/dark
patterns in sagittal views ("blinds" effects)

“Fixing” Motion

-52-

EPI distortion correction in EPI data (1/2)

• Data acquired with an EPI sequence has distortions due to B0 inhomogeneity

• One way to correct: acquire data with opposite phase encoding (PE) to help “undo”
the warping (AKA, “blip up, blip down” acquisitions)

• 1) Align opposite PE dsets nonlinearly. 2) Apply “half” warp to est. undistorted dset.

Roopchansingh et al. (2018, ISMRM)

Example
+ EPI dset from toddler study
+ Unwarping calculated with
 3dQwarp+3dNwarpApply in
 afni_proc.py.
+ [Watch this space for more
 scripts/tools]

or
ig

ulay: EPI, olay: anat edges

pr
oc

’e
d

anat

-53-

EPI distortion correction in EPI data (2/2)

• New tool in AFNI for B0 (phase dset) correction: epi_b0_correct.py
– Also put together by Vinai Roopchansingh, uses 3dNwarpApply
– can be integrated in afni_proc.py

Example
+ EPI dset from toddler study (Roopchansingh et al., in prep)
+ compare outlines of anatomical tissues (red)
 with EPI structures before and after correction

-54-

EPI alignment: general comments

Comments on motion “correction” (= reduction) in EPI

• One cannot fully “correct” effects of motion
– intravol motion can’t be corrected, but bad cases will

likely be censored (e.g., via outlier count, enorm vals)
– motion parameter estimation+regression is useful,

but won’t totally account for motion variance
• Motion is probably a bigger problem in resting state (and naturalistic) FMRI

than in task-based, because there aren’t beta weights to focus on
• In general, global signal regression is not recommended (Saad et al., 2012;

Gotts et al. 2013; Murphy et al. 2009)
• GCOR parameter might be one way to include motion information on group

level, esp. for rs-fMRI (Saad et al. 2013; Gotts et al. 3013)
• Dealing with motion requires planning before scanning (make subjects

comfortable, practice scanner, study design)
• Work must always be done to show that motion differences between groups is

not driving effects

-55-

Considerations for:
EPI-anatomical alignment

-56-

EPI-anatomical alignment

Main tool: align_epi_anat.py (often via afni_proc.py), and 3dAllineate.
+ align EPI to anatomical of same subject
+ use linear affine alignment (assume no major/nonlinear distortions)

align_epi_anat.py
+ Default “lpc” or “lpc+ZZ” cost function, to align vols with opposite contrast

(e.g., T1w and EPI)
+ Can combine alignment with other transformations (as a single transform):
 deobliquing, motion correction, alignment and talairach transforms
+ Can also perform slice timing correction and apply transformations to “child”

datasets.
+ Can perform checks on left-right consistency between datasets (e.g. check for
 bad header info---surprisingly common problem!)

-57-

Alignment strategies with align_epi_anat.py

Defaults work for a large fraction of cases (>90% - FCON1000)

For problematic data some solutions to try:→
– Far off start “-big_move”, “-giant_move”,”-ginormous_move”→
– Poor contrast “-cost lpa”, “-cost nmi”, “-cost lpc+ZZ”→
– Poor non-uniformity “-edge”, “-cost lpa”→

For non-standard dsets: stroke/MS lesions, tumors, monkeys, rats, multi-modality
(CT/PET/DTI/...), something else? see us, post on Message Board→

-58-

It’s what’s on the inside that counts!
 → match sulcal gyral patterns, ventricle location, tissue

boundaries...

Checking alignment: what to look for

-59-

CMD : @snapshot_volreg VOL_ULAY VOL_OLAY output.jpg
view: aiv output.jpg

Checking alignment: edge-y view

-60-

Alignment visualization in AFNI

• Graph and image – travel through time for motion correction or for a thousand
datasets in a row.

• Multiple controllers and crosshairs – up to ten datasets at a time, quick and
rough.

• Overlay display – opacity control, thresholding. A single pair – good for
different or similar datasets.

• Overlay toggle, Underlay toggle – wiggle, good but a little tricky ('o' and 'u'
keys in image viewer)

• Sliding Overlay ('4'/'5' keys), fade-in overlay ('6' key), checkerboard underlay
– ('#' key) two similar datasets in underlay but must be virtually identical. Good
for comparing two processing methods

• Edge display for underlay – effective pairwise comparison for quick fine
structure display and comparison with overlay dataset with opacity. One
dataset should have reliable structure and contrast. Now with 'e' toggle.

• @AddEdge – single or dual edges with good contrast for pairwise comparison.

-61-

Affine alignment: auto-QC

Can run align_epi_anat.py with assistance for QCing alignment
+ use “-AddEdge” option to view edge-highlights of dsets in AFNI GUI

AFNI GUI with “@AddEdge” display settings

-62-

Affine alignment: auto-QC

Can run align_epi_anat.py with assistance for QCing alignment
+ use “-AddEdge” option to view edge-highlights of dsets in AFNI GUI

Example to run in AFNI_data6/afni/ (NB: takes a few mins in total):
align_epi_anat.py \

 -anat anat+orig \

 -epi epi_r1+orig \

 -epi_base 0 \

 -suffix _adde \

 -AddEdge

cd AddEdge

@AddEdge

-63-

Check for dset header problems (esp. conversion software issues):
$ align_epi_anat.py -check_flip ...

$ afni_proc.py -check_flip ...

 → compare EPI<->anatomical alignment cost results for both
flipped and unflipped dsets.

?

Using alignment to check for left-right flipping

-64-

Check for dset header problems (esp. conversion software issues):
$ align_epi_anat.py -check_flip ...

$ afni_proc.py -check_flip ...

 → compare EPI<->anatomical alignment cost results for both
flipped and unflipped dsets.

Using alignment to check for left-right flipping

when correct when flipped

Glen et al. (2018, OHBM).

-65-

Check for dset header problems (esp. conversion software issues):
$ align_epi_anat.py -check_flip ...

$ afni_proc.py -check_flip ...

 → compare EPI<->anatomical alignment cost results for both
flipped and unflipped dsets.

Using alignment to check for left-right flipping

(Has found systematic LR-flips in public FCP and OpenFMRI data sets.)

when correct when flipped

-66-

Check for dset header problems (esp. conversion software issues):
$ align_epi_anat.py -check_flip ...

$ afni_proc.py -check_flip ...

 → compare EPI<->anatomical alignment cost results for both
flipped and unflipped dsets.

Using alignment to check for left-right flipping

(Has found systematic LR-flips in public FCP and OpenFMRI data sets.)

when correct when flipped

NB: does not tell

absolute left-right.

-67-

Using alignment to check for left-right flipping

Read more about it here:
https://www.medrxiv.org/content/10.1101/19009787v1

-68-

Considerations for:
anatomical-template alignment

-69-

Registration to a template: nonlinear warps

• Main tools: 3dQwarp, @SSwarper (skullstrip & align), auto_warp.py
– for animal dsets: @animal_warper (skullstrip & align, too)

• In general, one should use a nonlinear warp for all registration between
different subjects (if the resolution/detail is high enough)

• Nonlinear warping is slooow, but parallelized for speedup on multi-core
machines
– set an environment variable for specifying number of CPUs:

• # for tcsh script or ~/.cshrc file:
set OMP_NUM_THREADS = 7

• # for bash script or ~/.bashrc file:
export OMP_NUM_THREADS=7

– check setting (yours or default) in terminal with “3dQwarp -hview”

-70-

Registration to a template: nonlinear warps

• Choose a template similar/relevant to your subject group
– e.g., use a pediatric template for a study of children

• With nonlinear warping,
– one wants a detailed template to latch onto
– details of the source dset (like skullstripping) matter

• e.g., small bits of skull left on can lead to odd warping

• (and see Bootcamp presentation on Templates and Atlases)

-71-

@SSwarper: skull-strip and nonlinear warp

• @SSwarper does two jobs for the prices of one!
1) Remove the skull of the subject’s anatomical in native space,
2) Estimate the nonlinear warp to a standard space template
Call now and receive a bonus set of QC images of the alignment:

ulay: anat, olay: template edges ulay: template, olay: anat edges

• Presently, @SSwarper is the recommended tool for skullstripping (and
maybe/probably for nonlinear warping, as well)

• Results can be passed directly to afni_proc.py (see “@SSwarper -help”).

-72-

Measuring quality of alignment

(Cox & Glen, 2013, OHBM)

Can compare 3dQwarp with other available nonlinear alignment tools
+ For a group of subjects, estimate warp from anat to template
+ Apply warp to labeled ROIs, and measure % overlap in results.

ANTS, DARTEL and FNIRT run with default settings

-73-

Measuring quality of alignment

(Cox & Glen, 2013, OHBM)

Can compare 3dQwarp with other available nonlinear alignment tools
+ For a group of subjects, estimate warp from anat to template
+ Apply warp to labeled ROIs, and measure % overlap in results. (Yellow: >90% overlap)

ANTS, DARTEL and FNIRT run with default settings

-74-

other types of alignments
that are possible in AFNI

-75-

Alignment with non-MRI data

Dset courtesy of Justin Rajendra
(now in AFNI group!) and Helen
Mayberg.

DBS – align CT with electrodes to pre-surgical MRI, PET (and sometimes DWI)

Lauro et al. (2016). And check out
@Install_DBSproc for demo on DBS processing
with CT and DTI processing in AFNI (with
Silvina Horovitz).

-76-

Alignment with non-MRI data

ECOG – align post-op CT with electrodes to pre-surgical MRI, view grids in
2D (AFNI slices) and 3D (SUMA surfaces).

Branco et al. (2018):
ALICE toolbox using
AFNI+SUMA.

-77-

#!/bin/tcsh
align_times.csh
set basedset = 14_pre+orig
foreach timedset (14_*hr+orig.HEAD)
 align_epi_anat.py -prep_off -anat $timedset -epi $basedset \
 -epi_base 0 -anat_has_skull no -epi_strip None -suffix _edge2prep \
 -cost lpa -overwrite -edge -rat_align
end
3dTcat -prefix 14_timealigned_edge 14_pre+orig. 14*edge2prep+orig.HEAD

Alignment of 12 hour Manganese enhanced MRI scan (MEMRI) to start

Data from Der-Yow Chen (NINDS)

Alignment with non-human data: rats

before after

[movies]→

-78-

Align new D99 template (Reveley et al. 2017) to individual subjects

Alignment with non-human data: macaques

See here for alignment scripts and more:
+ Demo with scripts (e.g., macaque_align.csh): @Install_D99_macaque
+ https://github.com/jms290/NMT (e.g., NMT_subject_align.csh)

For questions on non-human alignment, contact D. Glen in AFNI group (email, Message Board).

https://github.com/jms290/NMT

-79-

New macaque FMRI demo with afni_proc.py (@Install_MACAQUE_DEMO)
1) Uses new @animal_warper program in AFNI for nonlinear alignment
2) afni_proc.py generates pipeline with stats modeling + automatic QC

Alignment with non-human data: macaques

For questions on non-human alignment, contact D. Glen in AFNI group (email, Message Board).

align: template (white lines)
to orig anatomical (color)

skullstrip: focus on brain
(red) from tissue

map atlas: map D99 atlas
locations to anatomy

Bonus: SUMA surfaces

-80-

Conclusions

Lots of details and concepts to keep in mind:
+ what are the volume contrasts? resolutions? FOV? overlaps? …?

Always visually check results of alignments
+ some scripts/commands make images automatically
+ the AFNI GUI has many useful features to check ulay/olay
+ you can build your own image-making commands (@chauffeur_afni)

For FMRI: afni_proc.py is your new best friend
+ many features of alignment are taken care of for you, for free!
+ you can also learn more alignment tips by reading the AP script

-81-

Supplements

extra stuff

-82-

S1: script for @chauffeur_afni + imcat

#!/bin/tcsh
Image-generating script for "Alignment concepts: dset overlap" slide; might be useful.
set odir = . # output dir: here
set lcol = (150 150 150) # grey gaps in imcat cmd
set refv = MNI152_2009_template_SSW.nii.gz # refvol, ulay

foreach ff (`\ls mni_match*gz`)
 # base name of vol, and make a list of all prefixes for later
 set ibase = `3dinfo -prefix_noext "${ff}"`
 set cpref = img0_${ibase}

 # Make a montage of the zeroth brick of each image
 @chauffeur_afni \
 -ulay ${refv] \
 -olay $ff \
 -thr_olay 14 \
 -set_subbricks 0 -1 -1 \
 -prefix $odir/${cpref} \
 -pbar_posonly \
 -opacity 5 \
 -func_range 110 \
 -cbar Viridis \
 -montx 1 -monty 1 \
 -set_dicom_xyz -15 -11 5 \
 -set_xhairs MULTI \
 -label_mode 1 -label_size 3 \
 -do_clean

 # Glue together in 2x2 square, with empty matrix element zero-filled
 imcat \
 -echo_edu \
 -gap 5 \
 -gap_col $lcol \
 -nx 2 \
 -ny 2 \
 -zero_wrap \
 -prefix $odir/ALL_subj_${ibase}.jpg \
 $odir/${cpref}*
end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

