Multiple Comparisons: Embracing Instead of Fighting!

Gang Chen

Scientific and Statistical Computing Core National Institute of Mental Health National Institutes of Health, USA

landout afni26_ROI-based-modeling.pdf

Preview

Current correction methods for multiplicity

3 perspectives

- NHST: *p*-value and thresholding
- Model accuracy
- Integrative modeling
- 2 toy examples: NBA players; Kidney cancer

• Application: region-based analysis (RBA)

• Program in AFNI: **RBA**

Other applications

- Matrix-based analysis (program in AFNI: MBA)
- Region-based inter-subject correlation (ISC) analysis
- Gray matter connectivity analysis (DTI)
- Other cases involving multiplicity

Reproducibility: start with physics • What is the distance between earth and moon?

- *t*-statistic = 4.25 (or *p*-value = 0.01): informative?
- Ridiculous? Check out colorbars, tables and network graphs in publications/slides/posters...
- Average: 384,400 km
- Uncertainty:

```
363,104 km – 405,696 km
```


Reproducibility: neuroimaging • What is the BOLD response in a brain region?

- *t*-statistic = 4.25 (or *p*-value = 0.01): informative?
- Colorbars, tables and network graphs in publications/slides/posters...
- Average: 0.52% signal change
- Range (uncertainty/credible/confidence): 0.22% 0.83%

Multiplicity: correctness in the eye of beholder • 100,000 spatial units - 100,000 models: MUA

- Assumption of spatial independence
- Sharing no information

Corrections

- Multiplicity + spatial relatedness
- Heavy penalty: information waste
- Arbitrariness
 - Why not 0.04 or 0.06 instead of 0.05?
 - Different correction methods: arbitrary voxel p vs. power
 - Heavily dependent on data space: whole brain, gray matter, ROIs
 - Information waste at global level: only local relatedness considered

Voxel significance "S": t- or z-statistic, or -log(p)

Research reproducibility

Does strength of statistical evidence shrink?

- Previous claim with statistical evidence: *p*-value = 0.03
- Current study with evidence: *p*-value = 0.04.
- Multiple testing issue? Should one adjust for multiplicity?
- How about all studies that use statistical analyses?

• How are study repetitions distributed?

- Same experiments repeated 100 times
- An effect (population, BOLD) across entities (counties, brain regions)

Null Hypothesis Significance Testing

• Straw man H_o: null hypothesis

- Witch hunt: Don Quixote's windmills
- **<u>Type I error</u>** = $P(data | H_o) = false positive =$ *p*-value
 - Surprise or weirdness of data: 0.05
 - No effect until shown with small *p*-value
 - Innocent until proven guilty
- **<u>Type II error</u>** = $P(\text{accept } H_0 \mid H_1)$ = false negative

• **Real practice: type I error ONLY**

- False positives: purely pleasing to statisticians!
- With NO regard for type II error

Results interpretation

- What is the conclusion of a region where *p*=0.6?
- If p=0.05, what is the probability for the region being activated?

Clusters vs islands: arbitrariness

Issues: NHST

• Arbitrary dichotomy: where to draw a line in the sand?

- Binary or discrete: innocent vs guilty
- *p*-value itself is a random variable
- O Unrealistic: "activated" vs "not activated"?
- Methods for correlation matrix: why is **0.3** so special?

Vulnerable to misconceptions

- ∘ p (weirdness | H_o) ≠ p (H_o | data)
- Absence of evidence ≠ evidence of absence

• Vulnerable to data manipulations

• Statistical evidence changes: whole brain, gray matter, region

Inflated effect estimates

• Type M (magnitude) and type S (sign) errors: biasedness

Issues: NHST

Inefficient modeling

- Over-penalizing
- Ignore false negative (power)
- No mechanism to incorporate prior knowledge
- Disregarding effect size
- Uncertainty unavailable • No standard deviation at voxel of
- Lack of spatial specificity • Locating regions per peak voxel
- Penalizing small regions

Chen, et al, 2019. Fighting or Embracing Multiplicity in Neuroimaging? Neighborhood Leverage versus Global Calibration. NeuroImage (in press)

NBA players

- Kevin Durant field goals percentage: 52.1%
- o Prediction: performance during next season?
- One vs. top 50 players: **no pooling** vs complete pooling

NBA players

- Kevin Durant field goals percentage during 2019: 52.1%
- Prediction: performance during 2020?
- One vs. top 50 players: **partial pooling** (regression to the mean)

• Top 50 vs. 100 NBA players: adaptivity

• Kidney cancer distribution among U. S. counties

Highest rate

lowest rate

Morals from kidney cancer data

• Multiplicity problem: > 3000 counties!

- Divide *p*-value by number of counties?
- Borrow idea from neuroimaging: leverage geographical relatedness?

• What can we learn from the example? Food for thought

- Care about strawman H_0 (zero kidney rate), false positives, *p*-value?
- Trust individual county-wise estimates? Unbiased! BLUE
 - **Incorrect sign errors** (type S): some counties really have higher kidney cancer rate than others?
 - Incorrect magnitude (type M): some counties really have higher/lower cancer rate?
- Would correction for multiplicity help at all?
 - Useless in controlling for type S and M errors

• How can we do better?

- Information share: across spatial elements
- o Research hypothesis: P (effect > o | data)

What do we know about spatial elements?

0.4

0.35

0.25

0.2

0.15

0.1

0.05

0

-4

-2

0

2

4

Massively univariate modeling

- Pretend full ignorance: fully trust the data
- Uniform distribution: each element equally likely to have any value in $(-\infty, +\infty)$
- Similar for variances: variances can be negative in ANOVA

• One crucial prior for spatial elements

- Reasonable to assume Gaussian distribution?
- Gaussian assumption adopted everywhere!
 - Subjects, residuals across TRs
- How can Gaussian assumption help?
 - Loosely constraining elements
 - No full trust for individual estimates
 - Information sharing: shrinkage or partial pooling
 - Controlling type S and M errors

Short summary: what we intend to achieve

• Abandon strawman and *p*-value

• Directly focus on research interest P(effect > 0 | data) vs. P(data | effect = 0)

• Build one model

- Incorporate all elements into a multilevel or hierarchical structure
- Loosely constrain elements: leverage prior knowledge
- Achieve higher modeling efficiency: no more multiplicity!
- Validate the model by comparing with potential competitors
- Be conservative on effect estimates by controlling type S and M errors: **biased?**
- Always be mindful of uncertainties: strength of evidence (no proof)
- Less vulnerable to data manipulations: whole brain, gray matter, regions, ...

Avoid dichotomous decisions

- Report full results if possible
- Highlight instead of hide based on gradient of evidence
- Focus on estimation, not inferences

Bayesian strategy in handling multiplicity

Conventional approach: neighborhood leverage

• Local relatedness: all regions act freely from each other

BML approach: global calibration

- Tug of war: local effect vs global effect
- Weighted average
- Partial pooling, shrinkage

$$\hat{\theta}_j = \frac{\frac{n}{\lambda^2 + \sigma^2} \bar{y}_{\cdot j} + \frac{1}{\tau^2} \bar{b}_0}{\frac{n}{\lambda^2 + \sigma^2} + \frac{1}{\tau^2}}, \ V = \frac{1}{\frac{n}{\lambda^2 + \sigma^2} + \frac{1}{\tau^2}}$$

Application: region-based analysis

• Dataset

- Individual subjects: seed-based correlation for each subject
 - 3D correlation between seed and whole brain ("functional connectivity")
- Explanatory variable (behavior data): Theory of Mind Index x_i

Voxel-wise group analysis: GLMs

- Focus: association between *x* and seed-based correlation (*z*-score)
- Pretense: voxels unrelated equal likelihood within (-∞, ∞)
- Information waste!
- GLMs: mass univariate multiplicity
- $m = 100,000 \text{ voxels} \rightarrow$
 - 100,000 models

1st voxel: $\boldsymbol{y}_1 = a_1 + b_1 \boldsymbol{x} + \boldsymbol{\epsilon}_1$ 2nd voxel: $\boldsymbol{y}_2 = a_2 + b_2 \boldsymbol{x} + \boldsymbol{\epsilon}_2$

Uniform distribution: total freedom - each

parameter on its own

Xiao et al., 2019. <u>Neuroimage</u> 184:707-716

mth voxel: $\boldsymbol{y}_m = a_m + b_m \boldsymbol{x} + \boldsymbol{\epsilon}_n$

GLMs: dealing with multiplicity!

Voxel-based analysis: GLMs

- Penalty time for pretense: multiple testing (m = 100,000), magic 0.05
- Show time for various correction methods
 - Voxel-wise *p*, FWE, FDR, spatial smoothness, clusters, ...
 - Simulations, random field theory, permutations, ...
 - How would dataset turn out under GLM? 4 lucky clusters managed to survive

voxel p	cluster threshold	surviving ROIs	ROIs
0.001	28	2	R PCC, PCC/PrC
0.005	66	4	R PCC, PCC/PrC., L IPL, L TPJ
0.01	106	4	R PCC, PCC/PrC., L IPL, L TPJ
0.05	467	4	R PCC, PCC/PrC., L IPL, L TPJ

Switching from voxels to ROIs: still GLMs

• Region-wise analysis : GLMs

- Focus: association between and seed-based correlation (z-score)
- Pretense: ROIs unrelated
- GLMs: mass univariate
- $m = 21 \text{ ROIs} \rightarrow$
 - 21 models
- Penalty for pretense:
 multiple testing what to do?
 - Bonferroni? Unbearable
 - What else?

Switching from GLMs to LME

• **Region-wise analysis : Linear Mixed-Effects (LME) model**

- One model integrates all regions
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: Is it far-fetched or subjective?
 - Similar to cross-subject variability
- Goal: effect of interest- $a + \alpha_j$, $b + \beta_j$
- Differentiation: fixed vs. random
 - Fixed: **epistemic** uncertainty
 - Random: aleatoric uncertainty
 - Julius Caesar: Alea iacta est. January 10, 49 BC
- What can we get out of LME?
 - Conventional framework
 - Estimates for fixed effects
 - Variances for random effects

• Dead end!

Switching from GLMs to BML

• Region-wise analysis : Bayesian multilevel (BML) model

- One model integrates all regions: basically same as LME
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: Is it far-fetched or subjective?
 - Similar to cross-subject variability

Inferences from BML: full distributions

- Region-based BML: 21 ROIs
- Full report with richer information: posterior distributions for each ROI
 - No dichotomization
 - No results hiding

Highlight, not hide

- No discrimination against small regions
- No ambiguities about spatial specificity
- No inconvenient interpretation of confidence interval
- Evidence for each ROI: *P* (effect > 0 | data)

• <mark>9 ROIs</mark> with strong evidence of effect compared to

- Region-wise GLM with Bonferroni correction
- Voxel-wise GLM at cluster level: 2 clusters

How about Left SFG?

Inferences from BML: uncertainty

How about Left SFG?

- ROI-based BML: 21 ROIs
- Full report with bar graph uncertainty intervals
 - Nothing hidden under sea level
- 8 ROIs with strong evidence for effect of interest

BML: model validations

Cross-validation

• Leave-one-out information

criterion (LOOIC) Cross-validation

	LOOIC	SE
GLM	-300.39	98.25
BML	-2247.06	86.42
GLM - BML	1946.67	96.35
	1	1 •

• Posterior predictive checking

• Effects of BML

- Regularizing ROIs: don't fully trust individual ROI data
- Sacrificing fit at each ROI; achieving better overall fit

BML: Whole-brain vs. region-base analysis

Region-based analysis

- + high region specificity: region definitions considered as priors
- + low computational cost
- + avoiding potential alignment issues by defining regions in native space: FreeSurfer + SUMA
- not all regions have been defined
- information loss due to averaging within each region
- region definitions can be tricky
 - relying on results accuracy in literature (e.g., publication bias)
 - different atlases/parcellations

• Whole-brain analysis

- + independent of region definitions
- + less likely to miss small regions that are not in available atlases/parcellations
- vulnerable to poor alignment across subjects
- region specificity problem
 - Voxel-wise results do not respect region definitions
- Computationally challenging
 - hopeful: within-chain parallelization and GPU usage

Application #2: matrix-based analysis

• Dataset: correlation matrix

- Subjects: n = 41 subjects; response-conflict task (Choi et al., 2012)
- Individual subjects: correlation matrix among m = 16 ROIs
- How to go about group analysis?
 - GLM for each element in correlation matrix: NBS, CONN, FSLNets in FSL, GIFT
 - Binarization approach: graph theory
- More broadly: matrix-based analysis (MBA) ("network modeling")
 Inter-region correlation (IRC): FMRI

 - White matter properties (FA, MD, ...): DTI
 - Other matrices (e.g., coherence, entropy, mutual information)

• Focus on GLM

- Student *t*-test or GLM on each element
 - *M* = 120 massively univariate models
- Pretense again: all elements are unrelated
- Equal likelihood within $(-\infty, \infty)$
- Information waste
- Penalty time again: permutations? FDR?

Choi et al., 2012. Neuroimage 59(2):1912-1923

		R_1	R_2	R_3		R_m
	R_1	(-	z_{12k}	z_{13k}		z_{1mk}
	R_2	z_{21k}	-	z_{23k}	• • •	z_{2mk}
$oldsymbol{Z}_k^{(m)} =$	R_3	z_{31k}	z_{32k}	-		z_{3mk}
10	÷	÷	÷	÷	·	÷
	R_m	z_{m1k}	z_{m2k}	z_{m3k}		_ /

Dealing with inter-region correlations (IRCs)

Complexities of IRCs

- Some region pairs are unrelated, but others are correlated
- Correlation structure is intricate
- $\circ 0 \leq \rho \leq 0.5$
- Can we do a better job than GLMs or dichotomization?
 - Challenge: How to characterize the complex structure?

IRC: switching from GLM to LME

• IRC analysis through linear mixed-effects (LME) modeling

- One model integrates all ROIs: LME
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: Is it far-fetched?

IRC: one more jump from LME to BML

• IRC analysis through Bayesian multilevel (BML) modeling

- One model integrates all ROIs: BML (essentially same as LME)
- ROIs loosely constrained instead of being unrelated
 - Gaussian distribution: Is it far-fetched?
 - Similar to cross-subject variability

Chen, et al, 2019. An integrative Bayesian approach to matrix-based analysis in neuroimaging. Human Brain Mapping.

IRC – ROI effect from BML: full distributions

IRC – RP effect from BML: full distributions

IRC– RP effect from BML

- ROI-based BML: 16 ROIs
- Full report for all region pairs (RPs)
- Comparisons with GLMs: nothing hidden under sea level
 - 63 RPs identified by GLMs with *p* of 0.05: none survived after correction with NBS via permutations
 - 33 RPs with strong evidence under BML

GLM OIFG_R MPFC PG_R MA 0.09 0.08 0.07 BNST Highlight, 0.05 not hide 0.04 0.03 0.01 IPG 0 -0.01 -0.02

-0.04

BML

BML: model validations

• ROI-based BML with IRD of 16 ROIs: cross-validation

Leave-one-out information
 criterion (LOOIC)

Cross-validation

Model	LOOIC	SE
GLM	-2808.31	101.65
BMLO	-4543.77	102.97

Posterior predictive checking

• Effects of BML

- Regularizing ROIs: don't fully trust individual ROI data
- Sacrificing fit at each ROI; achieving better overall fit

Bayesian all the way

- Should one correct for a duplicated study?
- How about all studies with statistical analyses

• Everyone is Bayesian

- Probabilistic nature
 - data; preprocessing, subjects, groups, sites, scanners, modeling approaches
- Reproducibility
 - Most studies: similar; minority: outliers
 - Applying a Gaussian prior

• Embracing, not fighting, multiplicity!

Contrast

Mass Univariate Approach

o Accurate with the current data, but poor for predictions

o Trust effect estimates (unbiased), but don't report them

• Doubt about statistical evidence, but selectively report it through filtering with colorbar and in table

• BML

o Compromise with the current data, but gain accuracy for predictions

 Pool effect estimate toward the center (biased), and directly show them through posterior distributions

• Statistical evidence shown without filtering

Summary

Issues with current correction for multiplicity

Two toy examples

- \circ NBA players
- Kidney cancer

• Application: region-based analysis (RBA)

• Program in AFNI: **RBA**

Other applications

- Matrix-based analysis (program in AFNI: MBA)
- Region-based inter-subject correlation (ISC) analysis
- Gray matter connectivity analysis
- Others cases involving multiplicity

Keep Kidney Cancer in Mind!

• Kidney cancer distribution among counties

Highest rate

lowest rate

Calibration, regularization, information sharing, partial pooling, shrinkage

Acknowledgements

- Paul-Christian Bürkner (Aalto University, Finland)
- Andrew Gelman (Columbia University), Stan Development Team, R Foundation
- Yaqiong Xiao, Elizabeth Redcay, Tracy Riggins, Fengji Geng
- Luiz Pessoa, Joshua Kinnison (Depart of Psychology, University of Maryland)
- Zhihao Li (School of Psychology and Sociology, Shenzhen University, China) Lijun Yin (Department of Psychology, Sun Yat-sen University, China)
- Emily Finn, Daniel Handwerker (SFIM/NIMH, National Institutes of Health)
- Paul A. Taylor, Daniel R. Glen, Justin K. Rajendra, Richard C. Reynolds, John Lee, Robert W. Cox (SSCC/NIMH, National Institutes of Health)