
–1–

AFNI & FMRI
Introduction, Concepts, Principles

http://afni.nimh.nih.gov/afni
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AFNI = Analysis of Functional NeuroImages

•  Developed to provide an environment for FMRI data analyses
  And a platform for development of new software
•  AFNI refers to both the program of that name and the entire 
package of external programs and plugins (more than 200)

•  Important principles in the development of AFNI:
  Allow user to stay close to the data and view it in many 

different ways
  Give users the power to assemble pieces in different ways 

to make customized analyses
o  “With great power comes great responsibility”
   — to understand the analyses and the tools

  “Provide mechanism, not policy”
  Allow other programmers to add features that can interact 

with the rest of the package
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Principles (and Caveats) We* Live By

•  Fix significant bugs as soon as possible
  But, we define “significant”

•  Nothing is secret or hidden (AFNI is open source)
  But, possibly not very well documented or advertised

•  Release early and often
  All users are beta-testers for life

•  Help the user (message board; consulting with NIH users)
  Until our patience expires

•  Try to anticipate users’ future needs
  What we think you will need may not be what you 

actually end up needing
*
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Before We Really Start
•  AFNI has many programs and they have many options
•  Assembling the programs to do something useful and good 
seems confusing (OK, is confusing) when you start
•  To help overcome this problem, we have “super-scripts” 
that carry out important tasks
  Each script runs multiple AFNI programs
  We recommend using these as the basis for FMRI work

o  When you need help, it will make things simpler for us and for 
you if you are using these scripts

•  afni_proc.py = Single subject FMRI pre-processing and 
time series analysis for functional activation
  uber_subject.py = GUI for afni_proc.py   
•  align_epi_anat.py = Image alignment (registration), 
including anatomical-EPI, anatomical-anatomical, EPI-EPI, 
and alignment to atlas space (Talairach/MNI)
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What is Functional MRI?
• 1991: Discovery that MRI-measurable signal 
increases a few % locally in the brain subsequent 
to increases in neuronal activity (Kwong, et al.)

Cartoon of 
MRI signal 
in a single 

“activated” 
brain voxel

time

C: ≈ 2 s
delay

D: 4-5 s
rise

B: 5 s neural activity

E: 5 s plateau

F: 4-6 s
fall

G: Return to
baseline

(or undershoot)

A: Pre-activation
baseline

A

Signal increase 
caused by 
change in H2O 
surroundings: 
more oxygenated 
hemoglobin is 
present

with no noise! Contrast
through

time
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How FMRI Experiments Are Done
•  Alternate subject’s neural state between 2 (or more) 

conditions using sensory stimuli, tasks to perform, ...
  Can only measure relative signals, so must look for 

changes in the signal between the conditions
•  Acquire MR images repeatedly during this process
•  Search for voxels whose NMR signal time series (up-and-

down) matches the stimulus time series pattern (on-and-off)
 FMRI data analysis is basically pattern matching in time

•  Signal changes due to neural activity are small
•  Need 500 or so images in time series (in each slice)  

takes 30 min or so to get reliable activation maps
• Usually break image acquisition into shorter “runs” to give the 

subject and scanner some break time

•  Other small effects can corrupt the results  post-
process the data to reduce these effects & be vigilant

•  Lengthy computations for image recon and temporal 
pattern matching  data analysis usually done offline 
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Sample Data Time Series
•  64×64 matrix (TR=2.5 s; 130 time points per imaging run)

•  Somatosensory task: 27 s “on”, 27 s “rest”
•  Note that this is really good data

pattern of expected 
BOLD signal

pattern fitted to data

One echo-planar image

One anatomical image, with 
voxels that match the pattern 

given a color overlay

data
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What is a volumetric data set?
How do I get one?
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Abbrevs used here

abbrev = abbreviation
AKA = also known as
anat = anatomical
diff = difference
dset = dataset
e.g. = exempli gratia (= “for example”)
EPI = echo planar image
Ex = example
FOV = field of view
i.e. = id est (= “that is”)
ijk = coordinate indices (integer)
NB = nota bene (= “note well”)
phys = physics or physical
ref = reference
subj = subject
vol = volume
vox = voxel(s)
xyz = physical coordinates (units of mm)
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• Data are often aquired as DICOM files
• AFNI has several programs for creating BRIK-HEAD and NIFTI files from DICOMs
• One has to be careful with DICOMs- not really standardized (booo!), fields/structure 

can change across scanner vendor, across version numbers, across acquisition 
sequences, and on the 3rd Tuesday after a blue moon.

• Some AFNI programs:
+ dcm2niix_afni: Chris Rorden's popular program, distributed in AFNI (thx, Chris!)
   - very general use, can create whole collection of dsets

   - NB: NIFTI does not store complicated slice timings, so even if dcm2niix_afni can 
find it, it can't be stored

   - AFNI's 3drefit can be used to add slice timing info to the AFNI header extension

+ Dimon: R Reynold's creation, originally for sending "realtime FMRI" direct to AFNI
+ fat_proc_convert_dcm_{anat,dwis}: wrappers of dcm2niix_afni for DWI proc
+ and:

• *Always* check your results carefully (left-right flips!) when converting from 
DICOM!

Creating dsets from DICOM files

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#dicom-info-and-conversion
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• What is a volumetric data set?

Volumetric data structure
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• What is a volumetric data set?
  →  It a grid made up of voxels (basic case: 3D).  

Volumetric data structure

3D grid

dx
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• What is a volumetric data set?
  →  It a grid made up of voxels (basic case: 3D).  

    

Volumetric data structure

3D grid

2 ways to describe each voxel location
+ “i, j, k”: integer indices, counting voxels from one corner

     - independent of voxel size (just storage indices on disk)
+ “x, y, z”: units of mm, physical location of voxel centroid

     - depends on voxel size (dx, dy, dz) 

dx
dy

dzcentroid

voxel

ed
ge

s
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• What is a volumetric data set?
  →  It a grid made up of voxels (basic case: 3D).  

    Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
    

Volumetric data structure

3D grid

2 ways to describe each voxel location
+ “i, j, k”: integer indices, counting voxels from one corner

     - independent of voxel size (just storage indices on disk)
+ “x, y, z”: units of mm, physical location of voxel centroid

     - depends on voxel size (dx, dy, dz) 

dx
dy

dzcentroid

voxel
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s
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color mapping
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• What is a volumetric data set?
  →  It a grid made up of voxels (basic case: 3D).  

    Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
    A time series data set is an ordered set of 3D vols (  a ‘4D data set’).→  

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

… 
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• What is a volumetric data set?
  →  It a grid made up of voxels (basic case: 3D).  

    Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
    A time series data set is an ordered set of 3D vols (  a ‘4D data set’).→  

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

… 

3D grid + time dimension
 “→ “ 4D data set” 

+ Can talk about time as “t” 
in physical units of seconds, or 
as “n” in index units of simple 
counting.
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• What is a volumetric data set?
  →  It a grid made up of voxels (basic case: 3D).  

    Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
    A time series data set is an ordered set of 3D vols (  a ‘4D data set’).→  

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

… 

3D grid + time dimension
 “→ “ 4D data set” 

+ Can talk about time as “t” 
in physical units of seconds, or 
as “n” in index units of simple 
counting.
+ Also say that each voxel 
contains a “time series”, e.g.:
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• What is a volumetric data set?
  →  It a grid made up of voxels (basic case: 3D).  

    Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
    A time series data set is an ordered set of 3D vols (  a ‘4D data set’).→  

*AFNI terminology sidenote*

3D grid

… 

We often refer to a 3D volume as a brick, 
because, well, it is an example of a solid, 
similar-looking 3D shape.
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• What is a volumetric data set?
  →  It a grid made up of voxels (basic case: 3D).  

    Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
    A time series data set is an ordered set of 3D vols (  a ‘4D data set’).→  

*AFNI terminology sidenote*

3D grid

… 

We often refer to a 3D volume as a brick, 
because, well, it is an example of a solid, 
similar-looking 3D shape.

Particularly in the context of 4D data sets, 
we also call a 3D volume a sub-brick.  

This is an odd lingual quirk.  But to date, 
this appears to be the only quirk in the 
AFNI software (or its developers).
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• Sub-brick selection by volume index
AFNI has a convenience feature of being able to select subset(s) of volumes for 
copying, calculation, etc. from a 4D set.  
This works by putting the index or index range in square brackets and quotation 
marks "[ ]" ("" keep the terminal from interpreting the square brackets specially).  

*AFNI terminology sidenote*
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• Sub-brick selection by volume index
AFNI has a convenience feature of being able to select subset(s) of volumes for 
copying, calculation, etc. from a 4D set.  
This works by putting the index or index range in square brackets and quotation 
marks "[ ]" ("" keep the terminal from interpreting the square brackets specially).  
A comma separates indices, and two dots .. specifies an (inclusive) range; $ means 
final volume.  Ex.:

DSET"[0]"           # initial subbrick (NB: count from 0!)

DSET"[0..5]"        # subbricks 0,1,2,3,4,5

DSET"[3,5..8,19]"   # subbricks 3,5,6,7,8,19

DSET"[1,14,29..$]"  # subbricks 1,14,29-to-the-last

DSET[0,4,5,15]      # ERROR in tcsh (no quotes); OK in bash

Ex. application, to copy out subset:
3dcalc -a DSET "[3,5..8,19]" -expr 'a' -prefix DSET_NEW

Fun fact: there are other forms of subbrick selection (brik label, voxel value...).

*AFNI terminology sidenote*
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• What are the grid’s properties?

Grids
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• What are the grid’s properties?
 →  One is “size.”  Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
     - independent of voxel size

2 vox,

6 vox

3 vox,
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• What are the grid’s properties?
 →  One is “size.”  Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
     - independent of voxel size

2) field of view (FOV): units of mm, 3D phys vol of all voxels
                 - depends on voxel size (dx, dy, dz) 

2 vox,

6 vox, 6*dx (mm)

3 vox,

x

yz

2*dz  
(mm)

3*dy 
(mm)
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• What are the grid’s properties?
 →  One is “size.”  Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
     - independent of voxel size

2) field of view (FOV): units of mm, 3D phys vol of all voxels
                 - depends on voxel size (dx, dy, dz) 
3) slab: units of mm, phys dist between first & last centroids 

     - e.g., dist between [0]th and [ni-1]th centroid

2 vox,

6 vox, 6*dx (mm)

3 vox,

x

yz 5*dx (mm)

1*dz  
(mm) 2*dy 

(mm)

2*dz  
(mm)

3*dy 
(mm)
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• When reporting location of interest-- e.g., cluster peak-- one can't just provide 
(x, y, z) values.  One also has to provide the coordinate order being used. 

• Two main families of coordinate order in the literature:
RAI (DICOM):  negative numbers are to the right, anterior and inferior
LPI (SPM):      negative numbers are to the left, posterior and inferior

e.g.:  in RAI order, cross-hair coordinates are (-36, -12, 31)

Describing location in dsets
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• When reporting location of interest-- e.g., cluster peak-- one can't just provide 
(x, y, z) values.  One also has to provide the coordinate order being used. 

• Two main families of coordinate order in the literature:
RAI (DICOM):  negative numbers are to the right, anterior and inferior
LPI (SPM):      negative numbers are to the left, posterior and inferior

e.g.:  in LPI order, cross-hair coordinates are (36, 12, 31)

Describing location in dsets
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• When reporting location of interest-- e.g., cluster peak-- one can't just provide 
(x, y, z) values.  One also has to provide the coordinate order being used. 

• Two main families of coordinate order in the literature:
RAI (DICOM):  negative numbers are to the right, anterior and inferior
LPI (SPM):      negative numbers are to the left, posterior and inferior

e.g.:  in LPI order, cross-hair coordinates are (36, 12, 31)

Describing location in dsets

**

* The GUI default coordinate order can be set in the ~/.afnirc file.
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• When reporting location of interest-- e.g., cluster peak-- one can't just provide 
(x, y, z) values.  One also has to provide the coordinate order being used. 

• Two main families of coordinate order in the literature:
RAI (DICOM):  negative numbers are to the right, anterior and inferior
LPI (SPM):      negative numbers are to the left, posterior and inferior

e.g.:  in LPI order, cross-hair coordinates are (36, 12, 31)

• A better way to report coordinates, which avoids this hassle (and chance for error), 
is to report directionalized coordinates, e.g.,  (36R, 12A, 31S).  That way, there is 
not ambiguity/mental calculation.

Describing location in dsets
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• Where is information stored in files?
 →  A file contains two categories of information:

data block:  the numbers stored at each voxel
header:       organizational information about the dset, like:

origin, orient, dimensions, voxel size, TR, labeltables, etc.

 →  use 3dinfo to see all header info, or individual parts

Volumetric data sets: files
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• Where is information stored in files?
 →  A file contains two categories of information:

data block:  the numbers stored at each voxel
header:       organizational information about the dset, like:

origin, orient, dimensions, voxel size, TR, labeltables, etc.

 →  use 3dinfo to see all header info, or individual parts

 →  There are multiple volumetric file formats.  In AFNI, we mostly use two:

BRIK-HEAD: pair of files, e.g., DSET+orig.HEAD and DSET+orig.BRIK
• BRIK file contains data block (only); is binary format
• HEAD file contains header info (only); is text format

NIFTI: single file, e.g., DSET.nii, or (compressed) DSET.nii.gz
• both header and data block in the same file; is binary format

Volumetric data sets: files
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• VIEW and SPACE properties in a header
• BRIK/HEAD file names contain more info than just names (for NII, just in header): 

DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.
• This is the (AFNI) view. It describes if the dset is in original/native/acquired 

coordinates, or if it has been aligned to a template space (or AC-PC aligned).  

*AFNI terminology sidenote*
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• VIEW and SPACE properties in a header
• BRIK/HEAD file names contain more info than just names (for NII, just in header): 

DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.
• This is the (AFNI) view. It describes if the dset is in original/native/acquired 

coordinates, or if it has been aligned to a template space (or AC-PC aligned).  

• The space property carries the specific name of which space (MNI, etc.) it is in.

  3dinfo -space -av_space DSET 

– Hands-on time!  

*AFNI terminology sidenote*
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• VIEW and SPACE properties in a header
BRIK/HEAD file names contain more info than just names (for NII, just in header): 

DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.
• This is the (AFNI) view. It describes if the dset is in original/native/acquired 

coordinates, or if it has been aligned to a template space (or AC-PC aligned). 

• The space property carries the specific name of which space (MNI, etc.) it is in.

  3dinfo -space -av_space DSET   

• In the GUI, tlrc dsets have special features like "whereami" and atlas access.

• Dsets of different spaces cannot be overlayed in the GUI.

*AFNI terminology sidenote*
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• VIEW and SPACE properties in a header
• BRIK/HEAD file names contain more info than just names (for NII, just in header): 

DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.
• This is the (AFNI) view. It describes if the dset is in original/native/acquired 

coordinates, or if it has been aligned to a template space (or AC-PC aligned).

• The space property carries the specific name of which space (MNI, etc.) it is in.

  3dinfo -space -av_space DSET   

• In the GUI, tlrc dsets have special features like "whereami" and atlas access.

• Dsets of different spaces cannot be overlayed in the GUI.

• Ex.: VIEW SPACE
orig ORIG # some original space
orig TLRC # mapped to a template space, called TLRC

orig MNI # mapped to a template space, called MNI
orig HaskinsPeds # mapped to a template space, called HaskinsPeds

• Note: tlrc is generic view, while TLRC name is specific to a template space.

Fun fact: these properties also map onto NIFTI sform and qform codes directly.

*AFNI terminology sidenote*
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• Who are a voxel’s neighbors?

Sidenote: Getting to know your neighbors
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• Who are a voxel’s neighbors?
 →  This is used for blurring, dilating, clustering and several other steps.

 →  Different softwares define this differently by default (o-o-o-of course…).

Sidenote: Getting to know your neighbors

NB: in AFNI, one can choose any of these three definitions, 
typically with the “NN” specification.  Just be consistent.

(NN=1) (NN=2) (NN=3)
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• AFNI can read/transform other data set formats
+ ANALYZE (.hdr/.img file pairs), such as from SPM, FSL; e.g., 3dcopy
+ MINC-1 (.mnc), such as from mnitools [but not MINC-2]; e.g., 3dMINCtoAFNI

+ CTF (.mri, .svl), from MEG analysis volumes
+ BrainVoyager (.vmr), from BrainVoyager; e.g., 3dBRAIN_VOYAGERtoAFNI
+ ASCII text (.1D): just numbers arranged into columns; e.g., 3dUndump

• Note: these other formats may be missing some standard header information, which 
may need to be borrowed/used from other known files in NII or BRIK/HEAD format 
(e.g., 3dUndump to get grid)

• AFNI can convert volumes to MINC-1, ANALYZE, text file of coordinates 
(3dAFNItoMINC, 3dAFNItoANALYZE, 3dmaskdump, etc.)

• For fuller related program list, see:

• Always check your results carefully when converting to other format/software!

Other data set formats

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#copy-convert-manipulate-dsets
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Appendix 1: non-volumetric files
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*.1D files

1D files: text file, columns and/or rows of numbers
+ can represent time series, alignment/motion parameters, 
   voxel locations, etc.
+ might include "# commented regions" at the top

Ways to view
+ open in text editor:  "afni_open -t FILE.1D"
+ view in terminal:  less, cat
+ plot:  AFNI's 1dplot or 1dplot.py

- each column is one time series
- Ex.: 1dplot file.1D
     1dplot.py -infiles file.1D -prefix OUT.jpg

Useful programs for these types of dsets
+ 1dcat, 1dtranspose, 1d_tool.py, cat_matvec, 1deval, …
+ see:

 1
 2
 3
 1
-1
-2
 3
 1
 5.1
 0
-3

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#deal-with-1d-time-series
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*.txt and/or *.dat files

TXT/DAT files: text file, could be numbers, could be words/strings
+ e.g., stimulus timing files with numbers and symbols
+ might include "# commented regions" at the top

Ways to view
+ open in text editor:  "afni_open -t FILE.1D"
+ view in terminal:  less, cat
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*.json files

JSON files: text file, stores dictionaries and lists of information
+ general/standard file format, stands for JavaScript Object Notation
+ increasingly commonly used in neuroimaging to include extra/meta 
   information about datasets

Ways to view
+ open in text editor:  "afni_open -t FILE.1D"
+ view in terminal:  less, cat
++ but to read/write/use:  very common to use Python functionality
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*.niml.dset and *.gii files

GII (GifTI): surface equivalent of NifTI files; standard format
NIML-DSET: surface data file format used in AFNI 

 →  for both, will deal more with these in the SUMA talks
(SUMA also has other intermediate/useful files *.niml*)

Useful programs for these types of dsets
+ See:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#suma-surface-calculations-formats-and-viewing
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*.niml.lt files

“labeltable” files made by and used in AFNI 
+ files to associate a label (text string) with an ROI value (integer)
+ e.g., store names of ROIs in an atlas, such as FS parcellation
+ discussed more in the ROI talks

If you can’t wait to read more
+ See @MakeLabelTable’s help:

+ See ROI demo examples in AFNI doc tutorials:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/rois_corr_vis/main_toc.html

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/@MakeLabelTable_sphx.html#ahelp-makelabeltable
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Appendix 2: data storage on disk (+ set origin/orient)
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• How is a 3D vol stored on the computer?

Dataset storage: origin and orientation
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• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation
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• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

Example, 
2D grid

dset origin:
(i, j) = (0, 0)

 → “ stored on comp: ...

coordinate origin:
(x, y) = (0, 0)

RL

I

S



-52-

dset origin:
(i, j) = (0, 0)

• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

Example, 
2D grid

read order:

 → “ stored on comp: ...

RL

I

S

 →  orientation: LI

coordinate origin:
(x, y) = (0, 0)
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dset origin:
(i, j) = (0, 0)

• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

Example, 
2D grid

read order:

 → “ stored on comp: ...

RL

I

S

 →  orientation: IL

coordinate origin:
(x, y) = (0, 0)
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• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

RL
A

P

I

S

Ex: orientation = LAI

 → “ stored on comp: ...

See this in a vol with:  3dinfo -orient -origin DSET

read order:
Q1: So where is the origin here?
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• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = LAI

 → “ stored on comp: ...

See this in a vol with:  3dinfo -orient -origin DSET

read order:

Q2: So how is the data read into storage?
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• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = LAI

 → “ stored on comp: ...

See this in a vol with:  3dinfo -orient -origin DSET

read order:
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• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = AIL

 → “ stored on comp: ...

See this in a vol with:  3dinfo -orient -origin DSET

read order:

(NB: the arrows point 
“into” slide here...)
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• How is a 3D vol stored on the computer?
 →  Row by row (as a flattened matrix), starting from one corner called the origin.

    Orientation states which corner, and in which order the rows are read (e.g., RPI).
    At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = RPI

 → “ stored on comp: ...

See this in a vol with:  3dinfo -orient -origin DSET

read order:
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AFNI program note on dset and grid properties

To simply find out what the dset’s grid, orientation, origin, etc. 
properties are, 3dinfo is the way to go.  Ex.:
  3dinfo -orient -o3 DSET
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AFNI program note on dset and grid properties

To simply find out what the dset’s grid, orientation, origin, etc. 
properties are, 3dinfo is the way to go.  Ex.:
  3dinfo -orient -o3 DSET

To alter dset/grid properties:
In AFNI, the program 3dresample is useful for starting with one input 
and making a dset with a new grid, orientation, origin, etc.  The 
program assumes that the starting information (both header and brick 
info) are correct. Ex.:
  3dresample -orient RAI -prefix DSET_NEW -inset DSET

To change grid, orientation, origin, etc. properties when the header 
information is incorrect, then the program 3drefit is useful. Ex.:
  3drefit -orient RAI -inset DSET

Note the different purposes of 3dresample and 3drefit.
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