
–1–

AFNI & FMRI
Introduction, Concepts, Principles

http://afni.nimh.nih.gov/afni

–2–

AFNI = Analysis of Functional NeuroImages

• Developed to provide an environment for FMRI data analyses
 And a platform for development of new software
• AFNI refers to both the program of that name and the entire
package of external programs and plugins (more than 200)

• Important principles in the development of AFNI:
 Allow user to stay close to the data and view it in many

different ways
 Give users the power to assemble pieces in different ways

to make customized analyses
o “With great power comes great responsibility”
 — to understand the analyses and the tools

 “Provide mechanism, not policy”
 Allow other programmers to add features that can interact

with the rest of the package

–3–

–4–

Principles (and Caveats) We* Live By

• Fix significant bugs as soon as possible
 But, we define “significant”

• Nothing is secret or hidden (AFNI is open source)
 But, possibly not very well documented or advertised

• Release early and often
 All users are beta-testers for life

• Help the user (message board; consulting with NIH users)
 Until our patience expires

• Try to anticipate users’ future needs
 What we think you will need may not be what you

actually end up needing
*

–5–

Before We Really Start
• AFNI has many programs and they have many options
• Assembling the programs to do something useful and good
seems confusing (OK, is confusing) when you start
• To help overcome this problem, we have “super-scripts”
that carry out important tasks
 Each script runs multiple AFNI programs
 We recommend using these as the basis for FMRI work

o When you need help, it will make things simpler for us and for
you if you are using these scripts

• afni_proc.py = Single subject FMRI pre-processing and
time series analysis for functional activation
 uber_subject.py = GUI for afni_proc.py
• align_epi_anat.py = Image alignment (registration),
including anatomical-EPI, anatomical-anatomical, EPI-EPI,
and alignment to atlas space (Talairach/MNI)

–6–

What is Functional MRI?
• 1991: Discovery that MRI-measurable signal
increases a few % locally in the brain subsequent
to increases in neuronal activity (Kwong, et al.)

Cartoon of
MRI signal
in a single

“activated”
brain voxel

time

C: ≈ 2 s
delay

D: 4-5 s
rise

B: 5 s neural activity

E: 5 s plateau

F: 4-6 s
fall

G: Return to
baseline

(or undershoot)

A: Pre-activation
baseline

A

Signal increase
caused by
change in H2O
surroundings:
more oxygenated
hemoglobin is
present

with no noise! Contrast
through

time

–7–

How FMRI Experiments Are Done
• Alternate subject’s neural state between 2 (or more)

conditions using sensory stimuli, tasks to perform, ...
 Can only measure relative signals, so must look for

changes in the signal between the conditions
• Acquire MR images repeatedly during this process
• Search for voxels whose NMR signal time series (up-and-

down) matches the stimulus time series pattern (on-and-off)
 FMRI data analysis is basically pattern matching in time

• Signal changes due to neural activity are small
• Need 500 or so images in time series (in each slice)

takes 30 min or so to get reliable activation maps
• Usually break image acquisition into shorter “runs” to give the

subject and scanner some break time

• Other small effects can corrupt the results post-
process the data to reduce these effects & be vigilant

• Lengthy computations for image recon and temporal
pattern matching data analysis usually done offline

–8–

Sample Data Time Series
• 64×64 matrix (TR=2.5 s; 130 time points per imaging run)

• Somatosensory task: 27 s “on”, 27 s “rest”
• Note that this is really good data

pattern of expected
BOLD signal

pattern fitted to data

One echo-planar image

One anatomical image, with
voxels that match the pattern

given a color overlay

data

-11-

What is a volumetric data set?
How do I get one?

-12-

Abbrevs used here

abbrev = abbreviation
AKA = also known as
anat = anatomical
diff = difference
dset = dataset
e.g. = exempli gratia (= “for example”)
EPI = echo planar image
Ex = example
FOV = field of view
i.e. = id est (= “that is”)
ijk = coordinate indices (integer)
NB = nota bene (= “note well”)
phys = physics or physical
ref = reference
subj = subject
vol = volume
vox = voxel(s)
xyz = physical coordinates (units of mm)

-13-

• Data are often aquired as DICOM files
• AFNI has several programs for creating BRIK-HEAD and NIFTI files from DICOMs
• One has to be careful with DICOMs- not really standardized (booo!), fields/structure

can change across scanner vendor, across version numbers, across acquisition
sequences, and on the 3rd Tuesday after a blue moon.

• Some AFNI programs:
+ dcm2niix_afni: Chris Rorden's popular program, distributed in AFNI (thx, Chris!)
 - very general use, can create whole collection of dsets

 - NB: NIFTI does not store complicated slice timings, so even if dcm2niix_afni can
find it, it can't be stored

 - AFNI's 3drefit can be used to add slice timing info to the AFNI header extension

+ Dimon: R Reynold's creation, originally for sending "realtime FMRI" direct to AFNI
+ fat_proc_convert_dcm_{anat,dwis}: wrappers of dcm2niix_afni for DWI proc
+ and:

• *Always* check your results carefully (left-right flips!) when converting from
DICOM!

Creating dsets from DICOM files

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#dicom-info-and-conversion

-14-

• What is a volumetric data set?

Volumetric data structure

-15-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

Volumetric data structure

3D grid

dx
dy

dz

voxel

ed
ge

s

-16-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

Volumetric data structure

3D grid

2 ways to describe each voxel location
+ “i, j, k”: integer indices, counting voxels from one corner

 - independent of voxel size (just storage indices on disk)
+ “x, y, z”: units of mm, physical location of voxel centroid

 - depends on voxel size (dx, dy, dz)

dx
dy

dzcentroid

voxel

ed
ge

s

-17-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).

Volumetric data structure

3D grid

2 ways to describe each voxel location
+ “i, j, k”: integer indices, counting voxels from one corner

 - independent of voxel size (just storage indices on disk)
+ “x, y, z”: units of mm, physical location of voxel centroid

 - depends on voxel size (dx, dy, dz)

dx
dy

dzcentroid

voxel

ed
ge

s

4

color mapping

-18-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

…

-19-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

…

3D grid + time dimension
 “→ “ 4D data set”

+ Can talk about time as “t”
in physical units of seconds, or
as “n” in index units of simple
counting.

-20-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

Volumetric data structure

3D grid

… at t=0

… at t= 1TR

… at t= 2TR

… at t= 3TR

…

3D grid + time dimension
 “→ “ 4D data set”

+ Can talk about time as “t”
in physical units of seconds, or
as “n” in index units of simple
counting.
+ Also say that each voxel
contains a “time series”, e.g.:

-21-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

AFNI terminology sidenote

3D grid

…

We often refer to a 3D volume as a brick,
because, well, it is an example of a solid,
similar-looking 3D shape.

-22-

• What is a volumetric data set?
 → It a grid made up of voxels (basic case: 3D).

 Each voxel contains a number, which is represented by a color (gray, RGB, etc.).
 A time series data set is an ordered set of 3D vols (a ‘4D data set’).→

AFNI terminology sidenote

3D grid

…

We often refer to a 3D volume as a brick,
because, well, it is an example of a solid,
similar-looking 3D shape.

Particularly in the context of 4D data sets,
we also call a 3D volume a sub-brick.

This is an odd lingual quirk. But to date,
this appears to be the only quirk in the
AFNI software (or its developers).

-23-

• Sub-brick selection by volume index
AFNI has a convenience feature of being able to select subset(s) of volumes for
copying, calculation, etc. from a 4D set.
This works by putting the index or index range in square brackets and quotation
marks "[]" ("" keep the terminal from interpreting the square brackets specially).

AFNI terminology sidenote

-24-

• Sub-brick selection by volume index
AFNI has a convenience feature of being able to select subset(s) of volumes for
copying, calculation, etc. from a 4D set.
This works by putting the index or index range in square brackets and quotation
marks "[]" ("" keep the terminal from interpreting the square brackets specially).
A comma separates indices, and two dots .. specifies an (inclusive) range; $ means
final volume. Ex.:

DSET"[0]" # initial subbrick (NB: count from 0!)

DSET"[0..5]" # subbricks 0,1,2,3,4,5

DSET"[3,5..8,19]" # subbricks 3,5,6,7,8,19

DSET"[1,14,29..$]" # subbricks 1,14,29-to-the-last

DSET[0,4,5,15] # ERROR in tcsh (no quotes); OK in bash

Ex. application, to copy out subset:
3dcalc -a DSET "[3,5..8,19]" -expr 'a' -prefix DSET_NEW

Fun fact: there are other forms of subbrick selection (brik label, voxel value...).

AFNI terminology sidenote

-25-

• What are the grid’s properties?

Grids

-26-

• What are the grid’s properties?
 → One is “size.” Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
 - independent of voxel size

2 vox,

6 vox

3 vox,

-27-

• What are the grid’s properties?
 → One is “size.” Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
 - independent of voxel size

2) field of view (FOV): units of mm, 3D phys vol of all voxels
 - depends on voxel size (dx, dy, dz)

2 vox,

6 vox, 6*dx (mm)

3 vox,

x

yz

2*dz
(mm)

3*dy
(mm)

-28-

• What are the grid’s properties?
 → One is “size.” Three ways to describe it:

Grids

i

jk

1) matrix size: count voxels in each dimension (ni rows, nj cols, nk slices)
 - independent of voxel size

2) field of view (FOV): units of mm, 3D phys vol of all voxels
 - depends on voxel size (dx, dy, dz)
3) slab: units of mm, phys dist between first & last centroids

 - e.g., dist between [0]th and [ni-1]th centroid

2 vox,

6 vox, 6*dx (mm)

3 vox,

x

yz 5*dx (mm)

1*dz
(mm) 2*dy

(mm)

2*dz
(mm)

3*dy
(mm)

-29-

• When reporting location of interest-- e.g., cluster peak-- one can't just provide
(x, y, z) values. One also has to provide the coordinate order being used.

• Two main families of coordinate order in the literature:
RAI (DICOM): negative numbers are to the right, anterior and inferior
LPI (SPM): negative numbers are to the left, posterior and inferior

e.g.: in RAI order, cross-hair coordinates are (-36, -12, 31)

Describing location in dsets

-30-

• When reporting location of interest-- e.g., cluster peak-- one can't just provide
(x, y, z) values. One also has to provide the coordinate order being used.

• Two main families of coordinate order in the literature:
RAI (DICOM): negative numbers are to the right, anterior and inferior
LPI (SPM): negative numbers are to the left, posterior and inferior

e.g.: in LPI order, cross-hair coordinates are (36, 12, 31)

Describing location in dsets

-31-

• When reporting location of interest-- e.g., cluster peak-- one can't just provide
(x, y, z) values. One also has to provide the coordinate order being used.

• Two main families of coordinate order in the literature:
RAI (DICOM): negative numbers are to the right, anterior and inferior
LPI (SPM): negative numbers are to the left, posterior and inferior

e.g.: in LPI order, cross-hair coordinates are (36, 12, 31)

Describing location in dsets

**

* The GUI default coordinate order can be set in the ~/.afnirc file.

-32-

• When reporting location of interest-- e.g., cluster peak-- one can't just provide
(x, y, z) values. One also has to provide the coordinate order being used.

• Two main families of coordinate order in the literature:
RAI (DICOM): negative numbers are to the right, anterior and inferior
LPI (SPM): negative numbers are to the left, posterior and inferior

e.g.: in LPI order, cross-hair coordinates are (36, 12, 31)

• A better way to report coordinates, which avoids this hassle (and chance for error),
is to report directionalized coordinates, e.g., (36R, 12A, 31S). That way, there is
not ambiguity/mental calculation.

Describing location in dsets

-33-

• Where is information stored in files?
 → A file contains two categories of information:

data block: the numbers stored at each voxel
header: organizational information about the dset, like:

origin, orient, dimensions, voxel size, TR, labeltables, etc.

 → use 3dinfo to see all header info, or individual parts

Volumetric data sets: files

-34-

• Where is information stored in files?
 → A file contains two categories of information:

data block: the numbers stored at each voxel
header: organizational information about the dset, like:

origin, orient, dimensions, voxel size, TR, labeltables, etc.

 → use 3dinfo to see all header info, or individual parts

 → There are multiple volumetric file formats. In AFNI, we mostly use two:

BRIK-HEAD: pair of files, e.g., DSET+orig.HEAD and DSET+orig.BRIK
• BRIK file contains data block (only); is binary format
• HEAD file contains header info (only); is text format

NIFTI: single file, e.g., DSET.nii, or (compressed) DSET.nii.gz
• both header and data block in the same file; is binary format

Volumetric data sets: files

-35-

• VIEW and SPACE properties in a header
• BRIK/HEAD file names contain more info than just names (for NII, just in header):

DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.
• This is the (AFNI) view. It describes if the dset is in original/native/acquired

coordinates, or if it has been aligned to a template space (or AC-PC aligned).

AFNI terminology sidenote

-36-

• VIEW and SPACE properties in a header
• BRIK/HEAD file names contain more info than just names (for NII, just in header):

DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.
• This is the (AFNI) view. It describes if the dset is in original/native/acquired

coordinates, or if it has been aligned to a template space (or AC-PC aligned).

• The space property carries the specific name of which space (MNI, etc.) it is in.

 3dinfo -space -av_space DSET

– Hands-on time!

AFNI terminology sidenote

-37-

• VIEW and SPACE properties in a header
BRIK/HEAD file names contain more info than just names (for NII, just in header):

DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.
• This is the (AFNI) view. It describes if the dset is in original/native/acquired

coordinates, or if it has been aligned to a template space (or AC-PC aligned).

• The space property carries the specific name of which space (MNI, etc.) it is in.

 3dinfo -space -av_space DSET

• In the GUI, tlrc dsets have special features like "whereami" and atlas access.

• Dsets of different spaces cannot be overlayed in the GUI.

AFNI terminology sidenote

-38-

• VIEW and SPACE properties in a header
• BRIK/HEAD file names contain more info than just names (for NII, just in header):

DSET+orig.HEAD and DSET+orig.BRIK, or

DSET+tlrc.HEAD and DSET+tlrc.BRIK, etc.
• This is the (AFNI) view. It describes if the dset is in original/native/acquired

coordinates, or if it has been aligned to a template space (or AC-PC aligned).

• The space property carries the specific name of which space (MNI, etc.) it is in.

 3dinfo -space -av_space DSET

• In the GUI, tlrc dsets have special features like "whereami" and atlas access.

• Dsets of different spaces cannot be overlayed in the GUI.

• Ex.: VIEW SPACE
orig ORIG # some original space
orig TLRC # mapped to a template space, called TLRC

orig MNI # mapped to a template space, called MNI
orig HaskinsPeds # mapped to a template space, called HaskinsPeds

• Note: tlrc is generic view, while TLRC name is specific to a template space.

Fun fact: these properties also map onto NIFTI sform and qform codes directly.

AFNI terminology sidenote

-39-

• Who are a voxel’s neighbors?

Sidenote: Getting to know your neighbors

-40-

• Who are a voxel’s neighbors?
 → This is used for blurring, dilating, clustering and several other steps.

 → Different softwares define this differently by default (o-o-o-of course…).

Sidenote: Getting to know your neighbors

NB: in AFNI, one can choose any of these three definitions,
typically with the “NN” specification. Just be consistent.

(NN=1) (NN=2) (NN=3)

-41-

• AFNI can read/transform other data set formats
+ ANALYZE (.hdr/.img file pairs), such as from SPM, FSL; e.g., 3dcopy
+ MINC-1 (.mnc), such as from mnitools [but not MINC-2]; e.g., 3dMINCtoAFNI

+ CTF (.mri, .svl), from MEG analysis volumes
+ BrainVoyager (.vmr), from BrainVoyager; e.g., 3dBRAIN_VOYAGERtoAFNI
+ ASCII text (.1D): just numbers arranged into columns; e.g., 3dUndump

• Note: these other formats may be missing some standard header information, which
may need to be borrowed/used from other known files in NII or BRIK/HEAD format
(e.g., 3dUndump to get grid)

• AFNI can convert volumes to MINC-1, ANALYZE, text file of coordinates
(3dAFNItoMINC, 3dAFNItoANALYZE, 3dmaskdump, etc.)

• For fuller related program list, see:

• Always check your results carefully when converting to other format/software!

Other data set formats

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#copy-convert-manipulate-dsets

-42-

Appendix 1: non-volumetric files

-43-

*.1D files

1D files: text file, columns and/or rows of numbers
+ can represent time series, alignment/motion parameters,
 voxel locations, etc.
+ might include "# commented regions" at the top

Ways to view
+ open in text editor: "afni_open -t FILE.1D"
+ view in terminal: less, cat
+ plot: AFNI's 1dplot or 1dplot.py

- each column is one time series
- Ex.: 1dplot file.1D
 1dplot.py -infiles file.1D -prefix OUT.jpg

Useful programs for these types of dsets
+ 1dcat, 1dtranspose, 1d_tool.py, cat_matvec, 1deval, …
+ see:

 1
 2
 3
 1
-1
-2
 3
 1
 5.1
 0
-3

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#deal-with-1d-time-series

-44-

*.txt and/or *.dat files

TXT/DAT files: text file, could be numbers, could be words/strings
+ e.g., stimulus timing files with numbers and symbols
+ might include "# commented regions" at the top

Ways to view
+ open in text editor: "afni_open -t FILE.1D"
+ view in terminal: less, cat

-45-

*.json files

JSON files: text file, stores dictionaries and lists of information
+ general/standard file format, stands for JavaScript Object Notation
+ increasingly commonly used in neuroimaging to include extra/meta
 information about datasets

Ways to view
+ open in text editor: "afni_open -t FILE.1D"
+ view in terminal: less, cat
++ but to read/write/use: very common to use Python functionality

-46-

*.niml.dset and *.gii files

GII (GifTI): surface equivalent of NifTI files; standard format
NIML-DSET: surface data file format used in AFNI

 → for both, will deal more with these in the SUMA talks
(SUMA also has other intermediate/useful files *.niml*)

Useful programs for these types of dsets
+ See:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/classified_progs.html#suma-surface-calculations-formats-and-viewing

-47-

*.niml.lt files

“labeltable” files made by and used in AFNI
+ files to associate a label (text string) with an ROI value (integer)
+ e.g., store names of ROIs in an atlas, such as FS parcellation
+ discussed more in the ROI talks

If you can’t wait to read more
+ See @MakeLabelTable’s help:

+ See ROI demo examples in AFNI doc tutorials:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/rois_corr_vis/main_toc.html

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/@MakeLabelTable_sphx.html#ahelp-makelabeltable

-48-

Appendix 2: data storage on disk (+ set origin/orient)

-49-

• How is a 3D vol stored on the computer?

Dataset storage: origin and orientation

-50-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

-51-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

Example,
2D grid

dset origin:
(i, j) = (0, 0)

 → “ stored on comp: ...

coordinate origin:
(x, y) = (0, 0)

RL

I

S

-52-

dset origin:
(i, j) = (0, 0)

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

Example,
2D grid

read order:

 → “ stored on comp: ...

RL

I

S

 → orientation: LI

coordinate origin:
(x, y) = (0, 0)

-53-

dset origin:
(i, j) = (0, 0)

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

Example,
2D grid

read order:

 → “ stored on comp: ...

RL

I

S

 → orientation: IL

coordinate origin:
(x, y) = (0, 0)

-54-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

RL
A

P

I

S

Ex: orientation = LAI

 → “ stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:
Q1: So where is the origin here?

-55-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = LAI

 → “ stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:

Q2: So how is the data read into storage?

-56-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = LAI

 → “ stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:

-57-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = AIL

 → “ stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:

(NB: the arrows point
“into” slide here...)

-58-

• How is a 3D vol stored on the computer?
 → Row by row (as a flattened matrix), starting from one corner called the origin.

 Orientation states which corner, and in which order the rows are read (e.g., RPI).
 At dset origin (i, j, k) = (0, 0, 0); at coordinate origin (x, y, z) = (0, 0, 0)!

Dataset storage: origin and orientation

3D vol grid:

origin
RL

A

P

I

S

Ex: orientation = RPI

 → “ stored on comp: ...

See this in a vol with: 3dinfo -orient -origin DSET

read order:

-59-

AFNI program note on dset and grid properties

To simply find out what the dset’s grid, orientation, origin, etc.
properties are, 3dinfo is the way to go. Ex.:
 3dinfo -orient -o3 DSET

-60-

AFNI program note on dset and grid properties

To simply find out what the dset’s grid, orientation, origin, etc.
properties are, 3dinfo is the way to go. Ex.:
 3dinfo -orient -o3 DSET

To alter dset/grid properties:
In AFNI, the program 3dresample is useful for starting with one input
and making a dset with a new grid, orientation, origin, etc. The
program assumes that the starting information (both header and brick
info) are correct. Ex.:
 3dresample -orient RAI -prefix DSET_NEW -inset DSET

To change grid, orientation, origin, etc. properties when the header
information is incorrect, then the program 3drefit is useful. Ex.:
 3drefit -orient RAI -inset DSET

Note the different purposes of 3dresample and 3drefit.

	Slide 1
	AFNI = Analysis of Functional NeuroImages
	Slide 3
	Principles (and Caveats) We* Live By
	Before We Really Start
	What is Functional MRI?
	How FMRI Experiments Are Done
	Sample Data Time Series
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

