AFNI: Population-Level Modeling

Gang Chen

SSCC/NIMH, National Institutes of Health, USA
November 19, 2020

Three subsections

- Part 1 - Overview, perspectives and concepts
- Part 2 - Basic modeling approaches
- Part 3 - Advanced modeling approaches

Themes

- Modeling considerations

- Spatial unit: voxel, surface node or ROI level
- Input data: effect estimates with/without uncertainty
- Data reduction: trial- vs condition-level effects
- BOLD response: presumed vs estimated HDR
- Handling quantitative variables: linear vs nonlinear
- Interaction: homogeneity vs heterogeneity
- Model types
- Conventional: Student's t, GLM, AN(C)OVA, LME
- Adventurous: Bayes, multilevel smoothing splines
- Focus
- Model vs effects of interest or no interest
- Estimation (full results) vs inference (dichotomization)

Program list

Spatial Unit	Program	Model
voxel, node, ROI	3dttest++	t-tests, GLM
	3dMEMA	effect + t-stat as input
	3dMVM	GLM, AN(C)OVA
	3dLME	simple LME
massively univariate	3dLMEr	LME, test-rest reliability
	3dMSS	multilevel smoothing splines
	3dICC	intra-class correlation
	3dISC	inter-subject correlation
ROI Bayesian multilevel	RBA	region-based analysis
	MBA	matrix-based analysis

Data hierarchy

Why population-level modeling?

- Ideal but impractical: one model that incorporates everything
- Two-stage methodology
- Splitting
- Subject level: time series regression with GLS
- Population level
- Good but challenging: subject-level effect estimates with reliability (e.g. std dev)
- Common: subject-level effect estimates only; ignoring reliability
- Generalizability: part of scientific endeavor
- Prior assumption: cross-subject variability $\sim \mathcal{N}\left(0, \sigma^{2}\right)$
- Equally applicable to trials? Aggregation vs cross-trial variability

Perspectives of population-level modeling

- Data structure
- Categorical variables: factors
- Quantitative variables
- Within- or between-subject? Crossed or nested?
- Effects of interest vs no interest
- Interest: contrasts (A vs B), simple effects (A, B)
- No interest
- No-love treatment (nuisance variables): "covariates"
- Additive effects w/o interactions
- No mention in publications
- Model structure
- Student's t, GLM, AN(C)OVA, LME, MSS, BML
- Multiple testing adjustment
- Voxel-wise vs ROI-based

Some concepts

- Factors: within- vs between-subjects
- Between-subjects (patient vs control): independence
- Within-subject (positive vs negative): relatedness (e.g. variance-covariance)
- Factors: fixed- vs random-effect
- Fixed: constant; effects of interest (e.g., positive vs negative)
- Random: sample size; exchangeable (e.g., subjects, trials); generalizeability
- Clear dichotomy: conventional statistics
- Model structure
- Student's t, GLM, AN(C)OVA, LME, MSS, BML
- Multiple testing adjustment
- Overfitting: assuming no commonality
- Voxel-wise vs ROI-based

Three subsections

- Part 1 - Overview, perspectives and concepts
- Part 2 - Basic modeling approaches
- Part 3 - Advanced modeling approaches

Student's t-test

- One-sample: 3dttest++
- Data at each spatial unit: $y_{i}, i=1,2, \ldots, n$
- Special GLM with 2 parameters: $y_{i} \sim \mathcal{N}\left(m, \sigma^{2}\right)$
- Estimation
- $\widehat{m}=\frac{1}{n} \sum_{i=1}^{n} y_{i}, \widehat{\sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\widehat{m}\right)^{2}$
- Uncertainty interval: $(\widehat{m}-2 \widehat{\sigma}, \widehat{m}+2 \widehat{\sigma})$
- Inference - imprimatur: $t(n-1)$-statistic; p-value
- Paired: 3dttest++ -paired
- 1 group with 2 conditions - data at each spatial unit: $\left(y_{i 1}, y_{i 2}\right), i=1,2, \ldots, n$
- Reducing to one-sample: $y_{i 1}-y_{i 2} \sim \mathcal{N}\left(m, \sigma^{2}\right)$
- Two-sample: extension of one-sample; special univariate GLM
- Handling missing voxel values: -zskip

Univariate GLM

$-\geq 1$ groups; ≥ 0 quantitative variables

- AN(C)OVA without within-subject variables
- Data at each spatial unit: $\left(y_{i}, x_{i 1}, \ldots\right), i=1,2, \ldots, n$
- Formulation: $y_{i} \sim \mathcal{N}\left(a+b_{1} x_{i 1}+\ldots, \sigma^{2}\right)$
- Effects of interest: a, b_{1}, \ldots
- When an explanatory variable x is quantitative
- Centering: not needed for x effect; crucial for some effects
- Linearity assumption: too strong?
- Special GLMs
- Two-sample t-test
- AN(C)OVA w/o within-subject variables
- programs: 3dttest++, 3dMVM

Multivariate GLM

- AN(C)OVA with ≥ 1 within-subject factors
- Extension of paired t-test
- ≥ 1 groups, ≥ 0 quantitative variables (between-, not within-, subject)
- No quantitative within-subject variables
- Yes, go with LME
- Data at each spatial unit: \boldsymbol{y}
- Formulation: $\boldsymbol{Y} \sim \mathcal{N}(\boldsymbol{X} \boldsymbol{\beta}, \boldsymbol{\Sigma})$
- Problematic approach via univariate GLM: popular
- When an explanatory variable x is quantitative
- Centering: not needed for x effect; crucial for some effects
- Linearity assumption: too strong?

Multivariate GLM (cont.)

- Special cases: Student's t, univariate GLM
- Omnibus inferences through F-statistic
- Main effect - overall assessment about the differences among levels of a factor: emotion valences (positive, negative, neutral)
- Interaction - overall assessment about the relationship between ≥ 2 explanatory variables: group (patients, controls) and emotion (positive, negative, neutral)
- Effect partitioning
- contrasts: positive vs negative
- simple effects: positive
- Programs: 3dMVM, 3dLME, 3dLMEr

LME

$-\geq 1$ within-subject variables; multivariate GLM: a special case

- Differentiation of fixed and random effects
- Fixed: population effects (groups, tasks, slopes)
- Random: lower-level effects (cross-subject, cross-trial, cross-family)
- Data at each spatial unit: \boldsymbol{y}
- Hierarchical or multilevel structure
- Complex random effects
- ≥ 2 levels: cross- and within-subject; cross- and within-family
- Crossed random-effects structure: subject + trial
- Formulation: $\boldsymbol{Y} \sim \mathcal{N}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{b}, \boldsymbol{\Sigma})$
- Fixed effects $\boldsymbol{\beta}$
- Random effects $\boldsymbol{b} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{R})$: Varying intercept, varying slope

LME (cont.)

- When an explanatory variable x is quantitative
- Centering: not needed for x effect; crucial for some effects
- Linearity: too strong?
- Specialities
- Relatedness among varying effects: within-subject quantitative variables
- Missing data: missing at random
- Complex random effects: crossed structure; ICC; ISC
- When an explanatory variable x is quantitative
- Centering: not needed for x effect; crucial for some effects
- Linearity: too strong?
- Special cases: paired t-test and within-subject AN(C)OVA
- programs: 3dLME, 3dLMEr
- Gaussianity, point estimate, measurement error and numerical issues.

Accounting for effect uncertainty

- Uncertainty of subject-level effect estimates
- Largely ignored in the field
- Impact: mostly (not always) negligible
- Incorporation of uncertainty in response variable
- Weighting: differentiation based on reliability
- Similar to meta analysis
- Program: 3dMEMA
- Input: effect estimate (β) and t-statistic from each subject
- Applicability: similar to 3dttest++
- Missing data at voxel level: -missing_data 0

Handling quantitative predictors

- Quantitative predictors

- Examples: age, RT, gray-matter volume, ...
- Types: between-subject, within-subject
- Longitudinal vs cross-sectional
- Linearity
- Popular, easy implementation
- Between-subject predictor: 3dttest++ 3dMEMA, 3dMVM, 3dLME, 3dLMEr
- Within-subject predictor: 3dLME, 3dLMEr
- Nonlinearity
- Polynomials: difficulty with order selection and model validation
- Smoothing splines: adaptive and flexible
- Program: 3dMSS

Estimating hemodynamic response

- Presumed HDR
- Convenient, popular
- Large variations across regions, tasks, subjects, groups
- Inflexibility, lackluster fitting, compromised detection
- Estimating HDR
- Subject level: tent, cubic splines
- Population level: smooth splines
- Programs: 3dMVM, 3dMSS

Three subsections

- Part 1 - Overview, perspectives and concepts
- Part 2 - Basic modeling approaches
- Part 3 - Advanced modeling approaches

Accounting for cross-trial variability

- Subjects: samples for population
- Representatives from a hypothetical pool
- Each subject's effects expressed in the model
- Generalizability - reason for various models: GLM, AN(C)OVA, LME
- How about trials?
- Representatives from a hypothetical pool of experimental condition
- Subject level: one regressor per condition
- Cross-trial variability: fully ignored!
- Consequences: loss of generalizability legitimacy; distortion of effect estimates and statistical evidence
- Better approach: modeling trials
- Subject level: estimate trial effects
- Population level: accounting for cross-trial effects (e.g., 3dLMEr)

Inter-subject correlation analysis

Naturalistic scanning

- Task-related FMRI: too far-fetched from real life experience
- Movie watching, speech/music listening
- ISC analysis
- Data structure complexity: n subjects leads to $\frac{1}{2} n(n-1)$ ISC pairs
- How to disentangle the hierarchical structure? LME
- Program: 3dISC

Test-retest reliability

- Intra-class correlation (ICC)
- Same conditions repeated with the same subjects
- How repeatable or consistent of subjects' BOLD response across repetitions?
- ICC computation: ANOVA, LME
- Program: 3dICC
- Poor ICC: strong effects (e.g., Stroop, Flanker) in behavior measure and FMRI
- Modeling problem with classical ICC
- Reliability: subject-level metric
- Not suited for data with multiple trials
- Cross-trial variability not accounted for
- New modeling framework
- Subject level: obtain trial-level effects
- Population level: disentangle trial-level effects
- LME approach: not ideal (3dLMEr)
- Bayesian multilevel (BML): TRR

Handling multiplicity

- Massively univariate analysis
- Treat each spatial unit as an isolated entity: no commonality with peers
- As many models as spatial units
- Staple methodology over 30 years in neuroimaging
- Intuitive and straightforward
- Multiple testing adjustment: two approaches
- Leverage among neighboring spatial units
- Cluster-based adjustment
- 3dttest++ -Clustsim
- Other programs (e.g., 3dMVM, 3dLME, 3dLMEr): 3dClustSim
- Permutation-based adjustment: 3dttest++ -ETAC

Handling multiplicity (cont.)

Ignorant information across brain

- Problems
- Overfitting
- Information waste
- Heavy penalty
- Dichotomization
- Discrimination against anatomically small regions
- Vulnerability to data manipulations

Effect across spatial units
Really no prior knowledge?

Region-based analysis

- One model integrating all ROIs: Bayesian multilevel model (BML)

Matrix-based analysis

- Complexity of data structure
- Conventional: massively univarate analysis + multiplicity
- Hierarchical structure: BML
- Multiplicity dissolved
- Program: MBA

Matrix-based analysis (cont.)

- BML applied to a matrix dataset

