AFNI: Population-Level Modeling

Gang Chen

SSCC/NIMH, National Institutes of Health, USA

November 19, 2020

Three subsections

- ► Part 1 Overview, perspectives and concepts
- Part 2 Basic modeling approaches
- Part 3 Advanced modeling approaches

Themes

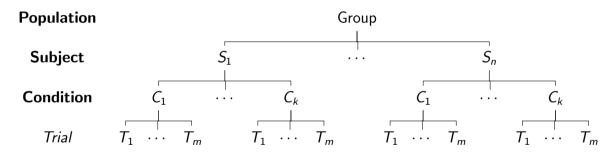
Modeling considerations

- Spatial unit: voxel, surface node or ROI level
- Input data: effect estimates with/without uncertainty
- Data reduction: trial- vs condition-level effects
- BOLD response: presumed vs estimated HDR
- Handling quantitative variables: linear vs nonlinear
- Interaction: homogeneity vs heterogeneity
- Model types
 - Conventional: Student's t, GLM, AN(C)OVA, LME
 - Adventurous: Bayes, multilevel smoothing splines
- Focus
 - Model vs effects of interest or no interest
 - Estimation (full results) vs inference (dichotomization)

Program list

Spatial Unit	Program	Model			
	3dttest++	<i>t</i> -tests, GLM			
	3dMEMA	effect $+ t$ -stat as input			
voxel, node, ROI	3dMVM	GLM, AN(C)OVA			
	3dLME	simple LME			
	3dLMEr	LME, test-rest reliability			
massively univariate	3dMSS	multilevel smoothing splines			
	3dICC	intra-class correlation			
	3dISC	inter-subject correlation			
ROI	RBA	region-based analysis			
Bayesian multilevel	MBA	matrix-based analysis			

Data hierarchy



Why population-level modeling?

Ideal but impractical: one model that incorporates everything

Two-stage methodology

- Splitting
 - Subject level: time series regression with GLS
 - Population level
- Good but challenging: subject-level effect estimates with reliability (e.g. std dev)
- Common: subject-level effect estimates only; ignoring reliability
- Generalizability: part of scientific endeavor
 - Prior assumption: cross-subject variability $\sim \mathcal{N}(0,\sigma^2)$
 - Equally applicable to trials? Aggregation vs cross-trial variability

Perspectives of population-level modeling

Data structure

- Categorical variables: factors
- Quantitative variables
- Within- or between-subject? Crossed or nested?
- Effects of interest vs no interest
 - Interest: contrasts (A vs B), simple effects (A, B)
 - No interest
 - No-love treatment (nuisance variables): "covariates"
 - Additive effects w/o interactions
 - No mention in publications
- Model structure
 - Student's t, GLM, AN(C)OVA, LME, MSS, BML
- Multiple testing adjustment
 - Voxel-wise vs ROI-based

Some concepts

- Factors: within- vs between-subjects
 - Between-subjects (patient vs control): independence
 - Within-subject (positive vs negative): relatedness (e.g. variance-covariance)
- Factors: fixed- vs random-effect
 - Fixed: constant; effects of interest (e.g., positive vs negative)
 - Random: sample size; exchangeable (e.g., subjects, trials); generalizeability
 - Clear dichotomy: conventional statistics
- Model structure
 - Student's t, GLM, AN(C)OVA, LME, MSS, BML
- Multiple testing adjustment
 - Overfitting: assuming no commonality
 - Voxel-wise vs ROI-based

Three subsections

- ► Part 1 Overview, perspectives and concepts
- ► Part 2 Basic modeling approaches
- Part 3 Advanced modeling approaches

Student's *t*-test

- One-sample: 3dttest++
 - Data at each spatial unit: y_i , i = 1, 2, ..., n
 - Special GLM with 2 parameters: $y_i \sim \mathcal{N}(m, \sigma^2)$
 - Estimation

•
$$\widehat{m} = \frac{1}{n} \sum_{i=1}^{n} y_i, \ \widehat{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \widehat{m})^2$$

• Uncertainty interval: $(\widehat{m} - 2\widehat{\sigma}, \ \widehat{m} + 2\widehat{\sigma})$

- Inference imprimatur: t(n-1)-statistic; p-value
- Paired: 3dttest++ -paired
 - 1 group with 2 conditions data at each spatial unit: (y_{i1}, y_{i2}) , i = 1, 2, ..., n
 - Reducing to one-sample: $y_{i1} y_{i2} \sim \mathcal{N}(m, \sigma^2)$
- Two-sample: extension of one-sample; special univariate GLM
- Handling missing voxel values: -zskip

Univariate GLM

- $\blacktriangleright \geq 1$ groups; ≥ 0 quantitative variables
- AN(C)OVA without within-subject variables
- ▶ Data at each spatial unit: $(y_i, x_{i1}, ...), i = 1, 2, ..., n$
- Formulation: $y_i \sim \mathcal{N}(a + b_1 x_{i1} + ..., \sigma^2)$
- ▶ Effects of interest: *a*, *b*₁, ...
- When an explanatory variable x is quantitative
 - Centering: not needed for x effect; crucial for some effects
 - Linearity assumption: too strong?
- Special GLMs
 - Two-sample *t*-test
 - AN(C)OVA w/o within-subject variables
- programs: 3dttest++, 3dMVM

Multivariate GLM

► AN(C)OVA with ≥ 1 within-subject factors

- Extension of paired *t*-test
- \geq 1 groups, \geq 0 quantitative variables (between-, not within-, subject)
- No quantitative within-subject variables
 - Yes, go with LME
- Data at each spatial unit: y
- Formulation: Υ ~ $\mathcal{N}(X\beta, \Sigma)$
- Problematic approach via univariate GLM: popular
- When an explanatory variable x is quantitative
 - Centering: not needed for x effect; crucial for some effects
 - Linearity assumption: too strong?

Multivariate GLM (cont.)

- Special cases: Student's t, univariate GLM
- Omnibus inferences through F-statistic
 - Main effect overall assessment about the differences among levels of a factor: emotion valences (positive, negative, neutral)
 - Interaction overall assessment about the relationship between ≥2 explanatory variables: group (patients, controls) and emotion (positive, negative, neutral)

Effect partitioning

- contrasts: positive vs negative
- simple effects: positive

Programs: 3dMVM, 3dLME, 3dLMEr

LME

≥ 1 within-subject variables; multivariate GLM: a special case
 Differentiation of fixed and random effects

- Fixed: population effects (groups, tasks, slopes)
- Random: lower-level effects (cross-subject, cross-trial, cross-family)
- Data at each spatial unit: y
- Hierarchical or multilevel structure
- Complex random effects
 - \geq 2 levels: cross- and within-subject; cross- and within-family
 - Crossed random-effects structure: subject + trial

► Formulation: $\boldsymbol{Y} \sim \mathcal{N}(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{Z}\boldsymbol{b}, \boldsymbol{\Sigma})$

- Fixed effects β
- Random effects $m{b} \sim \mathcal{N}(m{0}, m{R})$: Varying intercept, varying slope

LME (cont.)

- When an explanatory variable x is quantitative
 - Centering: not needed for x effect; crucial for some effects
 - Linearity: too strong?
- Specialities
 - Relatedness among varying effects: within-subject quantitative variables
 - Missing data: missing at random
 - Complex random effects: crossed structure; ICC; ISC
- When an explanatory variable x is quantitative
 - Centering: not needed for x effect; crucial for some effects
 - Linearity: too strong?
- Special cases: paired t-test and within-subject AN(C)OVA
- programs: 3dLME, 3dLMEr
- Gaussianity, point estimate, measurement error and numerical issues.

Accounting for effect uncertainty

Uncertainty of subject-level effect estimates

- Largely ignored in the field
- Impact: mostly (not always) negligible

Incorporation of uncertainty in response variable

- Weighting: differentiation based on reliability
- Similar to meta analysis
- Program: 3dMEMA
- Input: effect estimate (β) and *t*-statistic from each subject
- Applicability: similar to 3dttest++
- Missing data at voxel level: -missing_data 0

Handling quantitative predictors

Quantitative predictors

- Examples: age, RT, gray-matter volume, ...
- Types: between-subject, within-subject
- Longitudinal vs cross-sectional

Linearity

- Popular, easy implementation
- Between-subject predictor: 3dttest++ 3dMEMA, 3dMVM, 3dLME, 3dLMEr
- Within-subject predictor: 3dLME, 3dLMEr

Nonlinearity

- Polynomials: difficulty with order selection and model validation
- Smoothing splines: adaptive and flexible
- Program: 3dMSS

Estimating hemodynamic response

Presumed HDR

- Convenient, popular
- Large variations across regions, tasks, subjects, groups
- Inflexibility, lackluster fitting, compromised detection

Estimating HDR

- Subject level: tent, cubic splines
- Population level: smooth splines
- Programs: 3dMVM, 3dMSS

Three subsections

- ► Part 1 Overview, perspectives and concepts
- Part 2 Basic modeling approaches
- Part 3 Advanced modeling approaches

Accounting for cross-trial variability

- Subjects: samples for population
 - Representatives from a hypothetical pool
 - Each subject's effects expressed in the model
 - Generalizability reason for various models: GLM, AN(C)OVA, LME

How about trials?

- Representatives from a hypothetical pool of experimental condition
- Subject level: one regressor per condition
- Cross-trial variability: fully ignored!
- Consequences: loss of generalizability legitimacy; distortion of effect estimates and statistical evidence

Better approach: modeling trials

- Subject level: estimate trial effects
- Population level: accounting for cross-trial effects (e.g., 3dLMEr)

Inter-subject correlation analysis

Naturalistic scanning

- Task-related FMRI: too far-fetched from real life experience
- Movie watching, speech/music listening

ISC analysis

- Data structure complexity: *n* subjects leads to $\frac{1}{2}n(n-1)$ ISC pairs
- How to disentangle the hierarchical structure? LME
- Program: 3dISC

n = 5 subjects: 10 ISC pairs

	z_{21}	z_{31}	z_{41}	z_{51}	z_{32}	z_{42}	z_{52}	z_{43}	z_{53}	z_{54}
z_{21}	$ \left(\begin{array}{c} 1\\ \rho\\ \rho\\ \rho\\ \rho\\ \rho\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	ρ	ρ	ρ	ρ	ρ	ρ	0	0	0)
z_{31}	ρ	1	ρ	ρ	ρ	0	0	ρ	ρ	0
z_{41}	ρ	ρ	1	ρ	0	ρ	0	ρ	0	ρ
z_{51}	ρ	ρ	ρ	1	0	0	ρ	0	ρ	ρ
z_{32}	ρ	ρ	0	0	1	ρ	ρ	ρ	ρ	0
z_{42}	ρ	0	ρ	0	ρ	1	ρ	ρ	0	ρ
z_{52}	ρ	0	0	ρ	ρ	ρ	1	0	ρ	ρ
z_{43}	0	ρ	ρ	0	ρ	ρ	0	1	ρ	ρ
z_{53}	0	ρ	0	ρ	ρ	0	ρ	ρ	1	ρ
z_{54}	0	0	ρ	ρ	0	ρ	ρ	ρ	ρ	1 /

Test-retest reliability

- Intra-class correlation (ICC)
 - Same conditions repeated with the same subjects
 - How repeatable or consistent of subjects' BOLD response across repetitions?
 - ICC computation: ANOVA, LME
 - Program: 3dICC
 - Poor ICC: strong effects (e.g., Stroop, Flanker) in behavior measure and FMRI
- Modeling problem with classical ICC
 - Reliability: subject-level metric
 - Not suited for data with multiple trials
 - Cross-trial variability not accounted for
- New modeling framework
 - Subject level: obtain trial-level effects
 - Population level: disentangle trial-level effects
 - LME approach: not ideal (3dLMEr)
 - Bayesian multilevel (BML): TRR

Handling multiplicity

Massively univariate analysis

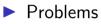
- Treat each spatial unit as an isolated entity: no commonality with peers
- As many models as spatial units
- Staple methodology over 30 years in neuroimaging
- Intuitive and straightforward

Multiple testing adjustment: two approaches

- Leverage among neighboring spatial units
- Cluster-based adjustment
 - 3dttest++ -Clustsim
 - Other programs (e.g., 3dMVM, 3dLME, 3dLMEr): 3dClustSim
- Permutation-based adjustment: 3dttest++ -ETAC

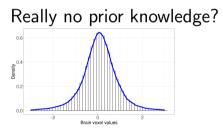
Handling multiplicity (cont.)

Ignorant information across brain



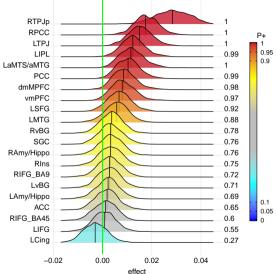
- Overfitting
- Information waste
- Heavy penalty
- Dichotomization
- Discrimination against anatomically small regions
- Vulnerability to data manipulations

Effect across spatial units



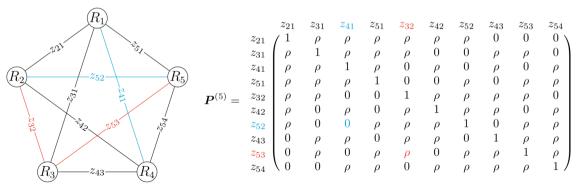
Region-based analysis

- One model integrating all ROIs: Bayesian multilevel model (BML)
 - Multiplicity dissolved
 - Likely high efficiency
 - Transparency: full results
 - Region specificity
 - No dichotomization
 - No discrimination against anatomically small regions
 - Less vulnerability to data manipulations
- Program: RBA



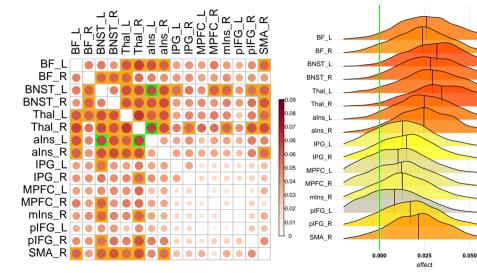
Matrix-based analysis

- Complexity of data structure
 - Conventional: massively univarate analysis + multiplicity
 - Hierarchical structure: BML
 - Multiplicity dissolved
- Program: MBA



Matrix-based analysis (cont.)

BML applied to a matrix dataset



0.942

0.924

0.977

0.96

0.952

0.976

0.944

0.937

0.758

0.794

0.694

0.73

0 764

0.622

0.838

0.908

P+

0.95

0.9

0.1

0.05