Introduction to AENI-FATCAT

Tractography for data exploration and
complementing functional connectivity

Paul A. Taylor'? & Ziad S. Saad®

'"Medical Imaging Research Unit, University of Cape Town, South Africa
2African Institute for Mathematical Sciences, Muizenberg, Western Cape, South Africa
3Scientific and Statistical Computing Core, NIH, Bethesda, MD, USA

LT BT National Institute
P of Mental Health




Outline
+ Why Function+Structure

+ DWI and DTI (very brief, following morning session)
- Diffusion imaging basics and parameters
+ Using tractography to estimate WM connections
- Making targets from functional data
- Deterministic, probabilistic (or both?)
- using WM region properties for quantitative comparison
+ Brief example — newborn alcohol exposure study
+ Further FATCAT applications:

- HARDI tracking, Connectome studies



FMRI: GM Networks
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FMRI: GM Networks

Functional connectivity
networks of distinct GM
regions, from BOLD
time series during task
or rest/no task.

+ Quantify GM properties:
ALFF, fALFF, RSFA, o,
ReHo, GMV, etc.

+ Quantify network props:
seedbased correlation,
ICA, graph theoretical
measures, efc.
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Structural (WM)

DTl-based parameters characterize some local properties, and
also show presence of spatially-extended WM structures

Can investigate and
quantify WM properties
with:

FA, MD, RD, L1, etc.

Can investigate (and
quantify?) network
relations with:
tractography




Structure + Function

Simple example:

GM ROls
network:
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Structure + Function

Simple example:

GM ROls
network:

Somato- Dorsal Control Default

motor | aftention mode Raichle (2010, TiCS)

Associated WM ROIs

Our goal for tractography->
estimate likely/probable locations of WM associated with GM,
and relate ROI quantities with functional/GM properties



Combining FC and SC

+ How to combine quantitatively’?
- FMRI has measures of functional and
(e.g., correlation, network parameters)



Combining FC and SC

+ How to combine quantitatively’?
- FMRI has measures of functional connectivity and 'strength’
(e.g., correlation, network parameters)

- DTI tracking between GM ROIs-- we can have
'structural connectivity' strength, e.g., in terms of # of fibers?
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Combining FC and SC

+ How to combine quantitatively’?
- FMRI has measures of functional connectivity and 'strength’
(e.g., correlation, network parameters)

- DTI tracking between GM ROIs-- we can have
'structural connectivity' strength, e.g., in terms of # of fibers?
-> will discuss more, but think this is not good road to be on
- how about:
find likely areas where WM is connecting GM regions,
and quantify properties in those regions (FA, MD, proton
density from structural images...)

— FC+SC provides sets of complementary quantities
to describe a network, and can be further combined
with behavioral/other measures (statistical modeling).




Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:
+ determining networks from FMRI data;
+ finding correlations and local properties of functional networks;
+ turning GM ROls into targets for tractography;
+ doing reasonable tractography to find WM ROQOls;
+ estimating stats on WM ROils...




Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:
+ determining networks from FMRI data;
+ finding correlations and local properties of functional networks;
+ turning GM ROls into targets for tractography;
+ doing reasonable tractography to find WM ROQOls;
+ estimating stats on WM ROils...

FATCAT: Functional And Tractographic Connectivity Analysis Toolbox
(Taylor & Saad, 2013), now available in AFNI with demo data.

*picture from google search, not from/of either author



Functional and structural processing

Schematic for combining FMRI and DTI-tractography via FATCAT:

Preprocessing, motion correction, filtering,| 1dDW_Grad_o_Mat,
3dRSFC smoothing, registration, efc. 3dTORTOISEtoHere

3dReHo FMRI time DWI data
series data

DT estimation
3dNetCorr|e.g. correlation,

BE A 3dTracklD,
Sets of brain maps Setof DTsand |map_TrackiD
(FC networks) : parameters |
Uncertainty '

3dMatch, measures of Pairwise WM
3dROIMaker DT parameters connections

= ——————

Sets of functionally- and stats

derived GM (and 3dTrackID -mode I SUMA,

expanded) ROIs {MINIP, PROB} | TrackVis

Sets of WM ROls 3D visual-
and parameter ization
statistics per
network

Comparative analyses of properties of GM (correlation, Z-scores, RSFC, efc.)
and associated WM (FA, MD, L1, RD, etc.) ROls

NEW — Combine with 3dMVM for groupwise, multivariate statistical modeling,
at both network and ROl levels: fat_mvm_prep.py, fat_mvm_scripter.py.




Functional and structural processing

Schematic for combining FMRI and DTI-tractography via FATCAT:

Preprocessing, motion correction, filtering,| 1dDW_Grad_o_Mat,

+ do useful tasks

smoothing, registration, etc. 3dTORTOISEtoHere + |nteg rate W|th eX|St|ng
3dReHo | FMRI iime pipelines/software
series data

DT estimation + derive/use information

3dNetCorr|e.g. correlation, -
— Ul from the data itself
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Functional and structural processing

Schematic for combining FMRI and DTI-tractography via FATCAT:

Preprocessing, motion correction, filtering,| 1dDW_Grad_o_Mat, + _do useful t_aSkS o
ITORTOISEtoHers + integrate with existing

pipelines/software

DT estimation + derive/use information

e ol from the data itself
St Bt + De simple to implement
parameters I ..
Uncertainty ' + be efficient

3dMatch, measures of - .

connections

‘ ets of functionally- and stats ggow
derived GM (and ’
3dTrackID -mode I SUMA,
expanded) ROIs (MINIP, PROB} ’

| TrackVis
3dNetCorr Sets of WM ROls 3D visual-
and parameter ization 2

statistics per
network

Comparative analyses of properties of GM (correlation, Z-scores, RSFC, efc.)
and associated WM (FA, MD, L1, RD, etc.) ROls

NEW — Combine with 3dMVM for groupwise, multivariate statistical modeling,
at both network and ROl levels: fat_mvm_prep.py, fat_mvm_scripter.py.
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Local Structure via Diffusion MRI

(In brief)

1) Random motion of molecules affected by local structures

2) Statistical motion measured using diffusion weighted MRI

3) Bulk features of local structure approximated with various reconstruction
models, mainly grouped by number of major structure directions/voxel:

+ one direction:
DTI (Diffusion Tensor Imaging)

+ >=1 direction:
HARDI (High Angular Resolution Diffusion Imaging)
Qball, DSI, ODFs, ball-and-stick, multi-tensor, CSD, ...




DWI — Diffusion Tensors (DTs)

Mathematically, the properties of the diffusion tensor:

fDﬂ D,, D13\ - Real-valued
D=| D, Dy, D, - Positive definite (r"Dr > 0)
\_D31 D33 Ds3) De, =Ae, A, >0
Having: 3 eigenvectors: e, - Symmetric (D, = D,,, etc),

3 eigenvalues: A 6 independent values



DWI — Diffusion Tensors (DTs)

Mathematically, the properties of the diffusion tensor:

" D,, Dy, D,;) - Real-valued
D=| D,y D,, Dy - Positive definite (r"Dr > 0)
\_D31 D33 Ds3) De, =\e;, A\ >0
Having: 3 eigenvectors: e, - Symmetric (D,, = D,,, etc),
3 eigenvalues: A 6 independent values

Geometrically, this describes ellipsoid surface, with r = (x, y, z):
C = r'Dr = Dyyx* + Dpyy? + D372 + 2(Dypxy + Dy3XZ + Dy3y2)

Isotropic anisotropic
M=M=A, M>M> Ay ol ity
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"Diffusion measure’
surfaces

Aj describe length of semiaxes; e, are spatial orientation of semiaxes



DWI — Diffusion Tensors (DTs)

diffusion tensor

Orientation and magnitude 4
Having: 3 eigenvectors: e. Minimum number of measures
3 eigenvalues: A
Y
Isotropic anisotropic
A=Ay = A M> N> A
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“Big 5" DTI ellipsoid parameters

Main quantities of diffusion (motion) surface

first eigenvalue, L1

= \,. parallel/axial diffusivity, AD

© <

AD, < AD,

first eigenvector, e,

< ¢

Fractional anisotropy, FA Mean diffusivity, MD Radial diffusivity, RD

FA=O FA=1

@.&'% @(e)
MD, > MD, RD, > RD,




Interpreting DTI parameters

General literature:
FA: measure of fiber bundle coherence and myelination

- in adults, FA>0.2 is proxy for WM (strong segment. overlap)

MD, RD, L1: local density of structure
e.: orientation of major bundles




Interpreting DTI parameters

General literature:
FA: measure of fiber bundle coherence and myelination
- in adults, FA>0.2 is proxy for WM (strong segment. overlap)

MD, RD, L1: local density of structure
e.: orientation of major bundles

Cautionary notes:
+ Degeneracies of structural interpretations
+ Changes in myelination may have small effects on FA
+ VWM bundle diameter << voxel size

- don't know location/multiplicity of underlying structures
+ More to diffusion than just structure-- i.e., fluid properties
+ Noise, distortions, etc. in measures




Local DTs — Extended Tracts

Field of local diffusion parameters
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Local DTs — Extended Tracts

Field of local diffusion parameters
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Local DTs — Extended Tracts

Field of local diffusion parameters Connect to form extended tracts
. \ N & N

. :,E*f':;}{j-;.i = 4
— Individual ellipsoids — linked structures




Tractography

Estimate WM structure (fiber tract locations)

estimate spatial
extents of WM ‘tracts’
in Vivo

ellipsoid measures  some kind of algorithm
(~smoothing of for connecting
real structures)

(images from Bammer et al. 2003)



Diversity In tractography

Series of (mostly) logical, simple rules for estimating tracts

— many methods/algorithms and kinds of parameters to choose:
(Mori et al., 1999; Conturo et al. 1999; Weinstein et al. 1999;
Basser et al. 2000; Poupon et al. 2001; Mangin et al. 2002;
Lazar et al. 2003; ....)

Propagation via, e.g.:
smoothing diffusion vectors and solving differential equations;
deflecting propagating tracts; allowing tracts themselves to
‘diffuse’; solving for global minimum energy of connections...

To date, no single 'best' algorithm, work continues:
- histology can’t give perfect answers.
- some test models (phantoms) exist, but not brain-complex



So, first question for using tractography in a study:

Which algorithm to choose?



Popular technique: FACT

 FACT = Fiber Assessment by Continuous Tracking (Mori
et al. 1999) [used more than 200 times in past 1.5 yrs]
— Start in voxel with FA>0.2 (proxy definition for WM)
— Follow 1st eigenvector/greatest diffusion direction to next voxel
— Continue If FA stays>0.2 and angle between e,s is <45 deg

Ex.: FACT (in 2D) FACT (in 3D)

Very simple, but actually, gives some decent results, e.g.many known
tracts
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Popular technique: FACT

 FACT = Fiber Assessment by Continuous Tracking (Mori
et al. 1999) [used more than 200 times in past 1.5 yrs]
— Start in voxel with FA>0.2 (proxy definition for WM)
— Follow 1st eigenvector/greatest diffusion direction to next voxel
— Continue If FA stays>0.2 and angle between e,s is <45 deg

Ex.: FACT (in 2D) FACT (in 3D)

Very simple, but actually, gives some decent results, e.g.many known
fracts  *however... e..g bias? noise dependence?



Improving FACT->

« Start by thinking: what properties a ‘good’ algorithm should
have?

1)

2)

3)
4)

Should be independent of coordinate axes (i.e., results invariant to
rotation of data set)

Should improve with spatial resolution (convergence in resolution)
e.g., like in calculus, diagonals are better approximated with small grid steps

Should improve with SNR (converge in SNR)
Should not have strong instability with or dependence on noise



Improving FACT->

- Start by thinking: what properties a ‘good’ algorithm should

have?

1) Should be independent of coordinate axes (i.e., results invariant to
rotation of data set)

2) Should improve with spatial resolution (convergence in resolution)

e.g., like in calculus, diagonals are better approximated with small grid steps
3) Should improve with SNR (converge in SNR)
4) Should not have strong instability with or dependence on noise

FACTID (in 2D)

Posit: including diagonal (ID) '
propagation helps 1 and 4,
check about other props.

FACTID (in 3D)




FACTID (FACT Including Diagonals):

+ Utilize simple check for diagonals.

(2D) Schematic:
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(Taylor, Cho, Lin & Biswal, 2012)



FACTID (FACT Including Diagonals):

+ Utilize simple check for diagonals.

(2D) Schematic:

(1 (7,
N N

A S
N IN AN AN

Propagate Test project  Accept diagonals

NB that in (3D) FACT, a single voxel has 6 neighbors for propagation,
while in FACTID, a voxel has 26 neighbors propagation.

(Taylor, Cho, Lin & Biswal, 2012)



Test 1: Rotational invariance

A test for consistency of results when axes of data have been rotated,

here, using data from a real subject (scan axes rotated)

FACTID

(0,0,10)

(0,0,40)

{0,40,40)

; o | ~___.:: {':1'[:'1'].

-y .-" {0,0,10)

(0,0,20)

(0,0,40)

- e -

(0,40,40)

(Taylor, Cho, Lin & Biswal, 2012)




Test 3: Noise sensitivity

Original Original

Original

SNR =10
FACTID DTI Query- RK4

(Taylor, Cho, Lin & Biswal, 2012)




Test 5: Phantom Set

Fillard et al.
(2011, NI)
test phantom

"‘ANSWER”

(Taylor, Cho, Lin
& Biswal, 2012)

\

e.g. compare




Importance of being processed (in earnest)

NB words of wisdom from wikipedia GIGO entry:

On two occasions | have been asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come

out?” ... | am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

—Charles Babbage, Passages from the Life of a Philosopher




Importance of being processed (in earnest)

NB words of wisdom from wikipedia GIGO entry:

On two occasions | have been asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come
out?” ... | am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

—Charles Babbage, Passages from the Life of a Philosopher

— ** |n addition to the tracking algorithm, the quality of data

acquisition and preparation matter quite a bit (as seen in morning
TORTOISE session). **



Importance of being processed (in earnest)

ORTOISEd unprocessed

= R L'
Data from the morning session, same target ROI in brainstem.
Consider reach of tracks, symmetry, physiology, etc.



Cinematic side note:

La Belle et la Béte of tractography




Known Challenges for Tracking

+ Axon diameters are of order a few micrometers
+ MRI voxel size is of order millimeters

e
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(images of Eyewire data via NPR website)



Known Challenges for Tracking

+ Axon diameters are of order a few micrometers
+ MRI voxel size is of order millimeters
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(images of Eyewire data via NPR website)

+ WM regions are tightly packed, with many connections and
potentially complicated sub-voxel scale structure

Crossing/kissing fibers can:
- Lower FA (stop tracking)
- Redirect (or not) tracking
iIncorrectly.




Achievements of Tracking

+ Reproduction of many known pathways
+ In vivo vs post-mortem information

(slf/unc/
« ifo)

SPLENIUM

(Bammer et al., 2003)



Light at the end of the tunnel?

o o oy,
%—4 s

Application of tractography seems useful and logically consistent as
follows:

+ GM ROIls are connected by WM skeleton.

+ Tractography can act to parcellate the WM skeleton based on
subject's own data.

+ Avoid interpreting reconstructed tracks to represent literal,
underlying fibers.

+ Use tracking to estimate and highlight WM likely to be associated
with GM ROls.

+ One can then use diffusion parameters in those WM ROIs' for
quantitative comparisons (or use ROIs as masks for other data).



Next question for doing tractography:

where does one go to get the ROIs to try to connect?



Next question for doing tractography:

where does one go to get the ROIs to try to connect?

-> could go to atlases and standard maps,
or to exploratory spheres dotted around,



FMRI measures -> networks of ROls

+ For example, one can perform ICA on a resting state study,

(each IC is map
of Z-scores; here,
shown for Z>0)



FMRI measures -> networks of ROls

+ For example, one can perform ICA on a resting state study,

(each IC is map
of Z-scores; here,
shown for Z>0)

+ want to isolate GM ROIs, and then to expand each to make sure
that they are at least touching nearby (associated?) WM voxels
to have any hope to connect tracts



FMRI measures -> networks of ROls

+ For example, one can perform ICA on a resting state study,

(each IC is map
of Z-scores; here,
shown for Z>0)

+ can parcellate into GM ROIls based on:
- thresholding voxel values CSF WM
- thresholding cluster size s < g
- subtract away CSF and WM voxels
from segmentation maps
- expand each GM ROl to location of WM
(don't want to overexpand unphysically)




FMRI measures -> networks of ROls

Example case for ICA networks:

Left col: ICA map (visualized at
Z>0, for clarity).

Right col: ROIMaker ROl map,
thresholded Z>3.0

cluster volume > 130 voxels
expand clusters +2 voxels

limit expansion with FA>0.2 info.
(An unexpanded set of maps is
also made and saved.)

Sidenote: this involved mapping
FMRI data of ICs and T1 tissue
segmentation results into DWI
space; used 3dAllineate.




Sidenote:

How to identify network maps, or
match them with reference/group set?



Matching Network maps

Some Z-score Functional Connectome Project ref. set (in subject DWI space)




Matching Network maps

Some Z-score Functional Connectome Project ref. set (in subject DWI space)
|CA results




Matching Network maps

Some Z-score Functional Connectome Project ref. set (in subject DWI space)

ICA results

+ using spatial correlation

+ Can use separate min/max
thresholds on input and
reference set

+ Calculate Dice coefficient as well

+ Find best fit of reference to input,

and vice versa




Deterministic tractography

+ 3dTracklD -mode DET -logic { OR | AND }
+ uses FACTID

+ good for exploratory

analysis and visualization
of results

IORI

ex.: DMN network tractography 'AND'
results using ROIs from
3dROIMaker

(FA>0.2; max angle 60deg;
8 seeds/voxel)




Deterministic tractography

+ 3dTracklD -mode DET -logic { OR | AND }

Control track propagation with "anti-mask’ regions,
simply defined by voxels =-1:

ROls: blue>0, red<Q results when: results when:
all ROIs>0 blue>0, red<0
(no anti-mask) (using anti-masks)



Deterministic tractography

+ AUtOmatiC quantification ‘:Eﬁ;;t R FR R N emacs23@Users-MacBook-Pro.|
per network in produced |
PREFIX.grid files. o S e o

Matrices of per-connection
parameters such as:
mean/std of FA, MD, RD, L1,
numbers of tracts,

volume of tracts

(and options for scaling
tract-stats by ROl volumes)

+ possible to load in other files
for automatic statistics, also.

0  4.89088C
(Fundamental)- - -




Deterministic tractography

+ uses FACTID
+ good for exploratory

analysis and visualization
of results

IORI

ex.: DMN network tractography 'AND'
results using ROIs from

(FA>0.2; max angle 60deg;
8 seeds/voxel)

Tract results may seem 'fine’,
but is noise affecting them?
Are these the most likely/robust regions where tracts go?




Brings up next question for doing tractography:

How do we estimate tensor parameter
noise/uncertainty?



Noise in DW signals

MRI signals have additive noise
S.=S,e"b9'Po +¢

where ¢ is (Rician) noise, with the effect of leading to errors in
surface fit, equivalent to rotations and rescalings of ellipsoids:

'Un-noisy' vs perturbed/noisy fit

EPI distortions, subject motion, et al. also warp ellipsoids.



DTI Uncertainty

 We use jackknife resampling (e.g., Efron 1982)

Other studies have used bootstrapping (e.g., Jones 2003), or
theoretical estimates (Jeong & Anderson 2008)

Jackknifing is efficient (just need one data set unlike bootstrap),
simpler than theory, since, e.g., SNR is likely not constant across
voxels



Jackknifing

* Basically, take M acquisitions
e.g.,M=12




Jackknifing

* Basically, take M acquisitions
e Randomly select M; <M to use

to calculate quantity of interest
— standard nonlinear fits

[Dyy Dyy Dy Dyy Dyy Dys] = ...



Jackknifing

Basically, take M acquisitions
Randomly select M, < M to use
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Repeatedly subsample large
number (~103-104 times)




Jackknifing

Basically, take M acquisitions
Randomly select M; <M to use

to calculate quantity of interest
— standard nonlinear fits

Repeatedly subsample large
number (~103-104 times)
Analyze distribution of values
for estimator (mean) and D.. D,, D
confidence 1nterval D,, D,, D,,
— sort/%iles D.. D.. D

* (not so efficient)
— 1f Gaussian, e.g. p+2o
* simple

e.g., M=12
M,=9




Uncertainty estimation

estimates bias and o
of first eigenvector e, (main direction

of diffusion), based on how much it
could tip toward either e, or e

4
> ,
. 4“ o

.... and the bias and o of FA

1) Obtain M DWis.
' 1b) Estimate DT and

arameters from M DWis.
4% BN D, FA, ...

| 2) Make N, subsets

of M, DWIs.

3) Estimate N, DTs.

D, D) .. D,*

4) Estimate set of
N, parameters.

(FA*, FAS, .., FA, "} { (2e,,)}. ...

9) Find confidence
intervals.

~ frequency




Uncertainty example

+ Can see difference in
e1 uncertainty along
e2 and e3

Standard deviation

+ Tissue-dependent
differences in FA
uncertainty




Next question for doing tractography:

How do we take into account
noise/uncertainty during tracking?



Probabilistic Tractography

« We know that estimates of DTI ellipsoids are not exactly
representing tracts/bundles
— Size scale differences between voxel/tracts, multiple tracts,
complex structure, signal noise, eddy currents, nonlinear fits, etc.
« How to include errors/uncertainty in interpretation and
usage?



Probabilistic Tractography

« We know that estimates of DTI ellipsoids are not exactly

representing tracts/bundles
— Size scale differences between voxel/tracts, multiple tracts,
complex structure, signal noise, eddy currents, nonlinear fits, etc.

« How to include errors/uncertainty in interpretation and
usage?

- Probabilistic tractography: use uncertainty in ellipsoid
measures with Monte Carlo-esque simulations and build
up large ~population of possible trajectories

— E.g., Parker et al. (2003); Behrens et al. (2003)

— Do DTl estimates; do whole brain tractography; keep track of
number of tracks through relevant voxels; perturb DTI voxel
estimates based on uncertainty values; do whole brain tract...
[repeat many ~1000 times] ... find voxels which had lots of traffic,

define relative ‘connectivity’ based on traffic




(Side note before continuing with
Tull’ probabilistic tracking)



Mini-Probabilistic Tracking

+ Full probabilistic methods generate voxelwise brain maps without linear
track structure
+ 'Mini-probabilistic' tracking performs a few extra iterations of' deterministic'
tracking on uncertainty-perturbed data sets

- track structure is retained,

- results generally exhibit more robust tracks and fewer false negatives

than deterministic tracking alone
- false positives tend to be isolated and visually apparent.
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Mini-Probabilistic Tracking

Deterministic vs mini-Probabilistic

Through
single ROI

AND logic
through
network, cf
with full-prob
results

(Taylor et al., 2014)



Probabilistic Tractography

Note on interpretation: most reports define a parameter to

be the probability of connection between voxels A and X:
WX A)=u(X,A)/N

— N: number of iterations

— u: number of tracts through voxel X which either start from or pass
through A
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be the probability of connection between voxels A and X:
WX A)=u(X,A)/N
—  N: number of iterations
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through A
« While this quantity is somehow relevant in representing what
relative ‘connectivity’ which can be estimated, exact
iInterpretation as ‘probability of connectivity’ is tricky



Probabilistic Tractography

 Note on interpretation: most reports define a parameter to
be the probability of connection between voxels A and X:
WX A)=u(X,A)/N
— N: number of iterations

— u: number of tracts through voxel X which either start from or pass
through A

« While this quantity is somehow relevant in representing what
relative ‘connectivity’ which can be estimated, exact
iInterpretation as ‘probability of connectivity’ is tricky

-> for example, how literally can one equate a numerically-constructed
tract through a ~2x2x2mm voxel with a fiber bundle with orders-of-
magnitude smaller diameter?

-> or how can one compare this ‘connectivity' between

on equal footing?



Probabilistic Tractography

 Note on interpretation: most reports define a parameter to
be the probability of connection between voxels A and X:

WX A)=u(X,A)N
—  N: number of iterations
— u: number of tracts through voxel X which either start from or pass

through A
« While this quantity is somehow relevant in representing what
relative ‘connectivity’ which can be estimated, exact
iInterpretation as ‘probability of connectivity’ is tricky

« Prefer to think of W more loosely as a probabillity of that

voxel being a part of WM volume related to the two ROI-

voxels.

— Not probability of connectivity of A and X, but more likelihood of a
voxel being part of associated WM



Probabilistic Tractography

* This interpretation more useful for working with GM
networks. Recall interest:

GM ROls
network:

Somato- | Dorsal “ Control p Default
motor | | attention ; ) mode

Assocliated WM ROls

-« Threshold W per voxel after probabilistic tracking, use to
define WM ROI between GM ROls



Deterministic vs Probabilistic

+ NB: coverage and Network A Network C

connectivity differences
between tractography

types

O
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+ Deterministic can be
useful for initial
iInvestigations, but is more
susceptible to noise/errors
and truncation

Probabilistic




Probabilistic tractography

+ with networks of ROls from and uncertainty from
(as well as tensor estimates from, e.g., 3dDWItoDT),
can finally do probabilistic tractography
+
- does lots of Monte Carlo simulations: wholebrain tractography ->
perturb FA & e1 based on uncertainty -> wholebrain tracking ->
perturb -> wholebrain tracking -> etc.



Probabilistic tractography

+ with networks of ROls from and uncertainty from
(as well as tensor estimates from, e.g., 3dDWItoDT),
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- at each iteration, checks for connections between any pair of ROls

- can trim saved tracts to only keep voxels between 2 ROls
(i.e., no overrunners in the 'connection’' ROIs)
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+ with networks of ROls from and uncertainty from
(as well as tensor estimates from, e.g., 3dDWItoDT),
can finally do probabilistic tractography
+
- does lots of Monte Carlo simulations: wholebrain tractography ->
perturb FA & e1 based on uncertainty -> wholebrain tracking ->
perturb -> wholebrain tracking -> etc.
- at each iteration, checks for connections between any pair of ROls
- can trim saved tracts to only keep voxels between 2 ROls
(i.e., no overrunners in the 'connection’' ROIs)
- also finds tracts through each individual ROI
- to find WM region connecting, say, ROl 1 and 2:
keep voxels through which Ntracks which intersected both
ROI1 and ROI2 is greater than a user-defined threshold



Probabilistic tractography

+ with networks of ROls from and uncertainty from
(as well as tensor estimates from, e.g., 3dDWItoDT),
can finally do probabilistic tractography
+
- does lots of Monte Carlo simulations: wholebrain tractography ->
perturb FA & e1 based on uncertainty -> wholebrain tracking ->
perturb -> wholebrain tracking -> etc.
- at each iteration, checks for connections between any pair of ROls
- can trim saved tracts to only keep voxels between 2 ROls
(i.e., no overrunners in the 'connection’' ROIs)
- also finds tracts through each individual ROI
- to find WM region connecting, say, ROl 1 and 2:
keep voxels through which Ntracks which intersected both
ROI1 and ROI2 is greater than a user-defined threshold
- calculate stats on final WM ROls found
- analyze multiple networks for efficiency (i.e., very
little extra cost)



Jd TracklD: Probabilistic tractography

(orange is ROI; blue is set of WM regions with tracts connecting)



Jd TrackliD: Probabillistic tractography

+ compare with existing algorithms:
- purple: FSL-probtrackX (and FSL-bedpostX for uncertainty)
- same parameters: FA>0.2, max angle 60deg, 5000 Monte Carlo
iterations; 1 tract direction/voxel
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iterations; 1 tract direction/voxel

+ generally similar connections, but FSL bigger blobs



Probabilistic tractography

+ compare with existing algorithms:
- purple: FSL-probtrackX (and FSL-bedpostX for uncertainty)
- same parameters: FA>0.2, max angle 60deg, 5000 Monte Carlo
iterations; 1 tract direction/voxel

+ generally similar connections, but FSL bigger blobs

+ FSL took several hours for uncertainty, and then >24 hours for
tracking this single network (and had to run 4 for this study)



Probabilistic tractography

+ compare with existing algorithms:
- purple: FSL-probtrackX (and FSL-bedpostX for uncertainty)
- same parameters: FA>0.2, max angle 60deg, 5000 Monte Carlo
iterations; 1 tract direction/voxel

+ generally similar connections, but FSL bigger blobs

+ FSL took several hours for uncertainty, and then >24 hours for
tracking this single network (and had to run 4 for this study)
1 took 7min; took 25mins total for 4 netw.



3d TracklD:

(other networks show similar

results in terms of:

- narrow/wide regions of
tracts;

- broadly similar locations;

- each program shows some
tracks which the other
doesn't)




3d TracklD:

(other networks show similar

results in terms of:

- narrow/wide regions of
tracts;

- broadly similar locations;

- each program shows some
tracks which the other
doesn't)

(2d TracklD automatically
creates *.grid files for
probabilistic files, as well.)
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Example:
Group analysis with tracking output
using multivariate statistics

from study:
A DTI|-Based Tractography Study of Effects
on Brain Structure Associated with
Prenatal Alcohol Exposure in Newborns,
Taylor, Jacobson, van der Kouwe, Molteno, Chen,
Wintermark, Alhamud, Jacobson, Meintjes (2014)




Prenatal alcohol exposure (PAE)

e Alcohol is a teratogen, disrupting healthy embryonic and fetal

development.
— leads to various

e FASD occurs in children whose pregnant mothers binge drank
- e.g., 24 drinks/occasion and/or 214 drinks/wk

e Results in poor-

- academic performance

- language/math skills

- Impulse control

- abstract reasoning

- memory, attention

and facial and skeletal
dysmorphology

12
Fig. B:

Reprinted with

permission from
Fig. A: Clarren & Smith,

(1978). Copyright
Fetal Alcohol 1978 by the New
Syndrome, England Journal of
Diagnosis, Medicine,
Epidemiology, Massachusetts
Prevention, and Medical Society.
Treatment.
(Institute of : .
Medicine, 199). i‘f;ﬂg tgd“gﬁ

permission from
Jones et al. (1973).
Copyright 1973 by
the Lancet Ltd.




Goals of this study
To:

1) Use neuroimaging to compare structural brain development

In newborns with PAE to that of HC newborns.

2) Quantitatively examine WM properties across the brain
3) Relate changes in (localized) WM properties with PAE,

controlling for several confounding effects

— examine several, and see which is/are (most) significant

Tools: diffusion tensor imaging (DTI) + tractography
A) delineate similar WM ROls across all subjects

B) quantify structural properties (FA, MD, T1, ...)

C) statistical modeling for comparisons
- at whole brain, network and ROI levels
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Setting up DTI-tractography

Location of targets for tractography: 5 WM networks.

CC and Cor. Rad. Projection
(CCCR) (L/R-PROJ)




Analysis Steps

1) Place network
targets




Analysis Steps

1) Place network  2) Probabilistic
targets tracking
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1) Place network  2) Probabilistic ~ 3) set of WM ROIs —
targets tracking set of repeated measures
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Analysis Steps

1) Place network  2) Probabilistic ~ 3) set of WM ROIs —
targets tracking set of repeated measures

7

4) Multivariate model
« {FA, FA, FA,, ...}
* alc
* infant age
* infant sex
* maternal age
* maternal cig/day

=) AFNI's 3dMVM, written by G. Chen




Analysis Steps

1) Place network  2) Probabilistic ~ 3) set of WM ROIs —
targets tracking set of repeated measures

4) Multivariate model  5) Follow-up GLM for each WM ROI
. {FA,FA,FA, ..} * FA

e alc * alc |

e infant age * infant age E

* infant sex * infant sex y yuaus
* maternal age °* maternal age

* maternal cig/day * maternal cig/day

mmp AFNI's 3dMVM, written by G. Chen



In Summary

+ Have motivated ways of combining FC and SC analyses
- FMRI to define networks of GM ROls
- find locations of connections within/across networks -> WM ROls
- calculate stats of DTl/anatomical properties there
- combine structural quantities of, e.g., mean FA, with FMRI
connectivity matrices; behavioral measures; genetic values, etc.

+ Diffusion-based tractography is useful complement to FMRI
- probabilistic tractography is more robust than deterministic
- different types of quantities than FMRI, not necessarily 'strengths'’

+ Still room to improve, tools to add.
— Suggestions are quite welcome!



Analysis Steps

+ make a data table combining:
*a CSV file of subject data with
* a set of *.grid’ files from 3dTracklD;
+ automatically selects tracked connections
found across all groups (future version may have LME
modeling that allows missing data)

+ define a statistical model of variables from CSV file + DTI
data

+ build a 3dMVM script to test the model using entire

networks, and

+ construct follow-up GLTs to investigate individual regions.

'Also works with *.netcc files from 3dNetCorr.



Il) Results: network level

The questions:
1) which WM networks are affected by PAE?
2) which parameters show effects most strongly?

Answer using:
* (for each network) a multivariate GLM for
* set of DTI parameters
alcohol (frequency: binge/wk)
infant age (wks since conception)
infant sex (M/F)
maternal age (yrs)
maternal cigarette smoking (cig/day).




Il) Results: network level

The questions:
1) which WM networks are affected by PAE?
2) which parameters show effects most strongly?

Parameters showing at least trends (p<0.1) —

Network Ivar. B,, F(df,df) ar. B, F(df,df) p var. B, F(df,df)

CCCR alc -0.70 8.6(1, 14) 0.011* |alc -0.72 14.0 (1, 14)
cig -0.27 25¢(6,9)
mat_age 0.56 5.5(1, 14) 0.034* |mat_age 0.53 6.3(1, 14)

-0.41 3.9(10, 140) 0.000*** -0.52 4.1 (10, 140) 0.000***
012 4.2(11,4) 0.091

mat_age 0.37 4.4(1,14)  0.056 2 . 6.5 (1, 14)

< Networks

1.9 (12, 168) 0.035* 45 2.7 (12, 168)

age 0.33 8.6(13,2) 0.109 41 58(1,14)  0.031* . 5.3 (1, 14)
43(1,14) 0.056 : 5.9 (1, 14)
mat_age -0.16 9.2(13,2) 0.103

L-ASSOC 65 6.0(7,8) 0.011* . 8.1 (1, 14)

2.5 (6, 84)
mat_age 044 3.8(1, 14) . X . 4.7 (1, 14)

R-ASSOC 0.23 1.8(7,98) 0.090 062 102(1, 14) 0.007* . 14.1 (1, 14) 0.002**
3.9(1,14) 0.068

* p<0.05; ** p<0.01; *** p<0.001.

0.47

0.52

0.48

0.49

F (df , df )

3.5(1,14) 0.083

4.0 (1, 14)

34 (1,14)

3.6 (1, 14)

3.5 (1, 14)



Il) Results: network level

The questions:

< Networks

2) which parameters show effects most strongly?

Parameters showing at least trends (p<0.1) —

FA MD
r. B

AD

PD

va med F(di’ de) var. Bmed F(di’ de) P var. Bmed F(di’ de) P var. l3med F(di’ de) p

alc -0.70 8.6(1, 14)
mat_age 0.56 5.5(1, 14)
-0.41 3.9(10, 140)
cig 0.12 4.2(11,4) 0.091
mat_age 0.37 4.4 (1, 14)
1.9 (12, 168)
age 0.33 8.6(13,2) 0.109 5.8(1, 14)
4.3 (1, 14)

mat_age -0.16 9.2(13,2) 0.103
6.0 (7, 8)

mat_age 044 3.8(1, 14)

@ alc 023 1.8(7,98) 0.090 |[alc 062 102 (1, 14)

* p<0.05; ** p<0.01; *** p<0.001.

0.011* 072 14.0(1, 14)
027 25¢(6,9)
0.034* 6.3 (1, 14)
0.000"* 052 4.1(10, 140)
0.056 X . 6.5 (1, 14)
0.035* . 2.7 (12, 168)

0.031* . 5.3 (1, 14)
0.056 : 5.9 (1, 14)

0.011* . 8.1 (1, 14)

2.5 (6, 84)
4.7 (1, 14)

0.007* 067 14.1(1, 14)
029 3.9(1, 14)

0.000***

0.002**
0.068

0.47

0.52

0.48

0.49

3.5(1,14) 0.083

4.0 (1, 14)

34 (1,14)

3.6 (1, 14)

3.5 (1, 14)

— Statistically significant alcohol
exposure associations in ~ every

WM network



Il) Results: network level

The questions:
1) which WM networks are affected by PAE?

Parameters showing at least trends (p<0.1) —

m_-ﬂu_-ﬂb PD
Network ‘ F (df, df ) ar. ~%a’ (df, df ) p var. B e F (df, df ) p var. B, F(df,df)

p

CCCR alc -0.70 8.6(1, 14) 0.011* |alc -0.72 14.0 (1, 14) .
cig -0.27 25¢(6,9) : i 047 3.5(1,14) 0.083

mat_age 0.56 5.5(1, 14) 0.034* |mat_age 0.53 6.3(1, 14) .

041 3.9(10, 140) 0.000** 052 4.1(10, 140) 0.000**
0.12 4.2(11,4) 0.091 ig 052 4.0(1,14)

mat_age 0.37 4.4(1,14)  0.056 2 . 6.5 (1, 14)

< Networks

1.9 (12, 168) 0.035* . 2.7 (12, 168)
048 3.4 (1,14)
age 0.33 8.6(13,2) 0.109 41 58(1,14)  0.031* . 5.3 (1, 14)
43(1,14) 0.056 : 5.9 (1, 14)
mat_age -0.16 9.2(13,2) 0.103

L-ASSOC 65 6.0(7,8) 0.011* . 8.1 (1, 14)
049 3.6 (1, 14)

2.5 (6, 84)
mat_age 044 3.8(1, 14) . X . 4.7 (1, 14)

R-ASSOC |alc 023 1.8(7,98) 0.090 |alc 062 102(1, 14) 0.007* 067 14.1(1,14) 0.002*
029 39(1,14) 0.068 ig 05 35(1,14)

* p<0.05; ** p<0.01; *** p<0.001.
— Increased alcohol exposure:
decreased AD
(and decreased MD)



lIl) Results: ROI level

The question:
1) where are most significant AD-alcohol relations in each network?

Answer using:
(for each ROI) a GLM for

* single DTI parameter
* alcohol (frequency: binge/wk)
* infant age (wks since conception)
* infant sex (M/F)
* maternal age (yrs)
* maternal cigarette smoking (cig/day).




lIl) Results: ROI level

The question:
1) where are most significant AD-alcohol relations in each network?

Transcallosal (CC and corona radiata)
AD in CCCR

GLM B

anterior - posterior



lIl) Results: ROI level

The question:
1) where are most significant AD-alcohol relations in each network?

Transcallosal (CC and corona radiata)
AD in CCCR

GLM B

anterior - posterior



Example:
HARDI tracking



Higher order models

DTI tractography:
+ susceptible to false negatives, difficulty with
long range tracts (noise/error accumulation)
+ Major diffusion can be average of multiple paths
+ Voxels can have low FA from several WM paths, false ending
+ Can't resolve complex underlying architecture
- Jeurissen et al. (2012, HBM): 60-90% of WM voxels estimated
to have multiple fibers

(Jeurissen et al., 2012)




HARDI

+ High Angular Resolution Diffusion Imaging:
- DSI, ODF, Qball, FOD...
- model multiple fiber bundle directions per voxel
- generally need more scan time and acquisitions and computational
power, much higher b-values
- still can't resolve intravoxel tract behavior (which of multiple paths?)
- higher DW — lower signal, so susceptible to noise

(Jeurissen et al., 2012)

(d) 3 unique maxima > threshold




HARDI

+ High Angular Resolution Diffusion Imaging:
- DSI, ODF, Qball, FOD...
- model multiple fiber bundle directions per voxel
- generally need more scan time and acquisitions and computational
power, much higher b-values
- still can't resolve intravoxel tract behavior (which of multiple paths?)
- higher DW — lower signal, so susceptible to noise

FATCAT can now track
through HARDI data

(Jeurissen et al., 2012)

— HARDI reconstruction
done outside AFNI

(e.g., DSI-Studio,
Diffusion Toolkit, FSL),
and outputs tracked Iin
FATCAT.

(d) 3 unique maxima > threshold




Example: 3dTracklD on HARDI data

Ex: Human Connectome Project subject, 288 grads,
HARDI reconstructed with GQI in DSI-Studio.




Example:
'‘Connectome’-type tracking



“Connectome”: parcellation of GM

Example (script available in

FATCAT DEMO):

+ Freesurfer parcellation into
>112 ROls.

+ Selected 80 cortical GM ROls.

. + Used 3dROIMaker to inflate

<= by 1 voxel, up to FA>0.2.

| (+ NEW: keep labeltable labels
and use them in output.)

+ ‘3dTracklD -mode DET' among
the regions




“‘Connectome”: parcellation of GM

Example (script available in

FATCAT DEMO):

+ Freesurfer parcellation into
>112 ROls.

+ Selected 80 cortical GM ROls.

. + Used 3dROIMaker to inflate

. <@= by 1 voxel, up to FA>0.2.

| (+ NEW: keep labeltable labels
and use them in output.)

+ ‘3dTracklD -mode DET' among
the regions

and a few seconds later... ==l




“Connectome™: tracking

Pat 0, trct Y2. bnd 56




A brief example for statistical analysis

+ Combining tractography, quantitative DTl and subject measures
with GLM to find structure-alcohol consumption relation:

GLM: MD in WM CCCR
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WM ROI (connecting targets)

B PropddO Bl Gender T moagetO
B GA scan [ cigpday

Significant (*p<0.05; **p<0.01) explanation of DTI measures MD in specific
WM regions of CC by alcohol measure (Propdd0) in GLMs which controlled for
several other factors.



Combining multimodal data: FC+SC+...

Preprocessing, motion correction, filtering,| 1d4DW_Grad_o_Mat,
smoothing, registration, efc. 3dTORTOISEtoHere

3dReHo FMRI time DWI data
series data

DT estimation
3dNetCorr|e.g. correlation,
oL oA 3dTrackiD,
Sets of brain maps Setof DTsand | map_TrackiD
(FC networks) ° parameters I
Uncertainty ;

3dMatch, measures of
3dROIMaker DT parameters

In Summary

We have discussed capabilities
and benefits of:

= = —————y

Pairwise WM
connections

Sets of functionally- and stats

derived GM (and 3dTrackID -mode I SUMA,

expanded) ROls {MINIP, PROB} | TrackVis

Sets of WM ROls 3D visual-
and parameter ization
statistics per
network

Comparative analyses of properties of GM (correlation, Z-scores, RSFC, efc.)
and associated WM (FA, MD, L1, RD, etc.) ROIs

NEW — Combine with 3dMVM for groupwise, multivariate statistical modeling,
at both network and ROl levels: fat_mvm_prep.py, fat_mvm_scripter.py.




In Summary

We have discussed capabilities
and benefits of:

Combining multimodal data: FC+SC+...

Preprocessing, motion correction, filtering,| 1d4DW_Grad_o_Mat,
smoothing, registration, etc. 3dTORTOISEtoHere

3dReHo FMRI time DWI data

series data

DT estimation

3dNetCorr|e.g. correlation,
oM e 3dTrackiD,
Voxelwise Sets of brain maps Setof DTsand | map_TrackiD
parametric (FC networks) ° parameters I
FC maps Uncertainty '

3dMatch, measures of

3dROIMaker DT parameters
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Pairwise WM
connections
Sets of functionally- and stats

derived GM (and 3dTrackID -mode I SUMA,

expanded) ROls {MINIP, PROB} | TrackVis
Sets of WM ROls 3D visual-
and parameter ization

statistics per
network

Comparative analyses of properties of GM (correlation, Z-scores, RSFC, efc.)
and associated WM (FA, MD, L1, RD, etc.) ROIs

NEW — Combine with 3dMVM for groupwise, multivariate statistical modeling,
at both network and ROl levels: fat_mvm_prep.py, fat_mvm_scripter.py.

Using an efficient FACTID

algorithm, reduced
bias of propagation




Combini ltimodal data: FC+SC+...
In Summary om |n| imo a

Preprocessing, motion correction, filtering,| 1d4DW_Grad_o_Mat,
smoothing, registration, etc. 3dTORTOISEtoHere

3dReHo FMRI time DWI data

series data

We have discussed capabilities
and benefits of:

DT estimation

3dNetCorr|e.g. correlation,
GLM, ICA 3dTrackiD,
parametric (FC networks) parameters I
Uncertainty X

FC maps

= ——————

3dMatch, measures of
3dROIMaker DT parameters

Pairwise WM
connections
Sets of functionally- and stats

derived GM (and 3dTrackID -mode I SUMA,

expanded) ROls {MINIP, PROB} | TrackVis
Sets of WM ROls 3D visual-
and parameter ization

statistics per
network

Comparative analyses of properties of GM (correlation, Z-scores, RSFC, efc.)
and associated WM (FA, MD, L1, RD, etc.) ROIs

NEW — Combine with 3dMVM for groupwise, multivariate statistical modeling,
at both network and ROl levels: fat_mvm_prep.py, fat_mvm_scripter.py.
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Combini ltimodal data: FC+SC+...
In Summary om |n| imo a

Preprocessing, motion correction, filtering,| 1d4DW_Grad_o_Mat,

. it ! smoothing, registration, etc. 3dTORTOISEtoHere
We have discussed capabilities i
, | sarotio [TRNRIENS
and benefits of: | series data
| 3dNetCorr |e.g. correlation,
i GLM, ICA 3dTrackiD,
- Voxelwise Sets of brain maps Setof DTsand | map_TrackiD
Integrating AFNI- persmettc o i
- . . 3dMatch, measures of -
S U MA Vi S U a I IZatI O n 3dROIMaker | DT parameters 2::9'5::00\!:21
‘ Sets of functionally- and stats
' T IR derived GM (and -
. shadlll expanded) ROIs porkdfsger el  TackVis
A\ . Sets of WM ROls 3D visual-
: A e . and parameter
Wk E— - statistics per
§ ? network

Comparative analyses of properties of GM (correlation, Z-scores, RSFC, efc.)
and associated WM (FA, MD, L1, RD, etc.) ROIs

NEW — Combine with 3dMVM for groupwise, multivariate statistical modeling,
at both network and ROl levels: fat_mvm_prep.py, fat_mvm_scripter.py.

Using an efficient FACTID

algorithm, reduced
bias of propagation
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Tracking to define and
quantify WM ROls (with
uncertainty/probabilistic)
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And thanks to collaborators:

UMDNJ/NJIT:
Bharat Biswal
Suril Gohel
Xin Di

NIMH/NIH:
Ziad Saad
Rick Reynolds
Gang Chen
Bob Cox

Emory:

Helen Mayberg
Justin Rajendra
Ki Sueng Choi

L ERLE

UCT:

Ernesta M. Meintjes
Alkathafi Alhamud
Chris Molteno

Fleur Warton
Mwape Mofya

CTLFASD Study:

Sandra W. Jacobson (Wayne St.)
Joseph L. Jacobson (Wayne St.)
Andre van der Kouwe (Harvard/MGH)
Pia Wintermark (Montreal Children's)

AIMS:
Johan de Villiers
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