Didactics and Demonstrations

FMRI Task-Based Data Analysis at the Individual Level

Concepts 1 – Linear Models
Basics of Linear Modeling

• **Regression:**
 - Finding a mathematical relationship between
 - a measured response/outcome (dependent) variable
 - and one or more explanatory (independent) variables (*regressors*)
 - Also called *linear modeling* or *linear regression*

• **Linear = Additive =** model for data is sums of *regressors*
 - **Goal:** find out how much each regressor is needed
Basics of Linear Modeling

• Simple Sample Equations
 o $i =$ index of data = 0, 1, 2 … $N-1$ (total of N data points)
 o $x_i =$ explanatory model (known) for data point number i
 o $y_i =$ data value for data point number i
 o $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ or $y_i \approx \beta_0 + \beta_1 x_i$
 o β_0 and β_1 are model fit parameters
 ▪ to be calculated from the x_i and y_i
 o ε_i are the residuals
 ▪ what are left after regression
 ▪ assumed to be random noise
Linear Fit: \(y_i \approx \beta_0 + \beta_1 x_i \)

- \(\beta_0 \) is the intercept
- \(\beta_1 \) is the slope
- \(\varepsilon_i \) is a residual
Quadratic Fit: $y_i \approx \beta_0 + \beta_1 x_i + \beta_2 x_i^2$
AFNI Script

```bash
1deval -num 100 -dt 0.01 \  
   -expr "abs(sin(1.7*t)+gran(0,0.1))" > s1.temp.data.1D

3dTfitter -RHS s1a.temp.data.1D \  
   -polort 1 -prefix NULL -fitts s1a.temp.fitts.1.1D
3dTfitter -RHS s1a.temp.data.1D \  
   -polort 2 -prefix NULL -fitts s1a.temp.fitts.2.1D

1dplot -one -dt 0.01 -xaxis 0:1:10:5 \  
   -dashed 0:2:3 -png s1a.fit1 \  
   -ynames Data Linear - \  
   s1a.temp.data.1D s1a.temp.fitts.1.1D

1dplot -one -dt 0.01 -xaxis 0:1:10:5 \  
   -dashed 0:2:3 -png s1a.fit2 \  
   -ynames Data Linear Quadratic - \  
   s1a.temp.data.1D s1a.temp.fitts.1.1D s1a.temp.fitts.2.1D
```

Script to produce plots on previous slides

`s1a.TimeSeriesAnalysis.LinearRegression.csh`
Modeling with Vectors and Matrices

• Write the model \(y_i \approx \beta_0 + \beta_1 x_i \) out in columns (\textit{vectors})

\[
\begin{pmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots
\end{pmatrix}
\approx
\begin{pmatrix}
1 \\
1 \\
1 \\
\vdots
\end{pmatrix}
\beta_0 +
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
\vdots
\end{pmatrix}
\beta_1
=
\begin{pmatrix}
1 & x_0 \\
1 & x_1 \\
1 & x_2 \\
\vdots & \vdots
\end{pmatrix}
\begin{pmatrix}
\beta_0 \\
\beta_1
\end{pmatrix}
\]

• In \textbf{vector-matrix} form (\textbf{bold} letters for vectors/matrices)

 \(\mathbf{y} \approx \mathbf{X} \mathbf{\beta} \) or, with residual vector \(\mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{\epsilon} \)

• Writing it out this way, equations become more compact, easier to look at, easier to understand at a single glance (with practice)
Modeling with Vectors and Matrices

- Write the model \(y_i \approx \beta_0 + \beta_1 x_i \) out in columns (vectors)

\[
\begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots
\end{bmatrix} \approx \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \end{bmatrix} \beta_0 + \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \end{bmatrix} \beta_1 = \begin{bmatrix} 1 & x_0 \\ 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}
\]

- Each column of \(X \) matrix is a regressor (or model component)

- We assume the columns of \(X \) are known ("the model"), and that data vector \(y \) is known (measured)
Modeling with Vectors and Matrices

• Write the model $y_i \approx \beta_0 + \beta_1 x_i$ out in columns (vectors)

\[
\begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots
\end{bmatrix} \approx \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \end{bmatrix} \beta_0 + \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \end{bmatrix} \beta_1 = \begin{bmatrix} 1 & x_0 \\ 1 & x_1 \\ 1 & x_2 \\
\vdots & \vdots \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}
\]

• Goal is to compute parameter vector β (and statistics about β)

• Much of sections 3, 4, and 6 that follow:
 o Where do we get X for FMRI task analysis?
Solving a Linear Model

• Solution for linear regression \(y = X\beta + \varepsilon \)
 o “Project” data \(y \) onto “space” of explanatory variables (\(X \))
 o OLSQ formula for solution: \(\hat{\beta} = (X^TX)^{-1}X^Ty \)
 o Columns of \(X \) are the model for data vector \(y \)

• Meaning of coefficients \(\beta \):
 o \(\beta_k \) value is slope, or marginal effect, or effect size associated with regressor number \(k \) [column \(k \) in \(X \)]
 o \(\beta_k \) value says how much of regressor number \(k \) is needed to fit the data “best” – in the Ordinary Least Squares sense
 o The sum of squares of \(\varepsilon_i \) is made as small as possible by adjusting all entries in \(\beta \) to make it so
Solving a Linear Model

• Solution for linear regression \(y = X\beta + \varepsilon \)
 o “Project” data \(y \) onto “space” of explanatory variables (\(X \))
 o OLSQ formula for solution: \(\hat{\beta} = (X^TX)^{-1}X^Ty \)
 o Columns of \(X \) are the model for data vector \(y \)

• If we don’t care about regressor number \(k \), then we don’t care about the value of \(\beta_k \) – or any statistics about it
 o But we included regressor number \(k \) in the model because it was needed to fit some part of the data

• Regressors of no interest make up the global Null Hypothesis in the model – in AFNI, we call these regressors the baseline model
Statistics in a Linear Model

• Various statistical tests can be carried out after solving for β vector

• Some examples, with particular null hypotheses H_0

 o Student t-test for each β_i of interest
 $$H_0: \beta_3 = 0$$ [task has no response?]

 o Student t-test for linear combination of some β_i values = general linear test (GLT)
 $$H_0: \beta_3 - \beta_5 = 0$$
 [two tasks have equal response?]
 $$H_0: 0.5*(\beta_3 + \beta_4) - \beta_5 = 0$$
 [average response of two tasks = third task response?]
Statistics in a Linear Model

• Various statistical tests can be carried out after solving for β vector

• Some examples, with particular null hypotheses H_0

 o F-test for composite null hypothesis

 H_0: $\beta_3 = \beta_4 = \beta_5$
 [all 3 tasks have identical responses?]

 H_0: $\beta_3 = \beta_4 = \beta_5 = 0$
 [all 3 tasks have no response at all?]

 o Omnibus or Full F-test for the entire model

 H_0: all β_i values of interest are 0
Linear Model with FMRI

• Time series regression: data vector y is time series = all values from one voxel throughout multiple image acquisitions (TRs)

• Regressors: idealized BOLD response curves
 - We can only find what we’re looking for
 - Regression will miss something if we do not look for it
 - So we must include regressors of no interest, so we can model things like baseline drifting up or down
Linear Model with FMRI

- Regressor construction requires decisions
 - How to model response(s) we look for?
 - What kind of regressors of no interest to include, and how many of them?
 - Don’t want to over-fit or under-fit data

- Usually: Same model matrix X for all voxels in brain
 - Simultaneously solve all the models (1 for each voxel)
 - Voxel-wise analysis = “massively univariate” method
Didactics and Demonstrations

FMRI Task-Based Data Analysis at the Individual Level

Concepts 2 – FMRI Data
FMRI Experiment Terminology

• Experiment setup
 o Number of subjects
 o Number of conditions
 ▪ Tasks, stimulus (trial, event) types
 ▪ Factorial design?
 o Sample size (repetitions) per condition
 o Block, event-related, or mixed?
 o Inter-stimulus interval (ISI) – regular, random?
FMRI Experiment Terminology

• Scanning parameters:
 o TR = time between repetitions (3D volumes)
 o echo time (TE) voxel size; number of 3D volumes; slice sequence (interleaved, multi-slice); slice thickness; removing first few TRs

• Scanning terms
 o Run: continuous scanning; brief break between runs
 o Session: subjects return after long period of time
 o Experiment or study
Types of FMRI Experiments

• Two classical types of experiment design

• **Block** (boxcar) design
 o Each stimulus block lasts for more time than BOLD response takes to rise (e.g., 6+ sec)
 o Each block is under one task condition (e.g., watch a video clip), or a series of multiple short exchangeable trials (e.g., 10 consecutive face images)
 ▪ BOLD responses from close-in-time trials overlap and are not distinguishable in the data
 o BOLD response is often visible in time series
 o SNR: noise size about same as BOLD response
Types of FMRI Experiments

• Two classical types of experiment design

• **Event-related** design
 - Each event or trial is distinguishable from others
 - Spaced apart in time enough for BOLD responses to be separately identified
 - Events often randomly spaced in time
 - BOLD response to stimulus tends to be weaker, since fewer nearby-in-time activations have overlapping signal changes
 - Data looks more like noise (to the pitiful human visual system)
Types of FMRI Experiments

• Other types of experiment design

 • **Mixed designs**
 o Containing both events and blocks
 o *e.g.*, cue on what to pay attention to + face images
 ▪ “Is face angry or happy?” vs “Is face female or male?”
 ▪ Block = cue ; Event = individual image inside block

 • **Naturalistic stimulation** (*e.g.*, movie watching)
 o Not directly covered here
 o Like resting state analysis in the first stages
 ▪ no task response model but with regressors of no interest – to reduce unwanted effects (*e.g.*, head motion)
FMRI Data

- Data partition: \(\text{Data} = \text{Signal} + \text{Noise} \)
 - **Data** = from scanner (voxel-wise time series)
 - **Signal** = BOLD response to stimulus = effects of interest + effects of no interest
 - *We don’t actually know real signal shape to look for!!!*
 - Look for idealized task responses by assuming a **fixed shape** for BOLD effect (FMRI response) for each task trial
 - Or search for signal shape via **basis functions**
 - **Of interest**: effect size (response size) for tasks = **betas**
 - **Of no interest**: baseline, slow drifts, head motion effects, respiration …
FMRI Data

• Data partition: \(\text{Data} = \text{Signal} + \text{Noise} \)

 o \(\text{Noise} \) = components in data that interfere with signal detection
 ▪ Practically: the part of the data we can’t explain with the model
 ▪ Must make some assumptions about its probability distribution – to be able to carry out the statistical tests

• Data = baseline + slow drift + other effects of no interest + response_1 + \ldots + response_k + noise

• How to construct the regressors of interest (responses)? And the regressors of no interest?
Block data of one run at a voxel

- Block: 27 s “on” / 27 s “off”; TR=2.5 s; 130 time points
- This is “best” voxel; most voxels are not fitted as well as this
- Noise size about same as block activation size
Block data of one run at a voxel

Block: 27 s “on” / 27 s “off”; TR=2.5 s; 130 time points

- Data drifts downwards slowly – this effect is captured in the model fit by baseline drift regressors
- If we did not model for drift, our fit would not be as good
Block data of one run at a voxel

Block: 27 s “on” / 27 s “off”; TR=2.5 s; 130 time points

• Activation amplitude and shape vary across blocks
 o Reasons why? We can only guess 😞
 o Habituation? Attention? Noise? Respiration?
Event related design data of one run at a voxel

correlation of data with ideal = 0.56

Lesson: ER-FMRI activation is not obvious via casual inspection
Didactics and Demonstrations

FMRI Task-Based Data Analysis at the Individual Level

Concepts 3 – FMRI Fixed-Shape Models
BOLD Response

• Hemodynamic response (HDR)
 o Brain+FMRI response to stimulus/task/condition
 o Indirect measure of neural response: brain activation ➔ changes in blood oxygen ➔ changes in FMRI signal

• Hemodynamic response function (HRF)
 o Mathematical formulation/idealization of HDR for one full stimulus interval
 o HRF bridges between neural response (what we like) and BOLD signal (what we measure)
 o Multiple copies of HRF are needed to model responses to multiple stimuli
BOLD Response

• How to build the HRF bridge?

 o **Most simple**: Assume a **fixed-shape** (idealized) HRF – one β output per task (per voxel)
 ▪ This is the most common approach in FMRI

 o **Most complex**: No assumption about HDR shape
 ▪ Basis function expansion of HRF shape and size
 ▪ Multiple functional shapes added up to give an adjustable shape
 ▪ Multiple β’s instead of a single β

 o **In the middle**: 1 major fixed shape + a little space for shape adjustment

Fixed-Shape HRF – ≤ 1 s Stimulus

• Assume a fixed shape $h(t)$ for HRF to a very short stimulus: impulse response function (IRF)
 - $\text{GAM}(p,q): h(t) = t^{8.6} \exp(-t/0.547)$ [MS Cohen, 1997]
 - A variation: SPMG1 (undershoot is added in)
Fixed-Shape HRF – 5 s Stimulus

- Combine IRF $h(t)$ with stimulus duration:

$$x(t) = h(t) \otimes S(t)$$

Cannot distinguish individual responses to nearby stimuli with FMRI
Fixed-Shape HRF – 10 s Stimulus

- Combine IRF $h(t)$ with stimulus duration:

$$x(t) = h(t) \otimes S(t)$$

Stimulus duration longer than 10 s is **Block Design**

Sum of 10 copies of GAM
Fixed-Shape HRF – 10 s Stimulus

- With the ‘**BLOCK(10)**’ function in **AFNI**
Fixed-Shape HRF for Block Design

- For each block, IRF $h(t)$ is "convolved" with stimulus start time and duration (d) to get regressor
 - HRF = $\text{BLOCK}(d,m)$
 - Equivalent to adding up sequence of consecutive events
 - Scale HRF to $m=1$ for easy interpretation of β

Start times for each block

Blocks: 20 s on and 10 s off; TR=2 s; 150 time points
AFNI Script

3dDeconvolve -nodata 150 2.0 \\
 -polort -1 \\
 -x1D s3a.xmat.1D \\
 -num_stimts 1 \\
 -stim_times 1 \\
 '1D: 0 30 60 90 120 150 180 210 240 270' \\
 'BLOCK(20,1)'

1dplot -xaxis 0:150:15:2 -xlabel TR -png s3a.png s3a.xmat.1D

Script to produce plot on previous slide

s3a.TimeSeriesAnalysis.BlockModel.csh
Fixed-Shape HRF for Event-Related Design

- **BLOCK** HRF shape also useful with event-related experiments
- Just use a short duration, such as 1 second
- Real experiments have more than 4 task repetitions!

\[
\text{HRF} = \text{BLOCK}(1,1)
\]

Start times for each 1 s event

Sum of 4 individual HRFs gives the regressor for this task
Linear Model with Fixed-Shape HRF

• FMRI data = baseline + response₁ + … + responseₖ + noise

• "baseline" = baseline constant + drift up or down + other effects of no interest (e.g., motion)
 - drift: caused by physiological effects, tiny motions, scanner fluctuations, …
 - "baseline" is treated in AFNI as the null hypothesis model, an additive effect, not an effect of interest
 - "baseline" also needs parameters in the model fit
 ▪ For the constant, the drift shape, and other effects
 ▪ These parameters are not “of interest” and are not included in the Full F statistic of response model fit
Linear Model with Fixed-Shape HRF

- $y_i = \alpha_0 + \alpha_1 t_i + \alpha_2 t_i^2 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \ldots + \epsilon_i \quad [i = \text{time}]$
- $y = X\beta + \epsilon, \ X = [1, t, t^2, x_1, x_2, \ldots, x_k, \ldots]$ [vector format]
- In AFNI, baseline + slow drift is modeled with polynomials: $\alpha_0 + \alpha_1 t_i + \alpha_2 t_i^2$ (polynomial order=2)
 - Longer run needs a higher order of polynomials
 - One order per 150 sec is the default in AFNI
 - Actually uses Legendre polynomials for accuracy
 - With $m > 1$ runs, m sets of polynomials needed to allow for temporal discontinuities across runs
 - $m(p+1)$ columns just for baseline+slow drift (order=p)
- Another effect of no interest: head movement →→→
Stimulus Correlated Motion = Bad

Activation map with image registration but *without* using movement estimates as regressors

Activation map when also using 6 movement estimates as regressors

Lesson: movement regressors (of no interest) are necessary!
Design Matrix X with Fixed-Shape HRF

- Voxel-wise (massively univariate) linear model

 \[y = X\beta + \varepsilon \]

- X: explanatory variables (regressors; "the model")
 - same across voxels (in most analyses)

- y: data (time series) at a voxel (from scanner)
 - different across voxels

- β: regression coefficients (effect magnitudes)
 - different across voxels

- ε: anything we can’t account for ("noise")
 - different across voxels
Design Matrix \mathbf{X} with Fixed-Shape HRF

- 6 drift effect regressors
 - linear ($p=1$) baseline model
 - 3 runs x 2 parameters/run

- 2 regressors of interest
 - i.e., relevant to brain activity
 - from 2 distinct tasks

- 6 head motion regressors
 - 3 rotations + 3 shifts

Black = bigger numbers
White = smaller numbers
Each column of \mathbf{X} scaled separately
Image produced by afni_proc.py
Design Matrix \mathbf{X} with Fixed-Shape HRF

- Same design matrix in graphs
Model Quality Check

• First thing to do!
 o Most users in FMRI simply jump to specific effects of interest, their contrasts, and their significance. They simply don’t pay attention to overall model performance

• Approaches to judge your model
 o Design matrix report from 3dDeconvolve

```
++ WARNING: !! in Signal-only matrix:
  * Largest singular value=2.37503
  * 7 singular values are less than cutoff=2.37503e-07
  * Implies strong collinearity in the matrix columns!
```

This message is usually due to setup mistakes
Model Quality Check

• First thing to do!
 o Most users in FMRI simply jump to specific effects of interest, their contrasts, and their significance. They simply don’t pay attention to overall model performance

• Approaches to judge your model
 o Full F-statistic (automatically provided in AFNI)
 o Testing compares two possibilities (voxel-wise)
 ▪ Data = ‘baseline’ + all effects of interest + noise
 ▪ Data = ‘baseline’ + noise
Model Quality Check

• First thing to do!
 o Most users in FMRI simply jump to specific effects of interest, their contrasts, and their significance. They simply don’t pay attention to overall model performance

• Approaches to judge your model
 o Modeled vs not modeled: \(-\text{fitts}\) and \(-\text{errts}\) outputs
 ▪ Fitted curve = ‘baseline‘ + effects of interest
 ▪ Residuals = noise = error = components we have no idea about (not included in model)
Model Quality Check

• First thing to do!
 o Most users in FMRI simply jump to specific effects of interest, their contrasts, and their significance. They simply don’t pay attention to overall model performance.

[Diagram: Fitted atop Data]
Statistical Testing

• Everything is about contrast (changes)!

• Effects (regression coefficients) of interest

 o β = effect relative to baseline condition

 o $\beta_A =$ how much of regressor A had to be added to baseline model to fit data the best

 o t-statistic: statistical significance of a single β (visual stimulus)

 ▪ Video: as t rises from 2 to 5

 ▪ Colorized from β_{vis}, not from t
Statistical Testing

• Everything is about contrast (changes)!
• Effects (regression coefficients) of interest
• Pairwise comparisons (contrasts)
 o Conditions $\beta_{\text{vis}} - \beta_{\text{aud}}$ (e.g., visual \textit{vs} auditory)
 ▪ How much of visual regressor was needed \textit{minus} how much of auditory regressor
 ▪ Positive=yellow/red ($\beta_{\text{aud}} < \beta_{\text{vis}}$)
 ▪ Negative=blue ($\beta_{\text{aud}} > \beta_{\text{vis}}$)
 o t-statistic: statistical significance of this difference \textit{vs} 0
Statistical Testing

• Everything is about contrast (changes)!
• Effects (regression coefficients) of interest
• Composite tests
 o F-statistic for composite (multiple part) null hypotheses
 o $\beta_{\text{vis}} \neq 0$ and/or $\beta_{\text{aud}} \neq 0$
 o Did any of the stimuli, or any combination of the stimuli, evoke a measurable response?
 ▪ Video: as F rises from 4 to 34
 ▪ Colorized from F (which is always > 0)
Assessing Fixed-Shape HRF Approach

• Used 99% of time: Why is it popular? 🤔
 o Assume brain responds with same shape across four levels: subjects, activated regions, stimulus conditions/tasks, trials
 ▪ Difference in magnitude β in different conditions or different subjects (and its significance) is what we focus on
 ▪ But: Strong assumption about four levels of shapes of BOLD response?

 o Easy to handle and think about
 ▪ Just one value per effect/task 😊
Assessing Fixed-Shape HRF Approach

• Works relatively well, despite the caveats
 o Block design: shape usually not important due to accumulating effects of consecutive events
 ▪ Really flat plateau? Same magnitude across blocks?
 o Event-related experiment: OK most of time
 ▪ Linearity when responses overlap? Same effect across events?

• Not what you want if you
 o Care/worry about shape difference across subjects, across regions, across conditions, and across trials
 o More complex modeling can allow for such effects
Didactics and Demonstrations

FMRI Task-Based Data Analysis at the Individual Level

Concepts 4 – FMRI Variable-Shape Models
Alternative: No Constraint on HRF Shape

- TENT expansion of HRF (shape and magnitude)
 - Set multiple tents at various equally-spaced locations to cover the potential BOLD response period
 - Each TENT is a **basis function**
 - HRF is a sum of multiple basis functions, each with its own β
 - BOLD response measured by TENT heights (βs) at all locations
 - TENTs are also known as ‘piecewise linear splines’

$$T(x) = \begin{cases}
1 - |x| & \text{for } -1 < x < 1 \\
0 & \text{for } |x| > 1
\end{cases}$$

Formula for standardized TENT centered at $x=0$, width=± 1

Cubic splines (CSPLIN) also in **AFNI**
Sum of Tent Functions = Linear Interpolation

- 5 equally-spaced TENT functions = linear interpolation between “knots” using response model

\[\text{TENT}_{\text{zero}}(b,c,n) = \text{TENT}_{\text{zero}}(0,12,7) \]

\[h(t) = \beta_1 \cdot T \left(\frac{t - L}{L} \right) + \beta_2 \cdot T \left(\frac{t - 2 \cdot L}{L} \right) + \cdots + \beta_5 \cdot T \left(\frac{t - 5 \cdot L}{L} \right) \]
Sum of Tent Functions = Linear Interpolation

- TENT output parameters are easily interpreted as function values
 - $\beta_2 = \text{response at time } t = 2L \text{ after stimulus onset}$

- Relationship of TENT spacing L and TR ($L \geq \text{TR}$):
 - e.g., with TR=2s, usually choose $L=2$, or 4

- In `afni_proc.py` or `3dDeconvolve` using
 \[
 \text{TENTzero}(0, D, n)
 \]
 - specify duration (D) of HRF and number (n) of knots
 - $L = D / (n-1)$ with $(n-2)$ full tents
 - Each TENT overlaps $\frac{1}{2}$ tent with two neighbors
 - Example, $D=12s$, pick $L=2s \rightarrow n=7 \rightarrow \text{TENTzero}(0,12,7)$
Basis Functions Create the HRF

- The HRF is repeated for all stimuli of the same type
- In the example, the HRF has 5 parameters (βs) to be estimated
- The βs determine the amplitude (percent signal change) and the shape of the HRF
- Each voxel in each subject gets a separate HRF shape now, not just a separate amplitude
 - If there are multiple types of tasks, each task gets a separate shape
- Stimulus times don’t have to be on TR grid
Why \(\text{TENTzero}(b,c,n) \)?

- “zero” means that the HRF goes to 0 at the beginning and end of the time interval \(b < t < c \)
 - No response just after start or just before end
- “\(b \)” means start of the response is “\(b \)” seconds after stimulus time – usually \(b=0 \)
 - \(b < 0 \) is OK, to allow for pre-stimulus anticipation
- “\(c \)” means end of the response is “\(c \)” seconds after stimulus time – must have \(c > b \)
- “\(n \)” is the number of knots in the spline
 - \(n-2 \) is the number of \(\beta \)s (interior knots)
Fixed-Shape HRF for 20s Block Design

Blocks: 20 s on and 10 s off; TR=2 s; 150 time points

• From Talk 3 in this series
TENTzero HRF for 20s Block Design

HRF = \text{TENTzero}(0,26,14)

- 12 Basis Functions instead of 1
- Top sub-graph = sum of all TENTS
 - for comparison with BLOCK(20,1)
TENTzero HRF for 20s Block Design

$$\text{HRF} = \text{TENTzero}(0, 26, 14)$$

- 12 Basis Functions instead of 1
AFNI Script

3dDeconvolve -nodata 150 2.0 \
 -polort -1 \
 -x1D s4a.xmat.1D \
 -xjpeg s4a.xmat.png \
 -num_stimts 1 \
 -stim_times 1 \
 '1D: 0 30 60 90 120 150 180 210 240 270' \
 'TENTzero(0,26,14)'
3dTstat -sum -prefix stdout: s4a.xmat.1D > s4a.sum.1D
1dplot -xaxis 0:150:15:2 -xlabel TR -png s4a.png \
 -ynames TENT-01 TENT-02 TENT-03 TENT-04 TENT-05 \
 TENT-06 TENT-07 TENT-08 TENT-09 TENT-10 \
 TENT-11 TENT-12 Sum - \
 s4a.xmat.1D s4a.sum.1D

s4a.TimeSeriesAnalysis.TentModel.csh
Modeling with TENTs – Real Example

• Event-related study (Beauchamp et al., J Cogn Neurosci 15:991-1001)
 o 10 runs, 136 time points per run, TR=2 s
 o Two factors
 ▪ Object type: human vs tool
 ▪ Object form in videos: real image vs points
 o 4 types (2x2 design) of stimuli (2s videos)
 ▪ Tools moving (e.g., hammer pounding) - ToolMovie
 ▪ People moving (e.g., walking, sitting) - HumanMovie
 ▪ Points outlining tools moving - ToolPoint
 ▪ Points outlining people moving - HumanPoint
 o Goal: find brain area that distinguishes natural motions (HumanMovie and HumanPoint) from simpler rigid motions (ToolMovie and ToolPoint)
• **Experiment: 2 x 2 design**

- **Human body motion (HM)**
- **Tool motion (TM)**

From Figure 1
Beauchamp et al. 2003
Actual videos do not loop

- Which areas differentially activated by any of stimuli (main effect)?
 - **Point** motion vs **natural** motion? (image type: top 2 vs bottom 2)
 - **Human**-like vs **tool**-like motion? (motion type: left 2 vs right 2)
- Interaction effects?
 - **Point**: human-like vs tool-like? **Natural**: human-like vs tool-like?
 - **Human**: point vs natural? **Tool**: point vs natural?
No Constraint on HRF Shape = Deconvolution

- Shape estimation: Deconvolution via regression
 - Known: stimulus timing
 - Unknown: HRF = BOLD shape/size
 - HRF in each voxel estimated as linear combination (sum) of multiple basis functions: TENTs (or CSPLINs) – rather than just one function
 - Each TENT ➔ one regressor column
 - Copy of TENT shape starting at stimulus times plus its assigned “knot” offset in time
 - Deconvolution ➔ HRF = set of \(\beta \) via regression
Design Matrix with **TENTzero** \((0, 16, 9)\)

| Baseline + quadratic trend for 10 runs | 7 tents per condition × 4 conditions | head motion |
Results: **Humans vs. Tools**

- **Color overlay:** Human vs Tool ($\beta_{HM} + \beta_{HP} - \beta_{TM} - \beta_{TP}$)

- **Blue HRF** (upper): Human

- **Red HRF** (lower): Tool
No Constraint on HRF Shape: **Pros** + Cons

- **What is the approach good at?**
 - Usually: event-related designs; can be used for BLOCK
 - Multiple basis functions for blocks: can find within-block attenuation with time
 - Likely to have more accurate estimate on HDR shape across
 - Subject (*e.g.*, young *vs* old)
 - conditions/tasks
 - brain regions
 - Usually get better model fit (goal in sample experiment)
 - Usually statistically more powerful on test significance
 - Unless you overfit the data, with too many βs
No Constraint on HRF Shape: Pros + Cons

- Why is the approach not popular?
 - Difficult to combine individual results at group level
 - Multiple parameters (\(\beta\)s) per task condition, instead of just one \(\beta\) per subject
 - **But:** see the AFNI program 3dMVM
 - More regressors than simpler alternatives
 - Degrees of Freedom per subject (data points–regressors)
 - Risk of highly correlated regressors: Multicollinearity
 - May need to reduce the number of basis functions
 - Probably need to randomize stimulus timing
 - Over-fitting: picking up something (head motion) unrelated to HDR
Intermediate Approach: SPMG1/2/3

- Use just a few (2-3) basis functions
 - Constrain HRF shape with a principal basis function
 - SPMG1 (similar to GAM in **AFNI**, with undershoot added)
 - 2 or 3 basis functions: parsimonious, economical
 - $\beta_1 \cdot \text{SPMG1} + \beta_2 \cdot \text{SPMG2} + \beta_3 \cdot \text{SPMG3}$
 - SPMG2: time derivative \rightarrow changes in peak delay
 - SPMG3: dispersion derivative \rightarrow changes in peak width
You can use these as basis functions in **AFNI**
- We don’t usually recommend these functions
- The **afni_proc.py** talks show the details of how to select basis functions for the HRF model
Group Analysis with TENTS

• Use multiple βs from each subject in a group analysis?
 o What to do depends on your goal in the study

• **Goal**: find activation magnitude differences
 o Add up TENT βs in each voxel to get “area under the response curve”
 o Carry that sum as a single scalar to the group level as usual (*e.g.*, `3dttest++` or `3dLME`)

• **Goal**: be sensitive to shape differences
 o Use `3dMVM` program (*MultiVariate Modeling*), which allows for multiple βs in each condition

• More on this subject in the Group Analysis Talks
Didactics and Demonstrations

FMRI Task-Based Data Analysis at the Individual Level

Concepts 5 – Modeling Issues
Multicollinearity

• Voxel-wise regression model: \(y = X\beta + \epsilon \)
 o Regressors in matrix \(X = [1, t, t^2, x_1, x_2, \ldots, x_k, \ldots] \)

• Multicollinearity problem
 o Two (or more) regressors highly correlated
 o Difficult or impossible to distinguish effects among these regressors (i.e., get reliable \(\beta \) estimates)
 ▪ Sample message from **3dDeconvolve** – indicates that regressors of interest (Signal) are in trouble

WARNING: !! in Signal-only matrix:
* Largest singular value=2.37503
* 7 singular values are less than cutoff=2.37503e-07
* Implies strong collinearity in the matrix columns!
Multicollinearity

• Multicollinearity scenarios
 o Exact collinearity: \(x_i = c \cdot x_j = \text{model specification error} \)
 ▪ e.g., 2 identical regressors (mistake in stimulus timing)
 o Exact multicollinearity: linear dependence among multiple regressors = faulty design (rare)
 o High degree of correlation (+ or -) among regressors = design problem (e.g., cue + short video watching)
 o Too many basis functions in response model

• Matrix diagnostic tools:
 o ExamineXmat.R, timing_tool.py, xmat_tool.py
 o Better to prototype analysis and find problems before acquiring hard-to-analyze datasets!
Serial Correlation in Residuals

- Temporal correlations – in residuals/noise – not “white”
 - Physiological effects (breathing, heartbeat, motion)
 - β's from OLSQ regression are unbiased
 - But statistics (t, F) tend to be inflated – assuming no correlations in time – this is a modeling error about noise
 - Little impact on group analysis – if only using β's (BOLD signal magnitude estimates) from subjects
 - Will affect group analysis if also using β's reliability, as in AFNI’s 3dMEMA program (where β's and t's are both used)

- AFNI approach – program 3dREMLfit – see section 7
 - Voxel-wise correction for inter-TR correlation, using GLSQ (Generalized Least SQuares) regression – more on this later
Dealing with Multiple Runs per Subject

1. Analyze each run separately: **AFNI, FSL**
 - Have to have enough task repetitions in each run
 - Can test *cross-run* difference (trend, habituation) at *group* level
 - Usually need to summarize multiple β’s (one from each run for each task/condition type) before group analysis
 - Unless using **AFNI**’s *3dMVM* program
 - Which allows multiple values per subject per task
Dealing with Multiple Runs per Subject

2. Concatenate runs but analyze with separate regressors across runs for each condition type: AFNI, SPM

- Can then test cross-run difference (trend, habituation, etc.) at both individual and group levels
- Usually still need to summarize multiple β’s before group analysis
Dealing with Multiple Runs per Subject

3. Concatenate runs but analyze with a single regressor (for each condition type) across runs: default in **AFNI**
 - Assumess no response attenuation across runs
 - That is, a task event in run #1 is treated identically to a task event in run #7
 - Allowing for cross-block (or cross-event) attenuation
 - Method: **IM** or **AM** regression models
 - Described in later talk/slides
Percent Signal Change

• Why convert/scale to make $\beta = \%$ signal change?
 o Comparing across subjects – uniform measurements
 o MRI and BOLD data values don’t have any useful physical/physiological meanings or units
 o Baseline is different across subjects
 ▪ And possibly scaling of raw data values (from scanner hardware/software)
 o It is relative changes that can be compared across subjects
 o BOLD effect is multiplicative on overall voxel signal
Percent Signal Change

- **AFNI** approach
 - Pre-processing: data scaled so *voxel-wise* mean = 100
 - $\beta = \%$ signal change relative to **mean**, not to **baseline**
 - Difference is tiny: less than 5% (BOLD effect small)
 - Alternatives:
 - Global mean scaling for whole brain drift
 - Scale so mean of *each* EPI volume is the same
 - Grand mean scaling for cross-subject comparison: not %
 - Scale each subject so mean over all volumes is a constant
 - These can be performed in **AFNI** if *truly* desired
 - Not our recommendation
Lackluster Performance in Modeling

• **All models are wrong, but some are useful** (GEP Box)

 • Regressors: we use an idealized response model
 o We find what we’re looking for
 o We may miss something when we do not look for it

 • Lots of variability across trials (responses and noise)
 o **Amplitude modulation** if behavioral data are available
 o Model each trial separately (**Individual Modulation**)

 • Linearity assumptions
 o Data = baseline + drift + response1 + response2 + … + noise
 o When a trial is repeated, response is assumed same
 o Response for a block = linearity (no attenuation)
Didactics and Demonstrations

FMRI Task-Based Data Analysis at the Individual Level

Concepts 6 – Advanced Regression
More Complicated Regression Models

- Regression models in **AFNI** are (usually) set up via **afni_proc.py**
 - Which in turn uses program **3dDeconvolve** to construct the regression matrix **X**
 - And solves the linear system in **3dDeconvolve** or **3dREMLfit** (task) or **3dTproject** *(e.g., resting state)*

- This set of slides covers more complicated linear model setups
 - Used for special situations
 - But aren’t all research situations special?
All Zero Regressors

- All-zero time series regressors are allowed
 - Via 3dDeconvolve option -allzero_OK
 - Will get zero β weight and zero t in the solution
 - Example: task where subject makes a forced choice for each stimulus (e.g., male or female face?)
 - Analyze correct and incorrect trials as separate cases
 - What if some subject makes no mistakes? Hmmm …
 - Can keep all-zero regressor (-stim_times = *)
 - Input files and output datasets for error-making and perfect subjects will be organized same way
 - Makes it simpler to setup group analyses when all subject-level results are consistent
Other Basis Functions

• *3dDeconvolve -stim_times* has other basis function options for HRF models besides **BLOCK** and **TENT**
 - **CSPLIN** = *cubic* spline, instead of **TENT** = *linear* spline
 - Same parameters: *(start, stop, number of regressors)*
 - A “drop in” replacement for **TENT**

![Graph showing red and black curves labeled CSPLIN and TENT, with a note that differences are not significant (but looks nicer)]

- **TENTzero** & **CSPLINzero** = force start & end of HRF = 0
All Basis Functions – Single β

- **BLOCK** = discussed previously
- **GAM** = for short responses (discussed previously)
- **TWOGAM** = for compatibility with BrainVoyager
- **SPMG1** = discussed previously
- **WAV** = very old **AFNI** waveform [don’t use]
- **MION** = for use with MION contrast agent

- **BLOCK** and **MION** always have duration parameter
- **GAM, TWOGAM, SPMGx**, and **WAV** have *optional* duration parameter
- For details, see output of **3dDeconvolve -help**
All Basis Functions – Multiple β

- **TENT** = discussed previously
 - and CSPLIN and TENTzero and CSPLINzero
- **SPMG2** = discussed previously (and SPMG3)
 - Unlike other multiple β functions, SPMGx can take an optional duration parameter – to convolve its basis functions with a “square wave” in time
 - All other multiple β functions just use a duration over which the basis functions are defined
- **POLY** = Legendre polynomial expansion
- **SIN** = sine series expansion
- **EXPR** = arbitrary set of formulas
- For details, see output of 3dDeconvolve -help
Some Basis Functions – Single β
AFNI Script

3dDeconvolve -nodata 81 1.0 \
 -polort -1 \
 -x1D s6a.xmat.1D \
 -x1D_stop \
 -num_stimts 5 \
 -stim_times 1 '1D: 10' 'BLOCK(20,1)' \
 -stim_times 2 '1D: 10' 'GAM(8.6,.547,20)' \
 -stim_times 3 '1D: 10' 'SPMG1(20)' \
 -stim_times 4 '1D: 10' 'MION(20)' \
 -stim_times 5 '1D: 10' \
 'EXPR(0,30) sin(PI*t/30)^2'

1dplot -sepscl -xaxis 0:80:8:10 -xlabel TR \
 -ynames 'BLOCK' 'GAM' 'SPMG1' 'MION' 'sin^2()' \
 -png s6a.png s6a.xmat.1D

s6a.TimeSeriesAnalysis.MultiModels.csh
IM Regression - 1

- **IM = Individual Modulation**
 - Compute separate amplitude of response (β) for each stimulus block/event in each stimulus class
 - Instead of computing average amplitude of responses to multiple stimuli in the same class
 - Separate regression column for each stimulus time
 - βs for each separate block/event will be very noisy
 - Can’t use individual activation maps for much
 - Must pool computed βs in some further statistical analysis (individual and/or group)
 - t-test via 3dttest++? inter-voxel correlations in the βs? Correlate βs with something else?
• First application of IM was checking some data we received from another institution

• Experiment: 64 blocks of sensorimotor task (8 runs each with 8 blocks)

Plot of 64 BLOCK βs

sign reversal in run #4 = stimulus timing error!
IM Regression - 3

- IM works naturally with BLOCKs, which only have 1 amplitude parameter β per given stimulus start time
 - More difficult conceptually to use with multiple β basis functions, as each event gets not just different amplitude but different shape

- Work in progress now (spring 2020)
 - Combine multiple βs using a linear mixed effects (LME) model to include mean and variance of subject-level response within a single task class (e.g., “faces”)
 - Randomness from measurement fluctuations ("noise")
 - and Randomness from subject response fluctuations
IM Regression - 4

Regressors for IM analysis
AFNI Script

3dDeconvolve -nodata 150 2.0 \
 -polort -1 \
 -x1D s6b.xmat.1D \
 -x1D_stop \
 -xjpeg s6b.xmat.png \
 -num_stimts 1 \
 -stim_times_IM 1 \
 '1D: 0 30 60 90 120 150 180 210 240 270' \
 'BLOCK(20,1)'

1dplot -xaxis 0:150:15:2 -xlabel TR -png s6b.png s6b.xmat.1D

s6b.TimeSeriesAnalysis.IMModel.csh
• **AM** = Amplitude Modulated (or Modulation)
 - Have some extra data measured about response to each individual stimulus, and *maybe* BOLD response is modulated by this
 - Reaction time; Galvanic skin response; Pain level perception; Emotional valence
• Want to see if some brain regions vary proportionally to this **ABI** (**Auxiliary Behavioral Information** – my personal acronym, not a standard!)
Continuous (or several finely graded) ABI levels

- Want to find active voxels whose activation level also depends on ABI
- **3dDeconvolve** is a *linear* program, so must assume that the change in FMRI/BOLD signal as the ABI changes is *linearly proportional* to the changes in the ABI values
 - If needed, transform ABI values (e.g., logarithm)

Need to make 2 separate regressors

- One to find mean FMRI response (usual analysis)
- One to find the variations in the FMRI response as the ABI data varies
AM Regression - 3

• The second regressor is

\[r_{AM2}(t) = \sum_{k=1}^{K} h(t - \tau_k) \cdot (a_k - \bar{a}) \]

 o Where \(a_k \) = value of \(k^{th} \) ABI value, and \(\bar{a} \) is mean ABI value

 ▪ Set UNIX environment `AFNI_3Deconvolve_rawAM2` to YES so mean of \(\{a_k\} \) is not removed – for advanced users

• \(\beta \) for first regressor is standard activation map

• Statistics and \(\beta \) for second regressor make activation map of voxels whose BOLD response changes with changes in ABI

 o Using 2 regressors allows separation of voxels that are active but are not detectably modulated by the ABI from voxels which are ABI-sensitive
AM Regression - 4

• AM2 regression: -regress_stim_types AM2
• Use is very similar to standard times
 o But the timing file has entries that are “married” to ABI values:
 10*5 23*4 27*2 39*5
 17*2 32*5
 *
 16*2 24*3 37*5 41*4
 ▪ One line per imaging run in the analysis
 ▪ Each stimulus time entry is of form TIME*ABI
 ▪ If a run has no stimuli of this type, put in a single *
 o Such files can be created from 2 standard ASCII (text) .1D files using the 1dMarry program
 ▪ The -divorce option can be used to split them up
• **3dDeconvolve** (the matrix creator) automatically creates the two regressors:
 - unmodulated and amplitude modulated
 - Use `-fout` option to get statistics for activation of pair of regressors
 - *i.e.*, testing null hypothesis that both β weights are zero: that there is no ABI-independent or ABI-proportional signal change
 - Use `-tout` option to test each β weight separately
 - Can `1dplot` `X` matrix columns to see each regressor
AM Regression - 6

• If you want, AM1 regression is also available:
 o It only builds the regressor proportional to ABI data directly, with no ABI parameter mean removed:

\[r_{AM1}(t) = \sum_{k=1}^{K} h(t - \tau_k) \cdot a_k \]

 o AM1 is useful for duration modulated analysis (dmBLOCK) – to be described real soon

• Can have multiple amplitudes married to stimulus times
 o e.g., To fit response model with cubic polynomial (nonlinear in ABI value \(a\)), by giving 3 ABI values from a Legendre expansion in \(a_k\)
 o Try not to go crazy with parameters!
AM Regression – 7a

AM.1D = 10*1 30*2 50*3 70*1 90*2 110*3 130*2 150*1 170*2 190*3 210*2 230*1

3dDeconvolve -nodata 300 1.0 {300 time points TR=1}
-polort -1 {no polynomial baseline}
-num_stimts 1 {one stimulus file}
-stim_times_ AM1 1 AM.1D 'BLOCK(10,1)'
-x1D AM1.x1D {save matrix to file}

1dplot AM1.x1D

AM1 model of signal (modulation = ABI)

s6c.TimeSeriesAnalysis.AMMModel.csh
AM Regression – 7b

AM.1D = 10*1 30*2 50*3 70*1 90*2 110*3 130*2 150*1 170*2 190*3 210*2 230*1

3dDeconvolve -nodata 300 1.0 {300 time points TR=1}
-polort -1 {no polynomial baseline}
-num_stimts 1 {one stimulus file}
-stim_times_AM2 1 AM.1D 'BLOCK(10,1)'
-x1D AM2.x1D {save matrix to file}

1dplot AM2.x1D

AM2 model of signal (modulation = ABI)
2D sub-space spanned by these two time series
AM Regression – 7c

AM1 model is highly correlated with first (bottom) regressor from AM2 model.

If AM1 model was used, but activation was really like AM2 regressor #1, \(\beta \) would be positive.
• First actual user: Whitney Postman (formerly NIDCD)
• Picture naming task in aphasic stroke patients
• 2 slices showing activation map for BOLD responses proportional to ABI (β_{AM2})
 ○ What does this mean? Don’t ask me!
• Alternative: use **IM** to get individual βs for each block/event, then another regression on those values
• Could do nonlinear fitting (to these βs) via **3dNLfim**, or inter-class contrasts via **3dttest**, **3dLME**, **3dANOVA**, or intra-class correlations via **3dICC**, etc.
• What is better: **AM** or **IM**+*something more*?
 ○ If you want linear fit of amplitude to ABI, then direct use of **AM** seems better than using 2 regression steps
 ○ If **AM** doesn’t fit your models/ideas, then **IM**+ is clearly the way to go
 ○ Maybe consult with **AFNI** group to get hints/advice
Solving a visually presented puzzle:

a) subject sees puzzle
b) subject thinks for a while
c) subject responds with solution

Sample Puzzle:
Are these 2 block figures just rotated in 3D from each other, OR
Are they different block arrangements in 3D space?
Solving a visually presented puzzle:

a) subject sees puzzle
b) subject thinks for a while
c) subject responds with solution

Variable duration of phase (b) means that shape for task response varies between trials

- If the variability of duration is more than ±1 TR
- Which is contrary to the whole idea of averaging trials together to get decent statistics
 - Which averaging is basically what linear regression for the \(\beta \) weights does, in an elaborate way.
• **Duration Modulated** regression
• When different stimuli in the same class have different (and known) durations
• Controlled by using **dmBLOCK** response model
• Usually with `-stim_times_AM1` to indicate that an extra parameter is *married* to each stimulus time
 o But parameter is *duration*, not *amplitude modulation*
• You can also use `-stim_times_AM2`, by adding extra amplitude modulation parameter(s)
 o The duration parameter for **dmBLOCK** is always the *last* parameter in a *marriage*
 o Try not to go crazy with parameters!
3dDeconvolve -nodata 350 1 -polort -1 \
 -num_stimts 1 \
 -stim_times_AM1 1 q.1D 'dmBLOCK(1)' \
 -x1D stdout: | 1dplot -stdin -thick -thick

q.1D = 10:1 40:2 70:3 100:4 130:5 160:6 190:7 220:8 250:9 280:30
Other Linear Regression Software in AFNI

- Program **3dTfitter**: solves linear regression models for special purposes
 - Voxel-dependent regressors
 - L2, L2 LASSO, and L1 solution methods
 - Constraints on fit parameter (β) signs
 - No statistics, just fits
- Program **3dTproject**: just calculates the residuals
 - No statistics, no βs, …
 - When there are only nuisance regressors, and the idea is to “clean up” or “regress out” these nuisances
 - Use cases: Resting state and Naturalistic FMRI
 - Much faster than other 3d* regression programs
Nonlinear Regression in AFNI

• Linear models aren’t the only possibility
 o e.g., could try to fit HRF of the form $h(t) = a \cdot t^b \cdot e^{-t/c}$
 o Unknowns b and c appear nonlinearly

• Program 3dNLfim can do nonlinear regression
 o User provides C function that computes a model time series, given a set of parameters (e.g., a, b, c)
 ▪ Many sample model functions in the AFNI source code distribution – https://github.com/afni/afni
 o 3dNLfim drives this C function repeatedly, finding set of parameters to best fit each voxel time series
 o Has been used to fit pharmacological models for DSC-MRI and other IV drugs (e.g., cocaine)
Didactics and Demonstrations

FMRI Task-Based Data Analysis at the Individual Level

Concepts 7 – Noise Modeling
“Noise” in FMRI

- MR thermal noise
- Cardiac and respiratory cycles
 - In principle, could measure these sources of noise separately and then try to regress them out
 - Scanner fluctuations (e.g., thermal drift of hardware, pulse sequence timing errors)
- Small subject head movements (10-100 μm)
- Very low frequency fluctuations (periods ≥ 100 s)
- “Serial correlation” in the noise time series affects the t- and F-statistics calculated by 3dDeconvolve

Next slides: AFNI program for this latter problem
• \(t \)- and \(F \)-statistics denominators: estimates of noise variance

 o White noise estimate of variance

\[
\hat{\sigma}^2 = \frac{1}{N - m} \sum_{i=0}^{N-1} [\text{data}_i - \text{fit}_i]^2
\]

- \(N \) = number of time points
- \(m \) = number of fit parameters
- \(N - m \) = degrees of freedom (DOF)
- how many equal-variance independent random values are left after a pure noise time series is fit with \(m \) regressors
• **Problem**: if noise values at successive time points are correlated, this estimate of variance $\hat{\sigma}^2$ is biased to be too small
 - There aren’t really $N-m$ independent random values left
 - Denominator $N-m$ too small implies t- and F-statistics are too large 😞
 - And number of degrees of freedom $N-m$ also too large
 - So significance (p-value) of activations *in individuals* is overstated (since t/F are too big)
 - **Subtler problem**: actual variance of β estimate is larger than one thinks $\Rightarrow \beta$ isn’t as accurate as it could be
Possible ways to patch these problems:

Solution #1
- Estimate correlation structure of noise and then adjust statistics (downwards) appropriately.

Solution #2
- Estimate correlation structure of noise *and* also estimate β fit parameters using more efficient *generalized least squares* (GLSQ instead of OLSQ), using this correlation, in one model (REML method).
 - Better estimates for $\hat{\sigma}^2$, for β, & keeps DOF = $N - m$.
- This is the technique that AFNI uses.
• **REML** is a method for estimating variance+correlation parameters and estimating fit parameters (βs)
• Noise correlation structure is modeled as ARMA(1,1)
 ○ 2 parameters in *each voxel*: a (AR) and b (MA)
 ▪ a models how fast noise de-correlates over time
 ▪ b models short-range correlation in time (1 TR)
• Unlike SPM and FSL, *each voxel* gets a separate estimate of its own temporal correlation parameters
 https://doi.org/10.1038/s41467-019-09230-w (2019)
Allowing for Serial Correlation - 5

ARMA(1,1) $a = 0.8$ $b = 0.2$

White Noise $a = 0$ $b = 0$

Correlation between top and bottom time series $= 0.5225$
AFNI Script

1dgenARMA11 -seed 666 -num 201 -a 0.8 -b 0.2 > s7a.ARMA.1D
1dgenARMA11 -seed 666 -num 201 -a 0.0 -b 0.0 > s7a.WHIT.1D

1ddot -terse s7a*.1D

1dplot -png s7a.png s7a.WHIT.1D s7a.ARMA.1D

s7a.TimeSeriesAnalysis.ARMA11.csh
• Inputs to **3dREMLfit**
 o Regression matrix file (plain text)
 o Usually pre-computed by **3dDeconvolve** using **afni_proc.py**
 o **afni_proc.py** then runs **3dREMLfit**
 ▪ Inputs are matrix file and 3D+time dataset

• Output datasets are structured as from **3dDeconvolve**
 – But statistics and β s are improved (we hope)
Allowing for Serial Correlation - 7

REML
F = 3.15
p = 0.001

OLSQ
F = 3.15
p = 0.001

REML
F = 1.825
p = 0.061
- *F* = No activity outside brain!

OLSQ
F = 5.358
p = 5e-7
- *F* = No activity outside brain!

Oh My GOD !??!
Allowing for Serial Correlation - 8

Color Overlay = β weight from analysis on previous slide, no threshold
For individual activation maps, \texttt{3dREMLfit}-ized \(t \)- and \(F \)-statistics are significantly different, and more accurate.

But … There are at present very few applications for such individual FMRI activation maps:
- pre-surgical planning; longitudinal studies

For standard group analysis, inputs are only \(\beta \) fit parameters:
- Which don’t change so much between REML/GLSQ and OLSQ
- In other words – older OLSQ-based group analyses are not invalidated
Group analysis activation maps (3dANOVA3) from 16 subjects

- Allowing for Serial Correlation - 10

- REML/GLSQ
- OLSQ
Current plans (spring 2020)
- Extend the temporal correlation model to higher order ARMA

Motivation: faster TR data (1 s or less) shows respiration and cardiac “noise”
- Instead of noise correlation decaying away monotonically as the “lag” between 2 time points increases, it both decays and oscillates
- ARMA(3,1) or ARMA(5,1) can pick up these effects and compensate for them, with extra parameters
 - Needed = efficient algorithm for voxel-wise estimation
Didactics and Demonstrations

FMRI Task-Based Data Analysis at the Individual Level

Concepts 8 – Pre-Processing
Regression is final step in time series analysis

Before regression, 3D+time dataset(s) are processed in several ways to “clean up” the data

Pre-processing for task based, resting state, and naturalistic FMRI are much the same

- The main difference is the attitude towards the outputs of the regression step
- **Task**: the βs are output of interest
- **RS, Naturalistic**: no task regressors – residuals are output of interest
 - What is left after regressors of no interest are removed
AFNI’s recommended RS-FMRI preprocessing steps

HJ Jo et al, 2010 and 2013

Carried out using afni_proc.py
Step 1 = Despiking (before)
Step 1 = Despiking (after)
Step 2 = Slice Timing Correction

- 2D Slices are acquired at different times within one 3D “volume” TR
- Even the same physiological BOLD effect in 2 different slices will show up (slightly) differently due to being measured at different times
- And so will be less correlated/less identical than they “should be”
- Solution: interpolate in time to some common reference point before calculating regression
 - Not perfect, because are also interpolating noise
Step 3 = Motion Correction
Step 4 = EPI Alignment with Anatomy
Step 5 = Spatial Normalization to Template

- **Step 3**: Even more important for RS/naturalistic FMRI, since the BOLD effect is smaller and more spatially diffused than in task FMRI, so compensating for subject head motion is crucial.
- **Step 4**: Needed for step 5, and for assigning RS-FMRI results to brain regions.
- **Step 5**: Needed for group studies or using atlases.
 - Spatial transformations to bring 3D datasets into alignment computed separately in Steps 3-5.
 - Combined to transform datasets in one final operation.
Step 6 = Extract Tissue Based Regressors

- Purpose of tissue based regressors is to extract time series fluctuations that are *not* BOLD signal
- So we can regress them out of the data at **Step 8**
- Common choices include:
 - Average of all white matter (WM) signal time series
 - Several principal components of all WM time series (CompCor method)
 - Average global brain signal time series (GS)
 - Average signal from CSF in ventricles
- Less common (only in **AFNI**): **ANATicor** …
ANATicor – Tissue Based *per voxel*

Eroded WM mask (WMe) [voxels in white]

Average over WMe voxels inside 25mm radius
Step 7 = Spatial Blurring

- Important for RS/naturalistic FMRI since the BOLD signal fluctuations are small
 - Also important in group studies so that errors in inter-subject alignment can be compensated for
- Averaging locally will tend to cancel noise and add up coherent (similar looking) signals
- **Important**: blur *after* tissue based signal extraction
- *Otherwise*, will get unintended signals in WM and CSF that were blurred in from nearby GM (gray matter)
Effects of Blurring on RS-Correlation

Little blurring means little long-range RS correlation!
Step 8 = Nuisance Regression - 1

- In task-FMRI, regression is to find signal amplitudes (βs) of task model components while also removing the nuisance model components
 - Nuisances: motion parameters, motion parameter time derivatives, WM signals, measured respiration signal, etc
- In RS/naturalistic-FMRI, there are no task model components to estimate
- All we want from the pre-processing and regression is to remove the nuisance components (as much as practicable) and compute the residuals
 - These residuals are the “purified” output, ready for further analysis (e.g., correlations)
Step 8 = Nuisance Regression - 2

- Another operation usually (but not always) used in RS-FMRI is **bandpassing**
 - It involves removing all frequency components from the data *except* those in a specific band (or range)
- **Frequency**: units are Hertz (Hz) = cycles per second
 - 1 Hz = 1 cycle per second
 - 0.01 Hz = 0.01 cycle per second = 1 cycle in 100 sec
 - 100 Hz = 100 cycles per second = 1 cycle in 0.01 sec
 - "cycle" = full sine wave
 - Larger frequency = faster
 - Lower frequency = slower
Step 8 = Nuisance Regression - 3

- In RS-FMRI, it is common to bandpass out all frequencies **higher than** 0.10 Hz and **smaller than** 0.01 Hz
 - Keep only data fluctuations that occur in the 10-to-100 second range
 - Faster or slower = **OUT**
- The idea is these don’t contain much BOLD effect, so should be removed before analysis of residuals
- This idea is controversial
 - There is evidence that neurally relevant fluctuations occur up to 0.20 Hz (5 s time scale)
Step 8 = Nuisance Regression – 3a

Data voxel
No bandpass

Data voxel
Bandpass 0.01-0.10

BP: removes slow drift and reduces rapid oscillations

s8a.TimeSeriesAnalysis.Bandpass.csh
Step 8 = Nuisance Regression - 4

- It is common to censor out “bad” time points, so they aren’t used in the analysis (task or RS)
 - “Bad” = too much motion, or that volume has too many “outlier” data points, or …
- It is important to censor bad time points before/during the nuisance regression, not afterwards
 - Otherwise, they will affect regression results and contaminate residuals even at un-censored times
 - In AFNI, censoring is done by removing the offending data time point from the analysis (matrix and data)
 - Alternative: include an extra regressor which=0, except=1 at time point to be killed (SPM, FSL)
In AFNI, nuisance regression, bandpassing, and censoring for RS-FMRI are all done in the same program: 3dTproject (residual computing only)
 - Which allows for voxel-specific regressors (ANATicor)
 - 3dTproject is much faster than 3dREMLfit, since it does not have to compute βs or statistics

For task-FMRI, regression is done with program 3dREMLfit (also allows for voxel-specific regressors)

How does afni_proc.py know which program to use?
 - If no task timing files are given, then it uses 3dTproject, otherwise 3dREMLfit
Step 8 = Nuisance Regression - 6

- Naïve people have done these 2 steps in sequence:
 - Bandpass the data
 - Regress other nuisance vectors from bandpassed data
 - Doing these operations in 2 steps (instead of one) is not just bad, it is **WRONG**

- Since nuisance regressors will contain some rejected frequency components, these unwanted components will “leak” back into the data at second regression
 - Unless nuisance regressors were bandpassed also
 - The same warning applies to bandpassing and censoring – they should be done together

- These reasons (plus speed) are why **3dTproject** was written
AFNI’s recommended RS-FMRI preprocessing steps

HJ Jo et al, 2010 and 2013

Carried out using afni_proc.py
Preprocess via `afni_proc.py`

```bash
### Adapted from Example 9b in afni_proc.py -help
afni_proc.py -subj_id s620
  -dsets s620_rest_r1+orig.HEAD
  -blocks despike tshift align tlrc volreg
    blur mask regress
  -tcat_remove_first_trs 2
  -volreg_align_e2a
  -blur_size 6
  -regress_anaticor_fast
  -regress_censor_motion 0.2
  -regress_censor_outliers 0.1
  -regress_bandpass 0.01 0.2
  -regress_apply_mot_types demean deriv
  -regress_run_clustsim no -regress_est_blur_errts
```