Analyzing matrix data through Bayesian multilevel modeling Introduction to the AFNI program MBA

Gang Chen

SSCC/NIMH/NIH

March 11, 2021

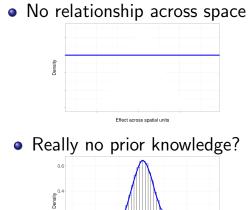
- Conventional approach: massively univariate analysis
 - Advantages and limitations
- New framework: Bayesian multilevel (BML) modeling
 - Model formulation
 - Overcoming the limitations of MUA
 - AFNI program MBA
- Demo: running MBA with matrix data

Staple Methodology in Neuroimaging

- Massively univariate analysis (MUA)
 - Spatial units: voxels, ROIs, region pairs
 - Treat each spatial unit as an isolated entity
 - As many models as spatial units: GLM, ANOVA, LME, NBS
 - No commonality across peers: trees/patches, but no forest!
 - Intuitive and straightforward: flat, usually not hierarchical
- Good and bad
 - + Simple and flat: GLM at the unit level; Divide and Conquer
 - + Computationally frugal
 - Heavy penalty: multiple testing adjustment (MTA)
 - Family-wise error (FWE): cluster-based, permutation-based
 - False discovery rate (FDR)
 - Artificial dichotomy: draw an arbitrary line in sand (how "correct" is 0.05?)

Information waste: MTA and dichotomization intertwined

Problem with MUA



Damages

- Overfitting: poor predictivity / reproducibility
- Information waste
- Heavy penalty
- Dichotomization
- Discrimination against anatomically small regions
- Vulnerability / sensitivity to data manipulations

Brain voxel values

Matrix Data

- Data types
 - FMRI: inter-region correlations
 - DTI: white-matter properties: FA, MD, RD, AD, ...
- Structure

▶ $m \text{ ROIs } (i, j = 1, 2, ..., m(i \neq j)), n \text{ subjects } (k = 1, 2, ..., n)$

		R_1	R_2	R_3		R_m
	R_1	(-	z_{12k}	z_{13k}		z_{1mk}
	R_2	$egin{array}{c} z_{21k} \ z_{31k} \end{array}$	-	z_{23k}		z_{2mk}
$oldsymbol{Z}_k^{(m)} =$	R_3	z_{31k}	z_{32k}	-		z_{3mk}
	:	:	:	:	·	:
	\dot{R}_m	z_{m1k}	z_{m2k}	. z_{m3k}		·)

- Usually symmetric: $\frac{1}{2}m(m-1)$ elements z_{ijk}
- Missing elements?

Matrix Data: MUA

• GLM

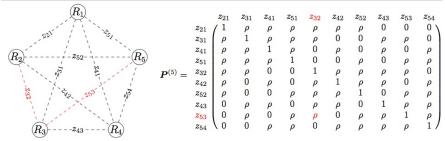
- $\frac{1}{2}m(m-1)$ models: one per element
- Împlicit assumptions
 - All region pairs: unrelated; no information shared
 - Equal likelihood of all ROIs being in $(-\infty, +\infty)$
 - Divide and Conquer: see trees, but not forest
- Tools: NBS, CONN, FSLNets in FSL, GIFT

Costs

- Heavy penalty: multiplicity
- Binarization
- information waste, poor reproducibility

Examining implicit assumptions: MUA

• Unrelatedness among region pairs?



- How to capture the relatedness ρ ? Not addressed under MUA
- Equal likelihood of all ROIs being in $(-\infty, +\infty)$?
 - ROIs: similar to subjects and trials in task-related FMRI
 - Gaussian distribution: more reasonable than uniform

Integration through multilevel modeling

• Data: *m* ROIs $(i, j \ (i \neq j))$, *n* subjects (k)

		R_1	R_2	R_3		R_m
	R_1	(-	z_{12k}	z_{13k}	• • •	z_{1mk}
	R_2	z_{21k}	-	z_{23k}	• • •	z_{2mk}
$oldsymbol{Z}_k^{(m)} =$	R_3	z_{31k}	z_{32k}	-		z_{3mk}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	:	:	:	:	·.	:
	D		•	•	·	· )
	$R_m$	$\sqrt{m1k}$	$z_{m2k}$	$z_{m3k}$	•••	- /

- Model formulation
  - ►  $z_{ijk} \sim \mathcal{N}(\mu, \sigma^2), \ \mu = b_0 + \xi_i + \xi_j + \eta_{ij} + \zeta_{ik} + \zeta_{jk} + \pi_k;$   $\xi_i, \xi_j \sim \mathcal{N}(0, \ \lambda^2), \ \eta_{ij} \sim \mathcal{N}(0, \ \theta^2), \ \zeta_{ik}, \zeta_{jk} \sim$  $\mathcal{N}(0, \ \nu^2), \ \pi_k \sim \mathcal{N}(0, \ \tau^2); \ i, j = 1, 2, ..., m; \ k = 1, 2, ..., n$
  - ROIs loosely constrained/regularized:  $\xi_i, \xi_j \sim \mathcal{N}(0, \lambda^2)$

## Multilevel modeling: making inferences

- Conceptual model
  - Effect decomposition  $\mu = \mathbf{b}_0 + \xi_i + \xi_j + \eta_{ij} + \zeta_{ik} + \zeta_{jk} + \pi_k$
  - Effects of interest
    - Region pair:  $b_0 + \xi_i + \xi_j + \eta_{ij}$
    - Region:  $\frac{1}{2}b_0 + \xi_i$
  - Relatedness among region pairs characterized:  $\rho$
  - Integrity: see the forest for the trees
  - No multiplicity/dichotomization: one model integrates all
- Numerical implementations
  - Linear mixed-effects (LME) modeling
    - Computationally scalable, but algorithmically infeasible
  - Bayesian multilevel (BML) framework: probabilistic modeling
    - Algorithmically easy with manageable computational cost
    - Inferences via simulations: Markov chain Monte Carlo (MCMC)
    - Implemented in AFNI program MBA

#### Demo: matrix-based analysis with MBA

- Dataset: correlation matrices
  - Response-conflict task (Choi et al., 2012)
  - n = 41 subjects, m = 16 ROIs; 120 correlations per subject
- Input: data.txt in long format

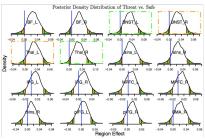
Subj	ROI1	ROI2	Y
S1	R1	R2 -	-0.1625
S1	R1	R3	0.0238
S1	R1	R4	0.1846

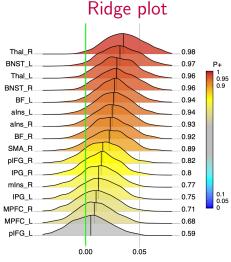
• • •

 MBA script MBA -prefix output -chains 4 -WCP 6 -iterations 1000 -EOI 'Intercept' -dataTable data.txt

### MBA: Inferences at ROI level

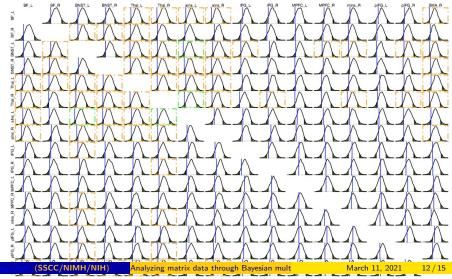
- Distribution for each ROI
- Relative importance: hub
- Full result presentation
- Highlight but not hide





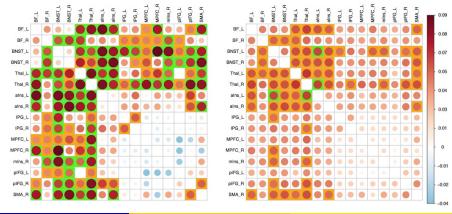
#### MBA: Inferences at region pair level

#### • 120 region pairs



#### Inferences at region pair level

 MUA: 63 RPs with p = 0.05, but 0 under MTA via NBS
MBA: 33 RPs with strong evidence under BML MUA/GLM MBA/BML



## MBA applied to DTI data

- Model validation?
- Limited applications
- Challenge: missing region pairs
  - Modeling: trouble with too many missing RPs
  - Result presentation

## Acknowledgements

- Paul Taylor, Bob Cox, Rick Reynolds, Daniel Glen, John Lee, Justin Rajendra, SSCC, NIMH/NIH
- Yaqiong Xiao, Elizabeth Redcay, Tracy Riggins, Fengji Geng, Luiz Pessoa, Joshua Kinnison, Depart of Psychology, University of Maryland