AFNI SUMA A FINI FINI

Didactics and Demonstrations

Introduction, Concepts, Principles

March 2020

-1-

Web Page to Bookmark

-2-

<u>https://afni.nimh.nih.gov/pub/dist</u> /doc/htmldoc/index.html

== <u>https://bit.ly/AFNIstuff</u>

- Links to AFNI Installation instructions, Documentation, Data, Tips, *et cetera*
- To use hands-on videos: install AFNI and then the Prep for Bootcamp link

AFNI = <u>Analysis of Functional</u> <u>Neurolmages</u>

- Created to provide an environment for FMRI data analyses
- <u>AFNI</u> refers to both the program of that name and the entire package of external programs and plugins (several hundred)
- Important principles in the development of **AFNI**:
 - Allow user (you) to stay close to the data and view it in different ways
 - Give users the power to assemble computing pieces in different ways to make customized analyses
 - With great power comes great responsibility
 - to understand the analyses and the tools
 - "Provide mechanism, not policy"

-3-

Allow other programmers to add features/components

Principles (and Caveats) We Live By

- Fix significant bugs as soon as possible
 - <u>But</u>, we define "significant"
- Nothing is secret or hidden (AFNI is open source)
 - But, possibly not very well documented or advertised
- Release early and often
 - So, All users are beta-testers for life
- Help the user (message board; consulting with NIH users)
 - <u>Until</u> our patience expires
- Try to anticipate users' future needs
 - <u>What</u> we *think* you need may not be what you *really* need

Before We Really Start

- AFNI has many programs and each has many options
- Assembling the programs to do something useful and good seems confusing (OK, is confusing) when you start
- To help overcome this problem, we have "super-scripts" that carry out important tasks
 - Each script runs multiple AFNI programs

-5-

- We recommend using these as the basis for FMRI work
- **afni_proc.py** = Single subject FMRI pre-processing and time series analysis for functional activation
- align_epi_anat.py = Image alignment (registration),
 including anatomical-EPI, anatomical-anatomical, EPI-EPI,
 and alignment to atlas space (Talairach/MNI)

What is Functional MRI?

-6-

• 1991 discovery: MRI-measurable signal increases few % *locally* in brain after increases in neuronal activity (Kwong, *et al.*)

A

How FMRI Experiments Are Done

• Alternate subject's neural state between 2 (or more) conditions using sensory stimuli, tasks to perform, ...

-7-

- Can only measure relative signals, so must look for changes in the signal between the conditions
- Acquire lots of MR images repeatedly during this process
- Search for voxels whose NMR signal time series (up-anddown) matches stimulus time series pattern (on-and-off)
 - FMRI data analysis is basically pattern matching *in time*
- MRI signal changes due to neural activity are small
 - Need 500 or so images in time series (in each slice) → takes 30 min or so to get reliable activation maps
 - Other small effects can corrupt the results → postprocess the data to reduce these effects & *be vigilant*

Sample Data Time Series

- 64 × 64 matrix (TR=2.5 s; 130 time points per imaging run)
- Somatosensory task: 27 s "on", 27 s "rest"
- Note that this is *really* good data

One anatomical image, with voxels that match the pattern given a color overlay

pattern of expected

BOLD signal

Fundamental **AFNI** Concepts

Basic unit of data in AFNI is the <u>dataset</u>

9

- A collection of 1 or more 3D arrays of numbers
 - $_{\circ}$ Each entry in array is in a particular spatial location in a 3D grid
 - Image datasets: each array holds collection of slices from scanner

Jargon!

- Each number is the signal intensity for that particular voxel
- Derived datasets: each number is computed from other dataset(s)
 - e.g., each voxel value is a *t*-statistic reporting "activation" significance from an FMRI time series dataset, for that voxel
- Each 3D array in a dataset is called a <u>sub-brick</u> Jargon!
 There is one number in each voxel in each sub-brick (volume)

Dataset Cartoon: A Little Bit Bigger

What's in a Dataset: Header Stuff

- Besides the voxel numerical values, a dataset also contains auxiliary information, including (some of which is optional):
 - xyz dimensions of each voxel (in mm)
 - Orientation of dataset axes;

for example, *x*-axis=R-L, *y*-axis=A-P, *z*-axis=I-S = axial slices (we call this orientation "RAI")

- Location of dataset in scanner coordinates
 Needed to overlay one dataset onto another
 Important to get right in FMRI, since we deal with many datasets
- Time (s) between sub-bricks, for <u>3D+time</u> datasets <u>Jargon!</u>
 Such datasets are basic unit of FMRI data (one per imaging run)
- Statistical parameters associated with each sub-brick
 o e.g., a *t*-statistic sub-brick has degrees-of-freedom parameter stored

AFNI Formatted Dataset Files - 1

- AFNI formatted datasets are stored in 2 files
 - The <u>.HEAD</u> file holds all the auxiliary information (ASCII)
 - The .BRIK file holds all the numbers in all the sub-bricks
- Datasets can be in one of 2 coordinate systems ("views")
 - Original data or <u>+orig</u> view = from the scanner
 - "Talairach" or <u>+tlrc</u> view =
 - Dataset has been rescaled to conform to the Talairach-Tournoux atlas dimensions *or* another atlas, such as MNI
 - AKA Stererotaxic coordinates
 - All datasets scaled+aligned to some atlas are labeled <u>+tlrc</u>
 - Header file holds name of actual atlas "space" (e.g., "MNI")
 - Alignment can be *linear* or *nonlinear* (3dQwarp program)

AFNI Formatted Dataset Files - 2

Jargon!

- AFNI dataset filenames consist of 3 parts
 - The user-selected prefix (almost anything)
 - The view (one of +orig, or +tlrc)
 - The suffix (one of .HEAD or .BRIK)
 - TonyFauci_epi+tlrc.HEAD & TonyFauci_epi+tlrc.BRIK
 - You supply the prefix; the AFNI program supplies the rest
- **AFNI** programs can *read* datasets stored in several formats
 - ANALYZE (.hdr/.img file pairs); very old nowadays
 - MINC-1 (.mnc); i.e., from mnitools (also very old now)
 - CTF (.mri, .svl) MEG analysis volumes
 - ASCII text (.1D) text numbers arranged into columns
 - Have conversion programs to write out MINC-1, ANALYZE, ASCII, and NIfTI-1.1 files, if desired

NIfTI Dataset Files

- NIfTI-1 (<u>.nii</u> or <u>.nii.gz</u>) is a standard format that AFNI, SPM, FSL, FreeSurfer, BrainVoyager, et al., agreed upon
 - Goal: easier interoperability of tools from various packages
- All data is stored in one file (*cf.* http://nifti.nimh.nih.gov/)
 - 352 byte header (extensions allowed; AFNI uses this feature)
 - Followed by the image binary numerical values
 - Allows 1D–5D datasets of diverse numerical types
 - .nii.gz suffix means file is compressed (using Unix program gzip)
- AFNI reads and writes NIfTI-1 (and NIfTI-2) datasets
 - To write: when you give the prefix for the output filename, end it in ".nii" or ".nii.gz", and AFNI programs will automatically write NIfTI-1.1 format instead of .HEAD/.BRIK
 - To read: just give the full filename ending in ".nii" or ".nii.gz"

-14-

Creating Datasets from DICOM Files

- <u>Program 1</u>: Rick Reynolds' **AFNI** program **Dimon**
 - Was originally created for sending image data directly into AFNI for "realtime FMRI"
- <u>Program 2</u>: Chris Rorden's dcm2niix_afni

-15-

- Can create a whole collection of datasets
- Works with more DICOM formats than Dimon does
- Problem: Standard NIFTI .nii format can't store complicated slice timings
 - So programs like dcm2niix_afni cannot store this information even if the program can find it in the DICOM files
- <u>Solution</u>: use <u>3drefit</u> to add the slice timing information to the header (inside AFNI extension for NIFTI .nii files)

Dataset Directories

- Datasets are stored in directories (AKA "folders")
 - All the datasets in the same directory, in the same view, are presumed to be aligned in xyz-coordinates
 - Voxels with same value of (x, y, z) correspond to same brain location
 - Can overlay (in color) any one dataset on top of any other one dataset (underlay in grayscale) from same directory
 - Even if voxel sizes and spatial orientations differ
 - Overlay of one dataset upon another is based on xyz coordinates
 - Typical AFNI contents of a directory are all data derived from a single scanning session for one subject
 - Anatomical reference (T1-weighted SPGR or MP-RAGE volume)
 - 10-20 3D+time datasets from FMRI EPI functional runs
 - Statistical datasets computed from 3D+time datasets
 - Datasets transformed from +orig to +tlrc coordinates

Getting and Installing AFNI

- **AFNI** runs on <u>Unix</u> systems: Linux, Sun, Mac OS X
 - Can also run under Windows Subsystem for Linux
 Requires also installing X11 (Unix graphics display software)
- You can download precompiled binaries from our Website
 - https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/index.html
 - Documentation, message board, data, class materials,...
- You can download source code and compile it
 - And from GitHub: https://github.com/afni/AFNI
- **AFNI** is updated fairly frequently, so it is important to update occasionally = **@update.afni.binaries**
 - It's hard to help you with outdated versions!
 - Please check for updates every 6 months (or less)

SUMA, et alii

- **<u>SUMA</u>** is the **AFNI** <u>su</u>rface <u>mapper</u>
 - For displaying surface models of cortex
 Surfaces from FreeSurfer (MGH) et cetera

- Interactively display functional activations mapped from 3D volumes to the cortical surface representation
- Draw ROIs directly on the cortical surface
 vs. AFNI: ROIs are drawn into the 3D volume
- SUMA is separate from **AFNI**, but can "talk" with **AFNI**
 - Click in AFNI or SUMA to change focus point, and the other program jumps to that location at the same time
 - Functional (color) overlay in AFNI can be sent to SUMA for simultaneous display
- And much more stayed tuned for the SUMA talks to come!

-18-

That's All for Now

