Didactics and Demonstrations

FMRI Task-Based Data
Analysis at the Individual Level

Concepts 1 — Linear Models




Basics ot Linear Modeling

* Regression:
o Finding a mathematical relationship between

= a measured response/outcome (dependent)
variable

= and one or more explanatory (independent)
variables (regressors)
o Also called linear modeling or linear regression

e Linear = Additive = model for data is sums of
regressors

o Goal: find out how much each regressor is needed



Basics ot Linear Modeling

* Simple Sample Equations
i =index of data=0, 1, 2 ... N-1 (total of N data points)

x; = explanatory model (known) for data point number i

O

O
O
O
O

y; = data value for data point number i

Yi=Pot Prxi+ & or y;=fy+ fx;
Py and B; are model fit parameters

= to be calculated from the x; and y; Ny

¢; are the residuals
= what are left after regression

= assumed to be random noise
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Linear Fit: y; = B, + bx;

13T rrrrrrrryrrrr[rrrrr T ¢=$Data
s o ]
y 1.2 F---linear
1 |
1. F Ei 1S a
Pois the residual
intercept




Quadratic Fit: y; = B, + Bx; + Box/
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AFNI Script

ldeval -num 100 -dt 0.01 \
-expr "abs(sin(l.7*t)+gran(0,0.1))" > sl.temp.data.1lD

3dTfitter -RHS sla.temp.data.lD \

-polort 1 -prefix NULL -fitts sla.temp.fitts.1.1D
3dTfitter -RHS sla.temp.data.lD \

-polort 2 -prefix NULL -fitts sla.temp.fitts.2.1D

ldplot -one -dt 0.01 -xaxis 0:1:10:5 \
-dashed 0:2:3 -png sla.fitl \
-ynames Data Linear - \

1.

sla.temp.data.1lD sla.temp.fitts.1.1D

ldplot -one -dt 0.01 -xaxis 0:1:10:5 \
-dashed 0:2:3 -png sla.fit2 \

-ynames Data Linear Quadratic - \
sla.temp.data.1lD sla.temp.fitts.1.1D sla.temp.fitts.2.1D

Script to produce
plots on previous slides

sla.TimeSeriesAnalysis.LinearRegression.csh




Modeling with Vectors and Matrices

 Write the model y; = B, + B;x; out in columns (vectors)

-yo- 1 BN (1 x,] P vector
Yy vector yl ~ 1 IB + xl ﬁ — 1 xl ﬁo /
\ Y2 1 / Xo 1 1 Xo ,31 X matrix
oo oo R I [, (7 /
data vector Nx2 matrix

* In vector-matrix form (bold letters for vectors/matrices)

o y=Xp or, with residual vector y=Xp + ¢
« Writing it out this way, equations become more

compact, easier to look at, easier to understand at a
single glance (with practice)



Modeling with Vectors and Matrices

Write the model y; = B, + B;x; out in columns (vectors)

-yo- -1- -xo- -1 XO- ﬁ
Vil | 1|g 4|2 _ |1 x[|Po
Yo 1 Po Xy & 1 x, [:31

Each column of X matrix is a regressor (or model
component)

We assume the columns of X are known (“the model”),
and that data vector y is known (measured)



Modeling with Vectors and Matrices

 Write the model y; = B, + B;x; out in columns (vectors)

-yo- -1- -xo- -1 XO- ﬁ
Vil | 1|g 4|2 _ |1 x[|Po
Yo 1 Po Xy & 1 x, [:31]

* Goal is to compute parameter vector P (and statistics
about B)

* Much of sections 3, 4, and 6 that follow:
o Where do we get X for FMRI task analysis?




Vectory is sum

Solving a Linear Model | ofmatixx

times vector 8
* Solution for linear regressiony = Xp + &€ plus residuals &

o “Project” data y onto “space” of explanatory variables (X)
o OLSQ formula for solution: 8 = (X'X)"' X'y

o Columns of X are the model for data vector y

* Meaning of coefficients f:

o Py value is slope, or marginal effect, or effect size
associated with regressor number k [column k in X]

* B, value says how much of regressor number k is needed to
fit the data “best” — in the Ordinary Least SQuares sense

o The sum of squares of ¢; is made as small as possible by
adjusting all entries in p to make it so



Solving a Linear Model

* Solution for linear regressiony = Xp + &€

o “Project” data y onto “space” of explanatory variables (X)
o OLSQ formula for solution: 8 = (X" X)"' X"y

o Columns of X are the model for data vector y

« If we don’t care about regressor number k, then we don’t
care about the value of 8, — or any statistics about it

o But we included regressor number k in the model

because it was needed to fit some part of t

* Regressors of no interest make up the globa

ne data
| Null

Hypothesis in the model — in AFNI, we call t
regressors the baseline model

nese



Statistics in a Linear Model

* Various statistical tests can be carried out after solving
for B vector

« Some examples, with particular null hypotheses H,

o Student t-test for each f; of interest
Hy: f; = 0 [task has no response?]

o Student t-test for linear combination of some p;
values = general linear test (GLT)

Hy: p3-p5=0

[two tasks have equal response?]
Hy: 0.5°(B5 + ) —B5=0

[average response of two tasks = third task response?]



Statistics in a Linear Model

* Various statistical tests can be carried out after solving
for B vector

« Some examples, with particular null hypotheses H,

o F-test for composite null hypothesis

Hy: f3=p4s=Ps

[all 3 tasks have identical responses?]

Hy: p3=ps= ps=0

[all 3 tasks have no response at all?]

o Omnibus or Full F-test for the entire model

H,: all §; values of interest are 0




Linear Model with FMRI

* Time series regression: data vector y is time series

= all values from one voxel throughout multip;e
.

image acquisitions (TRs)

* Regressors: idealized BOLD response curves
o We can only find what we’re looking for

o Regression will miss something if we do not

look for it

= S0 we must include regressors of no interest,

II
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time
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so we can model things like baseline drifting

up or down




Linear Model with FMRI

* Regressor construction requires decisions
o How to model response(s) we look for?

o What kind of regressors of no interest to include,
and how many of them?

o Don’t want to over-fit or under-fit data
* Usually: Same model matrix X for all voxels in brain

o Simultaneously solve all the models (1 for each
voxel)

o Voxel-wise analysis = “massively univariate”
method



Didactics and Demonstrations

FMRI Task-Based Data
Analysis at the Individual Level
Concepts 2 — FMRI Data




FMRI Experiment Terminology

* Experiment setup
o Number of subjects
o Number of conditions
= Tasks, stimulus (trial, event) types
= Factorial design?
o Sample size (repetitions) per condition
o Block, event-related, or mixed?
o Inter-stimulus interval (ISI) — regular, random?



FMRI Experiment Terminology

* Scanning parameters:
o TR = time between repetitions (3D volumes)

o echo time (TE) voxel size; number of 3D volumes;
slice sequence (interleaved, multi-slice); slice
thickness; removing first few TRs

* Scanning terms

o Run: continuous scanning; brief break between
runs

o Session: subjects return after long period of time
o Experiment or study



Types of FMRI Experiments
* Two classical types of experiment design

 Block (boxcar) design
o Each stimulus block lasts for more time than BOLD
response takes to rise (e.g., 6+ sec)

o Each block is under one task condition (e.g., watch
a video clip), or a series of multiple short
exchangeable trials (e.g., 10 consecutive face images)

= BOLD responses from close-in-time trials overlap
and are not distinguishable in the data

o BOLD response is often visible in time series
o SNR: noise size about same as BOLD response



Types of FMRI Experiments
* Two classical types of experiment design

* Event-related design

o Each event or trial is distinguishable from others

= Spaced apart in time enough for BOLD responses to
be separately identified

o Events often randomly spaced in time

o BOLD response to stimulus tends to be weaker,
since fewer nearby-in-time activations have
overlapping signal changes

o Data looks more like noise (to the pitiful human
visual system)



Types of FMRI Experiments
* Other types of experiment design

* Mixed designs
o Containing both events and blocks

o e.g., cue on what to pay attention to + face images
= “Is face angry or happy?” vs “Is face female or male?”
= Block = cue ; Event = individual image inside block

* Naturalistic stimulation (e.g., movie watching)

o Not directly covered here

o Like resting state analysis in the first stages

= no task response model but with regressors of no
interest — to reduce unwanted effects (e.g., head motion)



EMRI Data

Data partition: Data = Signal + Noise

o Data = from scanner (voxel-wise time series)

o Signal = BOLD response to stimulus = effects of
interest + effects of no interest
* We don’t actually know real signal shape to look for!!!

= Look for idealized task responses by assuming a fixed
shape for BOLD effect (FMRI response) for each task trial

= Or search for signal shape via basis functions
= Of interest: effect size (response size) for tasks=betas

» Of no interest: baseline, slow drifts, head motion effects,
respiration ...

25



EMRI Data

* Data partition: Data = Signal + Noise

o Noise = components in data that interfere with
signal detection

= Practically: the part of the data we can’t explain with the
model

= Must make some assumptions about its probability
distribution — to be able to carry out the statistical tests

« Data = baseline + slow drift + other effects of no
interest + response; + ... + response; + noise

« How to construct the regressors of interest
(responses)? And the regressors of no interest?



Block data of one run at a voxel

model regressor

a4 T‘
model fitted to data . . data '
Noise ~same siz& as signal chande

Block: 27 s “on” / 27 s “off’; TR=2.5 s; 130 time points

« This is “best” voxel; most voxels are not fitted as well
as this

 Noise size about same as block activation size
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Block data of one run at a voxel

model regressor

/

/

|
" \A‘ 1’1'

model fitted to data

7‘1 H*‘ﬂ

Noise ~same sizé as signal chande

data

Block: 27 s “on” / 27 s “off’; TR=2.5 s; 130 time points

Data drifts downwards slowly — this effect is captured
in the model fit by baseline drift regressors

If we did not model for drift, our fit would not be as
good
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Block data of one run at a voxel

model regressor
/

/

|
" \A‘ 1’1'

model fitted to data

Ev-u

w

Noise ~same sizé as signal chande

data

Block: 27 s “on” / 27 s “off’; TR=2.5 s; 130 time points

« Activation amplitude and shape vary across blocks
o Reasons why? We can only guess ‘&

o Habituation? Attention? Noise? Respiration?
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Event related design data of one run at a voxel

X [B] AFNI 2.56c: ED/runs_temp/ED_r1_vr+orig & ED_rl_vr@3+orig

‘\L\/\f“‘.'«' J'\Tlf ‘\) {M r‘,/ JA/

correlation of data with ideal = 0.56

Wi
\.

\f\/r" 3 \A

t

X: 42 index=112 walue=1454 at 224
¥: 49| 6rid: 20|Scale: 1.9 pix/datum | Mean: 1422 36
Z: 14| » 0:135 Base: separate Sigma: 21.75475

F IH |0

Lesson: ER-FMRI activation is not obvious via casual inspection
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BOLD Response

« Hemodynamic response (HDR)
o Brain+FMRI response to stimulus/task/condition

o Indirect measure of neural response: brain

activation = changes in blood oxygen = changes
in FMRI signal

» Hemodynamic response function (HRF)

o Mathematical formulation/idealization of HDR for
one full stimulus interval

o HRF bridges between neural response (what we
like) and BOLD signal (what we measure)

o Multiple copies of HRF are needed to model
responses to multiple stimuli



BOLD Response

« How to build the HRF bridge?

o Most simple: Assume a fixed-shape (idealized)
HRF — one 8 output per task (per voxel)

= This is the most common approach in FMRI
o Most complex: No assumption about HDR shape
= Basis function expansion of HRF shape and size

= Multiple functional shapes added up to give an
adjustable shape

= Multiple §’s instead of a single 8

o In the middle: 1 major fixed shape + a little space
for shape adjustment



Fixed-Shape HRF — <1 s Stimulus

« Assume a fixed shape h(t) for HRF to a very short
stimulus: impulse response function (IRF)

o GAM(p,q): h(t) =t 86 exp(-t/0.547) [MS Cohen, 1997]
= A variation: SPMGl (undershoot is added m)

Short
|- Stimulus




Fixed-Shape HRF -5 s Stimulus
Combme IRF h(t) W1th st1mulus duration:

Cannot dlstmgwsh

individual responses to

Time (sec)

nearby stimuli with FMRI

=== Sum of 5 copies of GAM

x(1)=h()® S(1)

_| Copies of GAM
=h(t) 1sapart

— N |
14. 16. 18.

20.
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Fixed-Shape HRF — 10 s Stimulus

e Combi

4.5

4.

3.5

3.

2.5

2.

1.5

ne IRF h(t) with stimulus duration:

_ Sum of 10

copies of GAM
x()=h()® S(t)

Stimulus duration
longer than 10 s is
Block Design
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ixed-Shape HRF - 10 s Stimulus
n the ‘BLOCK(10)’ function in AFNI
BLOCK(d) e unE Rt
function used
to specify HRF
shape for
responses to

stimuli with
duration d
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Fixed-Shape HRF for Block Design

o For each block, IRF h(t) is " convolved” with stimulus
start time and duration (d) to get regressor

o HRF = BLOCK(d,m)
o Equivalent to adding up sequence of consecutive events

o scale HRF to m=1 for easy mterpretatlon of B

Ty

Start |
times }
for

each |
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N\
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HRF = BLOCK(20,1)

(|

[

T PO,
TR

ad.

100,

M N 1
110, 120, 130.

Blocks: 20 s on and 10 s off; TR=2 s; 150 time points

1 .
140, 150,
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AFNI Script

3dDeconvolve -nodata 150 2.0 \

-polort -1 \

-x1D s3a.xmat.1lD \

-num_stimts 1 \

-stim times 1 \
'lD: 0 30 60 90 120 150 180 210 240 270' \
'"BLOCK (20,1)"

ldplot -xaxis 0:150:15:2 -xlabel TR -png s3a.png s3a.xmat.1lD

Script to produce
plot on previous slide

s3a.TimeSeriesAnalysis.BlockModel.csh

41



Fixed-Shape HRF for Event-Related Design

« BLOCK HREF shape also useful with event-related experiments
 Just use a short duration, such as 1 second
* Real experiments have more than 4 task repetitions!

1.4 I ¥ I T I 1 1 ' ] 1 I ' 1 1 I ' 1 T I T I

1.3
Start times for HRF = BLOCK(1,1)

each 1 s event

1.2

Sy Sumof4

individual HRFs
gives the

regressor for
this task

I T I T l T I T I T I T I T l T I T [ T I T

=
e

e
-~ -

-
-

Time (sec)



Linear Model with Fixed-Shape HRF

* FMRI data = baseline+response;+...+response;,+noise

* "baseline" = baseline constant + drift up or down +
other effects of no interest (e.g., motion)

o drift: caused by physiological effects, tiny motions,
scanner fluctuations, ...

o "baseline" is treated in AFNI as the null hypothesis
model, an additive effect, not an effect of interest

o "baseline" also needs parameters in the model fit
= For the constant, the drift shape, and other effects

= These parameters are not “of interest” and are not
included in the Full F statistic of response model fit

43



Linear Model with Fixed-Shape HRF
* Y=agtaqt;tayt?+Bixyt.. Xyt E  [i=time]
* y= Xﬁ +&, X = [1, f, tz, X1, X0y eoiy Xpy oo ] [vector format]
* In AFNI, baseline + slow drift is modeled with
polynomials: ay+ a4 t; + a, t;? (polynomial order=2)
o Longer run needs a higher order of polynomials
= One order per 150 sec is the default in AFNI

= Actually uses Legendre polynomials for accuracy

o With m > 1 runs, m sets of polynomials needed to allow
for temporal discontinuities across runs

o m(p+1) columns just for baseline+slow drift (order=p)

« Another effect of no interest: head movement =»=>=»




Stlmulus Correlated I\/Iotlon = Bad

Activation map with image registration but
without using movement estimates as regressors

Activation map when also using 6
movement estimates as regressors

Lesson: movement regressors (of no interest) are necessary!
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Design Matrix X with Fixed-Shape HRF

« Voxel-wise (massively univariate) linear model

y = Xp+e
o X: explanatory variables (regressors; “the model”)
= same across voxels (in most analyses)
o 1: data (time series) at a voxel (from scanner)
» different across voxels
o [3: regression coefficients (effect magnitudes)
» different across voxels
o &: anything we can’t account for (“noise”
» different across voxels
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Design Matrix X with Fixed-Shape HRF

baseline + drift stimuli head motion

e 6 drift effect regressors
o linear (p=1) baseline model
o 3 runs x 2 parameters/run

— o 2 regressors of interest
o i.e., relevant to brain activity
o from 2 distinct tasks

e 6 head motion regressors
o 3 rotations + 3 shifts

Black = bigger numbers

—== White = smaller numbers

Each column of X scaled separately
Image produced by afni_proc.py
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Design Matrix X with Fixed-Shape HRF

e Same design matrix in graphs

[V S Ay f\/\/\/\f\ EANA f\ [V\ [§

VT f\ A /VVV\ e L /V\ A

C 1 | 1 | 1 L | L | L | L | L | L .
O 50. 100. 150, <00. =250. 300. 350. 400. 450
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Model Quality Check

* First thing to do!

o Most users in FMRI simply jump to specific effects of
interest, their contrasts, and their significance. They simply
don’t pay attention to overall model performance

« Approaches to judge your model

o Design matrix report from 3dDeconvolve

x+ WARNING: !'! in Signal-only matrix: This message
* Largest singular value=2.37503 is usually due
* 7 singular values are less than cutoff=2.37503e-07 to setup
* Implies strong collinearity in the matrix columns! mistakes

49



Model Quality Check

* First thing to do!

o Most users in FMRI simply jump to specific effects of
interest, their contrasts, and their significance. They
simply don’t pay attention to overall model performance

 Approaches to judge your model
o Full F-statistic (automatically provided in AFNI)
o Testing compares two possibilities (voxel-wise)

=" Data = ‘baseline’ + all effects of interest + noise
versus
= Data = ‘baseline’ + noise

50



Model Quality Check

* First thing to do!

o Most users in FMRI simply jump to specific effects of
interest, their contrasts, and their significance. They
simply don’t pay attention to overall model performance

 Approaches to judge your model
o Modeled vs not modeled: —fitts and —errts outputs
= Fitted curve = “baseline’ + effects of interest

= Residuals = noise = error = components we have no
idea about (not included in model)



* First thing to do!

111111
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Model Quality Check

o Most users in FMRI simply jump to specific effects of

interest, their contrasts, and their significance. They

simply don’t pay attention to overall model performance
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Statistical Testing
 Everything is about contrast (changes)!
» Effects (regression coefficients) of interest
o [ = effect relative to baseline condition

o S =how much of regressor A had to be added to
baseline model to fit data the best | (%

o t-statistic: statistical significance
of a single S (visual stimulus)

= Video: as t rises from 2 to 5

» Colorized from B,.., not from ¢t
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Statistical Testing
 Everything is about contrast (changes)!

» Effects (regression coefficients) of interest
 Pairwise comparisons (contrasts)

o Conditions B,;;—B..4 (e.., Visual
vs auditory)

= How much of visual regressor
was needed minus how much of
auditory regressor

= Positive=yellow /red (B,u.a<Buis)
- NegatiV6=blue (lgaud>18vis)

o t-statistic: statistical significance
of this difference vs 0
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Statistical Testing
 Everything is about contrast (changes)!

» Effects (regression coefficients) of interest
* Composite tests
o F-statistic for composite (multiple
part) null hypotheses

o B,.# 0and/or B, 4# 0

o Did any of the stimuli, or any
combination of the stimuli, evoke a
measurable response?

= Video: as F rises from 4 to 34
» Colorized from F (which is always > 0)
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Assessing Fixed-Shape HRF Approach

» Used 99% of time: Why is it popular? &

o Assume brain responds with same shape across
four levels: subjects, activated regions, stimulus
conditions/tasks, trials

= Difference in magnitude f in different conditions
or different subjects (and its significance) is what
we focus on

= But: Strong assumption about four levels of
shapes of BOLD response?

o Easy to handle and think about
= Just one value per effect/task &



Assessing Fixed-Shape HRF Approach

« Works relatively well, despite the caveats

o Block design: shape usually not important due to
accumulating effects of consecutive events

= Really flat plateau? Same magnitude across blocks?
o Event-related experiment: OK most of time

= Linearity when responses overlap? Same effect across
events?

« Not what you want if you

o Care/worry about shape difference across subjects,
across regions, across conditions, and across trials

o More complex modeling can allow for such effects
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Alternative: No Constraint on HRF Shape
« TENT expansion of HRF (shape and magnitude)

o Set multiple tents at various equally-spaced locations to
cover the potential BOLD response period

= Each TENT is a basis function
= HRF is a sum of multiple basis functions, each with its own f3

o BOLD response measured by TENT heights (8s) at all locations
= TENTs are also known as ‘piecewise linear splines’

TENT at location 3*TR

1-|x| for —1<x<I
T(x)=
0 for |x| > 1

. t—3-TR)

Formula for standardized TENT
centered at x=0, width==1

N S——

time
=0 I=TR t=2TR t=3*TR t=4°TR t=5°TR

Cubic splines (CSPLIN) also in AFNI
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Sum of Tent Functions = Linear Interpolation

* 5 equally-spaced TENT functions = linear
interpolation between “knots” using response model
TENTzero(b,c,n) = TENTzero(0,12,7)

h(t):ﬂl‘T(i}rﬁz-T(t_2°Lj+--.+ﬁ5.T(t_S'L)

L L

h

6 intervals = 5 B weights

stimulus onset

. “knot” times
A ol leee time
0 L 2L 3L 4L 5L/ 6L
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Sum of Tent Functions = Linear Interpolation

* TENT output parameters are easily interpreted as
function values

o B, = response at time t = 2L after stimulus onset
» Relationship of TENT spacing L and TR (L = TR):
o e.g., with TR=2s, usually choose L=2, or 4
* In afni_proc.py or 3dDeconvolve using
TENTzero(0, D, n)
o specify duration (D) of HRF and number (1) of knots
o L=D/(n-1) with (n-2) full tents
o Each TENT overlaps % tent with two neighbors
o Example, D=12s, pick L=2s =» n=7 =% TENTzero(0,12,7)
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Basis Functions Create the HRF

The HREF is repeated for all stimuli of the same type

In the example, the HRF has 5 parameters (fs) to be
estimated

The (s determine the amplitude (percent signal
change) and the shape of the HRF

Each voxel in each subject gets a separate HRF shape
now, not just a separate amplitude

o If there are multiple types of tasks, each task gets a
separate shape

Stimulus times don’t have to be on TR grid



Why TENTzero(b,c,n)?

“zero” means that the HRF goes to 0 at the
beginning and end of the time interval b < t < ¢

o No response just after start or just before end

“b” means start of the response is "b” seconds after
stimulus time — usually b=0
o b < 01is OK, to allow for pre-stimulus anticipation

£ ) £ 7

¢” means end of the response is “c” seconds after
stimulus time — must have ¢ > b

“n” is the number of knots in the spline
o n—2 is the number of s (interior knots)



Fixed-Shape HRF for 20s Block Design

HRF = BLOCK(20,1)

Start |
times |
for

each [
tﬂqck I

A
N\

N\

o]

T

a

1

[

1

T

[

T

111

a

Y 1Y) /).

!

O 10.

20.

30.

40,

80.

. 70.

a0.

1 1 1 1 1 1 1 1
80. 100. 110. 120. 130. 140. 150.

Blocks: 20 s on and 10 s off; TR=2 s; 150 time points

e From Talk 3 in this series
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TENTzero HRF for 20s Block

Desig

E—Sum

| m— TENT—12

- TENT—11

= TENT—10

— TENT—-09

A 1 'R’ TR’ T "gI T~ TR T ‘gr T TR T R T T T T
|A L | AA | L |A L | IA | L |A L | |A | L |A L | |A | L IA 5 | |A:
A | [ A I | A | I A I | A | I A I | A | I A I | A | ] | E
" ! ! i i ! 1 I I 1 1 I A 1 1 A A 1 ‘l -
| 4 | 1 | 4 | 5 | 1 | 5 | 5 1 1 | 5 | 5 | 1 | 5 | 5 1 llk .
A | [ A [ | A | I A I | A | I A I | A | I A I | A | ] -
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- | =——TENT-03

- | =——TENT-O02

- = TENT—-01

HRF = TENTzero(0,26,14)

7O,

» 12 Basis Functions instead of 1
« Top sub-graph = sum of all TENTS

o for comparison with BLOCK(20,1)
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TENTzero HRF for 20s Block Design

HRF = TENTzero(0,26,14) * 12 Basis Functions instead of 1




AFNI Script

3dDeconvolve -nodata 150 2.0 \
-polort -1 \
-x1D s4a.xmat.1D \ Script to produce
-xjpeg sda.xmat.png \ plots on previous slides
-num_stimts 1 \
-stim times 1 \

'lD: 0 30 60 90 120 150 180 210 240 270'
'"TENTzero (0,26,14)"
3dTstat -sum -prefix stdout: sd4a.xmat.1lD > s4d4a.sum.1D
ldplot -xaxis 0:150:15:2 -xlabel TR -png s4a.png
-ynames TENT-01 TENT-02 TENT-03 TENT-04 TENT-05
TENT-06 TENT-07 TENT-08 TENT-09 TENT-10
TENT-11 TENT-12 Sum -
sd4a.xmat.1D sd4a.sum.1D

\

\
\
\
\

s4a.TimeSeriesAnalysis.TentModel.csh
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Modeling with TENTs — Real Example

Event-related Stlldy (Beauchamp et al., ] Cogn Neurosci 15:991-1001)
o 10 runs, 136 time points per run, TR=2 s
o Two factors
= Object type: human vs tool
= Object form in videos:  real image vs points
o 4 types (2x2 design) of stimuli (2s videos)
= Tools moving (e.g., hammer pounding) - ToolMovie
= People moving (e.g., walking, sitting) - HumanMovie

= Points outlining tools moving - ToolPoint

= Points outlining people moving - HumanPoint

o Goal: find brain area that distinguishes natural motions
(HumanMovie and HumanPoint) from simpler rigid
motions (ToolMovie and ToolPoint)
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« EXxperiment: 2 x 2 design
Human body motion (HM) Tool motion (TM)

From Figure 1
Beauchamp et al.
2003
Actual videos do
not loop

Human point motion (HP) Tool point motion (TP)

« Which areas differentially activated by any of stimuli (main effect)?
o Point motion vs natural motion? (image type: top 2 vs bottom 2)
o Human-like vs tool-like motion? (motion type: left 2 vs right 2)

* Interaction effects?
o Point: human-like vs tool-like? Natural: human-like vs tool-like?
o Human: point vs natural? Tool: point vs natural?



No Constraint on HRF Shape = Deconvolution

* Shape estimation: Deconvolution via regression

o Known: stimulus timing
o Unknown: HRF = BOLD shape/size

o HRF in each voxel estimated as linear
combination (sum) of multiple basis functions:
TENTSs (or CSPLINSs) — rather than just one function

o Each TENT =¥ one regressor column

= Copy of TENT shape_V\ starting at stimulus
times plus its assigned “knot” offset in time

o Deconvolution =» HRF = set of f§ via regression



Design Matrix with TENTzero (0,16, 9)

Baselme + quadratlc trend for 10 runs | | 7 tents per condition X 4 conditions T e Bmoton] head motion
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Results: Humans vs. Tools
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X [B] AFNI: AFNI_data2/ED.8.glt.results/iresp_HumanMovie.ED.8.glt+orig & full_mask.ED.8.glt+orig
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e Color
overlay:
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Tool

(ﬁHM+ﬁ HP™
ﬁ TM_ﬁ TP)

e Blue HRF

(upper) :
Human

* Red HRF
(lower) :

Tool

74




No Constraint on HRF Shape: Pros + Cons

« What is the approach good at?
o Usually: event-related designs; can be used for BLOCK

= Multiple basis functions for blocks: can find within-
block attenuation with time

o Likely to have more accurate estimate on HDR shape
across

= Subject (e.g., young vs old)
= conditions/ tasks
® brain regions
o Usually get better model fit (goal in sample experiment)
o Usually statistically more powerful on test significance
= Unless you overfit the data, with too many fs



No Constraint on HRF Shape: Pros + Cons

« Why is the approach not popular?
o Difficult to combine individual results at group level

» Multiple parameters (fs) per task condition, instead of
just one B per subect

= But: see the AFNI program 3dMVM
o More regressors than simpler alternatives

= Degrees of Freedom per subject (data points-regressors)
o Risk of highly correlated regressors: Multicollinearity
= May need to reduce the number of basis functions
= Probably need to randomize stimulus timing
o Over-fitting: picking up something (head motion)
unrelated to HDR



Intermediate Approach: SPMG1/2/3

« Use just a few (2-3) basis functions
o Constrain HRF shape with a principal basis function
» SPMGI1 (similar to GAM in AFNI, with undershoot added)
o 2 or 3 basis functions: parsimonious, economical
" B, - SPMG1+ B, - SPMG2+ 35 - SPMG3

= SPMG2: time derivative =¥ changes in peak delay
= SPMGS3: dispersion derivative =» changes in peak width

Canonical HRF

Temporal derivative

Dispersion derivative

0 5 10 15 20 PST (s) -



SPMG1/2/3

[Ready for their closeup, Mr. DeMille]

Canonical HRF

Temporal derivative

Dispersion derivative

am o FrerTaTSyne

* You can use these as basis
functions in AFNI

 We don’t usually recommend
these functions

* The afni_proc.py talks show
the details of how to select
basis functions for the HRF
model

0 5 10 18 20 PST (s)




Group Analysis with TENTS

Use multiple Bs from each subject in a group analysis?
o What to do depends on your goal in the study
Goal: find activation magnitude differences

o Add up TENT s in each voxel to get “area under
the response curve”

o Carry that sum as a single scalar to the group level
as usual (e.g., 3dttest++ or 3dLME)

Goal: be sensitive to shape differences

o Use 3dMVM program (MultiVariate Modeling),
which allows for multiple s in each condition

More on this subject in the Group Analysis Talks



Didactics and Demonstrations

FMRI Task-Based Data
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Multicollinearity

*Voxel-wise regression model: y = Xf+¢

o Regressors in matrix X =[1, ¢, t2, x;, x5, ..., Xy, -..]
*Multicollinearity problem

o Two (or more) regressors highly correlated

o Difficult or impossible to distinguish effects among
these regressors (i.e., get reliable [ estimates)

= Sample message from 3dDeconvolve — indicates
that regressors of interest (Signal) are in trouble

*+ WARNING: !! in Signal-only matrix:

* Largest singular value=2.37503

* 7 singular values are less than cutoff=2.37503e-07
* Implies strong collinearity in the matrix columns!
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Multicollinearity

* Multicollearity scenarios

o Exact collinearity: x; = ¢-x; = model specification error

= ¢.9., 2 identical regressors (mistake in stimulus timing)

o Exact multicollinearity: linear dependence among
multiple regressors = faulty design (rare)

o High degree of correlation (+ or -) among regressors =
design problem (e.¢., cue + short video watching)
o Too many basis functions in response model
* Matrix diagnostic tools:
o ExamineXmat.R, timing_tool.py, xmat_tool.py

o Better to prototype analysis and find problems
before acquiring hard-to-analyze datasets!
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Serial Correlation in Residuals

« Temporal correlations — in residuals/noise — not “white”
o Physiological effects (breathing, heartbeat, motion)

o Bs from OLSQ regression are unbiased

o But statistics (¢, F) tend to be inflated — assuming no
correlations in time — this is a modeling error about noise

o Little impact on group analysis — if only using Ss (BOLD
signal magnitude estimates) from subjects

o Will affect group analysis if also using B’s reliability, as in
AFNI’'s 3dMEMA program (where fs and #s are both used)

« AFNI approach — program 3dREML(fit — see section 7

o Voxel-wise correction for inter-TR correlation, using GLSQ
(Generalized Least SQuares) regression — more on this later



Dealing with Multiple Runs per Subject

1. Analyze each run separately: AFNI, FSL

Have to have enough task repetitions in each run
Can test cross-run difference (trend, habituation)
at group level

Usually need to summarize multiple ’s (one
from each run for each task/condition type)
before group analysis

Unless using AFNI's 3dM VM program

= Which allows multiple values per subject per
task



Dealing with Multiple Runs per Subject

2. Concatenate runs but analyze with separate
regressors across runs for each condition type:

AFNI, SPM

» Can then test cross-run difference (trend,
habituation, etc.) at both individual and group
levels

= Usually still need to summarize multiple ’s
before group analysis



Dealing with Multiple Runs per Subject

3. Concatenate runs but analyze with a single
regressor (for each condition type) across runs:

default in AFNI

= Assumes no response attenuation across runs

» That is, a task event in run #1 is treated
identically to a task event in run #7

= Allowing for cross-block (or cross-event)
attenuation

= Method: IM or AM regression models
» Described in later talk /slides



Percent Signal Change
« Why convert/scale to make § = % signal change?
o Comparing across subjects — uniform measurements
o MRI and BOLD data values don’t have any useful
physical / physiological meanings or units
o Baseline is different across subjects

= And possibly scaling of raw data values (from
scanner hardware /software)

o It is relative changes that can be compared across
subjects

o BOLD effect is multiplicative on overall voxel signal



Percent Signal Change
« AFNI approach

o Pre-processing: data scaled so voxel-wise mean = 100
= 5 = % signal change relative to mean, not to baseline
= Difference is tiny: less than 5% (BOLD effect small)

o Alternatives:

o Global mean scaling for whole brain drift
= Scale so mean of each EPI volume is the same

o Grand mean scaling for cross-subject comparison: not %
= Scale each subject so mean over all volumes is a constant

o These can be performed in AFNI if truly desired

o Not our recommendation



Lackluster Performance in Modeling

All models are wrong, but some are useful (GEP Box)
Regressors: we use an idealized response model

o We find what we’re looking for

o We may miss something when we do not look for it
Lots of variability across trials (responses and noise)

o Amplitude Modulation if behavioral data are available

o Model each trial separately (Individual Modulation)
Linearity assumptions

o Data = baseline+drift+responsel+response2+...+noise

o When a trial is repeated, response is assumed same

o Response for a block = linearity (no attenuation)
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More Complicated Regression Models

« Regression models in AFNI are (usually) set up via
afni_proc.py
o Which in turn uses program 3dDeconvolve to
construct the regression matrix X
o And solves the linear system in 3dDeconvolve or
3dREML{it (task) or 3dTproject (e.g., resting state)
* This set of slides covers more complicated linear
model setups
o Used for special situations
= But aren’t all research situations special?

95



All Zero Regressors

* All-zero time series regressors are allowed
o Via 3dDeconvolve option -allzero_OK

o Will get zero S weight and zero t in the solution

o Example: task where subject makes a forced choice for
each stimulus (e.g., male or female face?)

= Analyze correct and incorrect trials as separate cases
= What if some subject makes no mistakes? Hmmm ...
= Can keep all-zero regressor (-stim_times = *)

= Input files and output datasets for error-making
and perfect subjects will be organized same way

= Makes it simpler to setup group analyses when
all subject-level results are consistent



Other Basis Functions

« 3dDeconvolve -stim_times has other basis function
options for HRF models besides BLOCK and TENT
o CSPLIN = cubic spline, instead of TENT = linear spline
= Same parameters* (start,stop,number of regressors)
= A "drop in’ replacement for TENT

000 X! [A] Al data2/gqq/iresp_HumanMovie.qwED.8.glt+orig & stats.qqED.8.glt+orig

u 64633391
Red =CSPLIN

Black = TENT

Differences are not
significant

(But looks nicer)

o TENTzero & CSPLINzero = force start & end of HRF =0



All Basis Functions — Single 8
BLOCK  =discussed previously

GAM = for short responses (discussed previously)
TWOGAM = for compatibility with BrainVoyager
SPMG1 = discussed previously

WAV = very old AFNI waveform [don’t use]
MION = for use with MION contrast agent

BLOCK and MION always have duration parameter

GAM, TWOGAM, SPMGx, and WAV have optional
duration parameter

For details, see output of 3dDeconvolve -help



All Basis Functions — Multiple 8

TENT = discussed previously
o and CSPLIN and TENTzero and CSPLINzero

SPMG2 = discussed previously (and SPMG3)

o Unlike other multiple f§ functions, SPMGx can take an
optional duration parameter — to convolve its basis
functions with a “square wave” in time

o All other multiple § functions just use a duration over
which the basis functions are defined

POLY = Legendre polynomial expansion
SIN = sine series expansion
EXPR = arbitrary set of formulas

For details, see output of 3dDeconvolve -help



Some Basis Functions - Single 8
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: — sin ()

| =— MION

| — SPMG1
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| == BLOCK
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AFNI Script

3dDeconvolve -nodata 81 1.0 \

-polort -1 \ Script to produce

-x1D s6a.xmat.1D \ plot on previous slide

-x1D stop \

-num_stimts 5 \

-stim times 1 '1lD: 10' 'BLOCK(20,1)" \

-stim times 2 '1lD: 10' 'GAM(8.6,.547,20)"' \

-stim times 3 '1lD: 10' 'SPMGI1(20)'" \

-stim times 4 '1lD: 10' 'MION(20)' \

-stim times 5 '1D: 10’ \

'"EXPR(0,30) sin(PI*t/30)*2'

ldplot -sepscl -xaxis 0:80:8:10 -xlabel TR \

-ynames 'BLOCK' 'GAM' 'SPMG1l' 'MION' 'sin?2()' \
-png sb6a.png s6a.xmat.1lD

s6a.TimeSeriesAnalysis.MultiModels.csh
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IM Regression - 1

* IM = Individual Modulation
o Compute separate amplitude of response () for each
stimulus block/event in each stimulus class

= Instead of computing average amplitude of
responses to multiple stimuli in the same class

= Separate regression column for each stimulus time
o Ps for each separate block /event will be very noisy
= Can’t use individual activation maps for much

= Must pool computed s in some further statistical
analysis (individual and /or group)

= f-test via 3dttest++? inter-voxel correlations in the
ps? Correlate Bs with something else?




IM Regression - 2

o First application of IM was checking some data we
received from another institution

e Experiment: 64 blocks of sensorimotor task (8 runs

each with 8 blocks)
‘06006 [B]AFNI nidata/103/Sub103. Iw dyl T1+orig & Su b3 ® O 6 (X [A] AR PIOt Of 64 BLOCK BS b

i
- = \ [F30N . 18 index=0 valfe=207.0948 at 0
WA 7: 31| Grid: 8|scale: 5 pix/datum © 3.964569

ll vrm ¢ 17| un 30:93 | Base: separate a: 4.894017 Er

sign reversal in run #4 = stimulus timing error!




IM Regression - 3

« IM works naturally with BLOCKSs, which only have 1
amplitude parameter B per given stimulus start time

o More difficult conceptually to use with multiple 8
basis functions, as each event gets not just different
amplitude but different shape

* Work in progress now (spring 2020)

— Combine multiple Bs using a linear mixed effects (LME)
model to include mean and variance of subject-level
response within a single task class (e.g., “faces”)

— Randomness from measurement fluctuations (“noise”
— and Randomness from subject response fluctuations



IM Regression - 4

Regressors for IM analysis

! I T T T [T T I ! I L ! I T f T ! |

| ] |
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AFNI Script

3dDeconvolve -nodata 150 2.0 \
-polort -1
-x1D s6b.xmat.1D
-x1D stop

Script to produce
plot on previous slide

-xjpeg s6b.xmat.png

~ 7~ 7 7 7

-num stimts 1
-stim times IM 1 \
'lD: 0 30 60 90 120 150 180 210 240 270' \
'"BLOCK (20,1) "
ldplot -xaxis 0:150:15:2 -xlabel TR -png s6b.png s6b.xmat.1D

s6b.TimeSeriesAnalysis.IMModel.csh
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AM Regression - 1

* AM = Amplitude Modulated (or Modulation)

o Have some extra data measured about response
to each individual stimulus, and maybe BOLD
response is modulated by this

o Reaction time; Galvanic skin response; Pain level
perception; Emotional valence

« Want to see if some brain regions vary
proportionally to this ABI (Auxiliary Behavioral
Information — my personal acronym, not a standard!)



AM Regression - 2

* Continuous (or several finely graded) ABI levels

o Want to find active voxels whose activation level
also depends on ABI

o 3dDeconvolve is a linear program, so must
assume that the change in FMRI/BOLD signal as

the ABI changes is linearly proportional to the
changes in the ABI values

* If needed, transform ABI values (e.g., logarithm)
* Need to make 2 separate regressors
o One to find mean FMRI response (usual analysis)

o One to find the variations in the FMRI response as
the ABI data varies



AM Regression - 3
 The second regressor is
ran(= > h(t-1,)(a, - a)
o Where a,=value of k th ABI value, and @ is mean ABI value
= Set UNIX environment AFNI 3Deconvolve rawAM?2 to
YES so mean of {a,;} is not removed — for advanced users
* S for first regressor is standard activation map

» Statistics and f for second regressor make activation
map of voxels whose BOLD response changes with
changes in ABI
o Using 2 regressors allows separation of voxels that are active

but are not detectably modulated by the ABI from voxels
which are ABI-sensitive



AM Regression - 4
 AM2 regression: -regress_stim_types AM2

* Use is very similar to standard times

o But the timing file has entries that are “married”

to ABI values: [10*5 23*4 27*2 39%5
17*%2 32*5

16*%2 24*3 37+*5 41*4 :
= One line per imaging run in the analysis
= Each stimulus time entry is of form TIME*ABI |
» If a run has no stimuli of this type, put in a single *

o Such files can be created from 2 standard ASCII
(text) .1D files using the 1dMarry program

= The -divorce option can be used to split them up




AM Regression - 5

* 3dDeconvolve (the matrix creator) automatically
creates the two regressors:

o unmodulated and amplitude modulated

o Use -fout option to get statistics for activation of
pair of regressors

= e, testing null hypothesis that both B weights are
zero: that there is no ABI-independent or ABI-
proportional signal change

o Use -tout option to test each f weight separately

o Can 1dplot X matrix columns to see each
regressor



AM Regression - 6

* If you want, AM1 regression is also available:

o It only builds the regressor proportional to ABI data
directly, with no ABI parameter mean removed:

ran =3 h(t-1,)-a,

o AM1 is useful for duration modulated analysis
(dmBLOCK) — to be described real soon
 Can have multiple amplitudes married to stimulus
times

o e.g., To fit response model with cubic polynomial
(nonlinear in ABI value a), by giving 3 ABI values
from a Legendre expansion in a,

o Try not to go crazy with parameters!



AM Regression — 7a
AM.1D =1071 30*2 50*3 70*1 90*2 110*3 130*2 150*1 170*2 190*3 210*2 230*1
3dDeconvolve -nodata 300 1.0 {300 time points TR=1}
-polort -1 {no polynomial baseline}
-num_stimts 1 {one stimulus file}
-stim times 1 AM.1D 'BLOCK(10,1)’
-x1D AM1.x1D {save matrix to file}
ldplot AM1 : XlD . |aM1model of signal

‘ (modulation = ABI)

=2.8
=2
=2.4
=.=
=.
i.8
1.
1.4
1.2

BRI

Oiuk:'m'm.“

1 1 1 N 1 n 1
=Qa. 40. sa. 80. 1DO 120 140 180 180 200 220 24-0 ]

ch TimeSeriesAnalysis.AMModel.csh




AM Regression — 7b

AM.1D =1071 30*2 50*3 70*1 90*2 110*3 130*2 150*1 170*2 190*3 210*2 230*1
3dDeconvolve -nodata 300 1.0 {300 time points TR=1}
-polort -1 {no polynomial baseline}
-num_stimts 1 {one stimulus file}
-stim times 1 AM.1D 'BLOCK(10,1)’
-x1D AM2.x1D {save matrix to file}

ldplot AM2.x1D AM2 model of signal
T/ /| (modulation = ABI)

2D sub-space
spanned by
| | | | | | | . | | | . these two
e 2 Z i 1 i 2 Z i Z i Z i time series

. 1 1 1 1 1 1 1 1 1 1 1 1
a Z0. 40. S0, 80. 100. 120, 140. 1&60. 180. =200, =220. =240. 29




AM Regression —7¢

oo AM1 model
= E is highly
AM1 r’-e 5 correlated
1e - with first
i (bottom)
= regressor
= i from AM2
sl = I | N A model
If AM1 model
was used, but
AM2 activation
was really
1. like AM2
I regressor #1,
AM2 #1 || p would
| be positive

. 1
Z0.

1
4Q0.

1
SO,

1
80.

1
100,

1
120,

1
14G.

1
1&0.

1
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1
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1
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AM Regression — 8
* First actual user: Whitney Postman (formerly NIDCD)

® Picture naming task in aphasic stroke patients

® 2 slices showing activation map for BOLD responses
proportional to ABI (Bann)
O What does this mean? Don’t ask me!




AM Regression — 9

* Alternative: use IM to get individual Bs for each
block /event, then another regression on those values

® Could do nonlinear fitting (to these Bs) via 3dNLfim,
or inter-class contrasts via 3dttest, 3dLME,
3dANOVA, or intra-class correlations via 3dICC, etc.
®* What is better: AM or IM+something more ?

O If you want linear fit of amplitude to ABI, then direct
use of AM seems better than using 2 regression steps

O If AM doesn’t fit your models/ideas, then IM+ is
clearly the way to go

O Maybe consult with AFNI group to get hints/advice



* Solving a visually presented puzzle:

a) su
b) sul

DM Regression - 1

vject sees puzzle
bject thinks for a while

c) su

bject responds with solution

timing of events
is measured

Sample Puzzle:
Are these 2 block figures just
rotated in 3D from each other,

Are they different block
arrangements in 3D space?

OR




DM Regression - 2

* Solving a visually presented puzzle:
a) subject sees puzzle
b) subject thinks for a while
c) subject responds with solution

e Variable duration of phase (b) means that shape for

task response varies between trials

timing of events
is measured

o If the variability of duration is more than +1 TR

o Which is contrary to the whole idea of averaging

trials together to get decent statistics
= Which averaging is basically what linear regression

for the f weights does, in an elaborate way




DM Regression - 3

Duration Modulated regression

When different stimuli in the same class have
different (and known) durations

Controlled by using dmBLOCK response model
Usually with -stim_times_AM1 to indicate that an
extra parameter is married to each stimulus time

o But parameter is duration, not amplitude modulation
You can also use -stim_times_AM?2 , by adding extra
amplitude modulation parameter(s)

o The duration parameter for dmBLOCK is always the
last parameter in a marriage

o Try not to go crazy with parameters!




DM Regression - 4

* 3dDeconvolve -nodata 350 1 -polort -1 \
-num_stimts 1 \
-stim times AM1 1 g.1D ’dmBLOCK (1)’ \
-x1D stdout: | 1ldplot -stdin -thick -thick

* q. 1D 10 140:2 70:3 100:4 130:5 160:6 190:7 220:8 250:9 280:30

lllllllllllllllllllllllllll

-

R T T S I TR S T I
T

25. 50. 75. 1

00. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350.

|

0

0

s6d.TimeSeriesAnalysis.DMModel.csh




Other Linear Regression Software in AFNI

* Program 3dTfitter: solves linear regression models
for special purposes
o Voxel-dependent regressors
o L2, L2 LASSO, and L1 solution methods
o Constraints on fit parameter () signs
o No statistics, just fits

o Program 3dTproject: just calculates the residuals
o No statistics, no fs, ...

o When there are only nuisance regressors, and the idea
is to “clean up” or “regress out” these nuisances

o Use cases: Resting state and Naturalistic FMRI
o Much faster than other 3d* regression programs



Nonlinear Regression in AFNI

 Linear models aren’t the only possibility
o e.g., could try to fit HRF of the form A(f) = a - t" e
o Unknowns b and c appear nonlinearly

* Program 3dNLfim can do nonlinear regression

o User provides C function that computes a model
time series, given a set of parameters (e.g., a, b, ¢)

= Many sample model functions in the AFNI source code
distribution — https://github.com/afni/afni

o 3dNLfim drives this C function repeatedly, finding
set of parameters to best fit each voxel time series

o Has been used to fit pharmacological models for
DSC-MRI and other IV drugs (e.g., cocaine)

—t/c
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“Noise” in FMRI

MR thermal noise
Cardiac and respiratory cycles

o In principle, could measure these sources of noise
separately and then try to regress them out

o Scanner fluctuations (e.g., thermal drift of hardware,
pulse sequence timing errors)

Small subject head movements (10-100 pum)
Very low frequency fluctuations (periods > 100 s)

“Serial correlation’ in the noise time series affects
the ¢- and F-statistics calculated by 3dDeconvolve

Next slides: AFNI program for this latter problem



Allowing for Serial Correlation - 1

e {- and F-statistics denominators: estimates of noise
variance

o White noise estimate of variance

1 N-1
O’ = data. — fit. ]
N_m;[  — fit;]

= N =number of time points
= m =number of fit parameters
= N-m = degrees of freedom (DOF)

= how many equal-variance independent random
values are left after a pure noise time series is fit
with m regressors



Allowing for Serial Correlation - 2

e Problem: if noise values at successive time points are
correlated, this estimate of variance 67 is biased to be
too small

o There aren’t really N-m independent random values left

o Denominator N-m too small implies - and F-statistics
are too large ®

o And number of degrees of freedom N-m also too large

o So significance (p-value) of activations in individuals is
overstated (since #/F are too big)

o Subtler problem: actual variance of § estimate is larger
than one thinks = isn’t as accurate as it could be



Allowing for Serial Correlation - 3

e Possible ways to patch these problems:
e Solution #1

o Estimate correlation structure of noise and then
adjust statistics (downwards) appropriately

e Solution #2

o Estimate correlation structure of noise and also
estimate f fit parameters using more efficient

generalized least squares (GLSQ instead of OLSQ),
using this correlation, in one model (REML method)

oBetter estimates for 64, for B, & keeps DOF = N-m
o This is the technique that AFNI uses




Allowing for Serial Correlation - 4

« REML is a method for estimating variance+correlation
parameters and estimating fit parameters (Bs)

* Noise correlation structure is modeled as ARMA(1,1)

o 2 parameters in each voxel: a (AR) and b (MA)
* 2 models how fast noise de-correlates over time
= b models short-range correlation in time (1 TR)

= Unlike SPM and FSL, each voxel gets a separate
estimate of its own temporal correlation parameters

= W Olszowy et al. Accurate autocorrelation modeling

substantially improves fMRI reliability. Nature Commun.
https:/ /doi.org/10.1038 /s41467-019-09230-w (2019)



https://doi.org/10.1038/s41467-019-09230-w
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Allowing for Serial Correlation - 5

ARMA(1,1)
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AFNI Script

ldgenARMAll -seed 666 -num 201 -a 0.8 -b 0.2 > s7a.ARMA.1D
ldgenARMAll -seed 666 -num 201 -a 0.0 -b 0.0 > s7a.WHIT.1D

Script to produce
lddot -terse s7a*.1D plot on previous slide

ldplot -png s7a.png s7a.WHIT.1D s7a.ARMA.1D

s7a.TimeSeriesAnalysis.ARMAll.csh

133



Allowing for Serial Correlation - 6

* Inputs to 3dREMLfit
o Regression matrix file (plain text)

o Usually pre-computed by 3dDeconvolve using
afni_proc.py

o afni_proc.py then runs 3dREMLfit
* Inputs are matrix file and 3D+time dataset

* Output datasets are structured as from
3dDeconvolve

— But statistics and s are improved (we hope)



Allowing for Serial Correlation - 7
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Allowing for Serial Correlation - 8

Color Overlay = 8 weight from analysis on previous slide, no threshold




Allowing for Serial Correlation - 9

For individual activation maps, 3dREMLfit-ized ¢-
and F-statistics are significantly different, and more

accurate

* But ... There are at present very few applications for
such individual FMRI activation maps

o pre-surgical planning; longitudinal studies
* For standard group analysis, inputs are only p fit
parameters

o Which don’t change so much between
REML /GLSQ and OLSQ

o In other words — older OLSQ-based group
analyses are not invalidated



“ Allowing for Serial Correlation - 10 “

Group analysis activation maps (3dANOVA3) from 16 subjects

REML/GLSQ



Allowing for Serial Correlation - 11

Current plans (spring 2020)

Extend the temporal correlation model to higher
order ARMA

Motivation: faster TR data (1 s or less) shows
respiration and cardiac "noise”

Instead of noise correlation decaying away
monotonically as the “lag” between 2 time points
increases, it both decays and oscillates

ARMA(3,1) or ARMA(5,1) can pick up these effects
and compensate for them, with extra parameters

* Needed = efficient algorithm for voxel-wise estimation



Didactics and Demonstrations

FMRI Task-Based Data
Analysis at the Individual Level

Concepts 8 — Pre-Processing




“ Pre-Processing Steps “

Regression is final step in time series analysis

Before regression, 3D-+time dataset(s) are processed
in several ways to “clean up” the data

Pre-processing for task based, resting state, and
naturalistic FMRI are much the same

o The main difference is the attitude towards the outputs
of the regression step

o Task: the fs are output of interest

o RS, Naturalistic: no task regressors — residuals are
output of interest

= What is left after regressors of no interest are removed



Preprocessing

Despiking

AFNI’s
recommended

|

Slice-timing correction

|

Motion correction RS - F MRI p I‘e —
processing

Alignment with anatomy

Spatial normalization

| \| Extracting tissue-based Step S

Spatial slmoothing regressors
(with 6 mm FWHM isotropic
Gaussian kernel)

H]J Jo et al, 2010 and
2013

Carried out using
afni_proc.py

Nuisance regression

Bandpass filtering
(0.009 < f < 0.08 Hz)

{ Correlation map }




Step 1 = Despiking (before)

o PP

R

1405 |

i




555555

Step 1 = Despiking (after)




Step 2 = Slice Timing Correction

2D Slices are acquired at different times within one
3D “volume” TR

Even the same physiological BOLD effect in 2
different slices will show up (slightly) differently
due to being measured at different times

And so will be less correlated /less identical than
they “should be”

Solution: interpolate in time to some common
reference point before calculating regression

o Not perfect, because are also interpolating noise



Step 3 = Motion Correction
Step 4 = EPI Alignment with Anatomy
Step 5 = Spatial Normalization to Template

 Step 3: Even more important for RS/ naturalistic
FMRI, since the BOLD effect is smaller and more

spatially diffused than in task FMRI, so
compensating for subject head motion is crucial

* Step 4: Needed for step 5, and for assigning RS-FMRI
results to brain regions

* Step 5: Needed for group studies or using atlases

o Spatial transformations to bring 3D datasets into
alignment computed separately in Steps 3-5

o Combined to transform datasets in one final operation



Step 6 = Extract Tissue Based Regressors

e Purpose of tissue based regressors is to extract time
series fluctuations that are not BOLD signal

e So we can regress them out of the data at Step 8
e Common choices include:

o Average of all white matter (WM) signal time series

o Several principal components of all WM time series
(CompCor method)

o Average global brain signal time series (GS) ®
o Average signal from CSF in ventricles

e Less common (only in AFNI): ANATicor ...



ANATicor — Tissue Based per voxel
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Step 7 = Spatial Blurring

Important for RS/naturalistic FMRI since the
BOLD signal fluctuations are small

o Also important in group studies so that errors in
inter-subject alignment can be compensated for

Averaging locally will tend to cancel noise and
add up coherent (similar looking) signals

Important: blur after tissue based signal
extraction

Otherwise, will get unintended signals in WM

and CSF that were blurred in from nearby GM
(gray matter)



Effects of Blurring on RS-Correlation

Little blurring means little long-range RS correlation!




Step 8 = Nuisance Regression - 1

e In task-FMRI, regression is to find signal
amplitudes (Bs) of task model components while
also removing the nuisance model components

o Nuisances: motion parameters, motion parameter time
derivatives, WM signals, measured respiration signal, etc

e In RS/naturalistic-FMRI, there are no task model
components to estimate

 All we want from the pre-processing and regression
is to remove the nuisance components (as much as
practicable) and compute the residuals

o These residuals are the “purified” output, ready for
further analysis (e.g., correlations)



Step 8 = Nuisance Regression - 2

Another operation usually (but not always) used in RS-
FMRI is bandpassing

— It involves removing all frequency components from
the data except those in a specific band (or range)

Frequency: units are Hertz (Hz) = cycles per second
1 Hz =1 cycle per second

0.01 Hz = 0.01 cycle per second =1 cycle in 100 sec
100 Hz =100 cycles per second =1 cycle in 0.01 sec

”cycle” = full sine wave =» /\uyde/\
Larger frequency = faster — time {

Lower frequency = slower / \/

O O O O O O



Step 8 = Nuisance Regression - 3

* In RS-FMR], it is common to bandpass out all

frequencies higher than 0.10 Hz and smaller than
0.01 Hz

o Keep only data fluctuations that occur in the 10-to-
100 second range

o Faster or slower = OUT

e The idea is these don’t contain much BOLD effect,
so should be removed before analysis of residuals

e This idea is controversial

o There is evidence that neurally relevant fluctuations
occur up to 0.20 Hz (5 s time scale)



Step 8 = Nuisance Regression — 3a

gai
86]

i Mw Wﬂ" 1 /‘

V v
53

Data voxel 533> Data voxel
No bandpass Bandpass 0.01-0.10

BP: removes slow drift and reduces rapid oscillations

s8a.TimeSeriesAnalysis.Bandpass.csh




Step 8 = Nuisance Regression - 4

e [tis common to censor out “bad” time points, so they
aren’t used in the analysis (task or RS)
o “Bad” =too much motion, or that volume has too
many “outlier” data points, or ...
e [tisimportant to censor bad time points before/during
the nuisance regression, not afterwards

o Otherwise, they will affect regression results and
contaminate residuals even at un-censored times

o In AFNI, censoring is done by removing the offending
data time point from the analysis (matrix and data)

o Alternative: include an extra regressor which=0,
except=1 at time point to be killed (SPM, FSL)



Step 8 = Nuisance Regression - 5

* In AFNI, nuisance regression, bandpassing, and
censoring for RS-FMRI are all done in the same

program: 3dT'project (residual computing only)
o Which allows for voxel-specific regressors (ANATicor)

o 3dTproject is much faster than 3dREMLfit, since it
does not have to compute fs or statistics

e For task-FMRI, regression is done with program
3dREML({it (also allows for voxel-specific regressors)

e How does afni_proc.py know which program to use?

o If no task timing files are given, then it uses
3dTproject, otherwise 3dREMLfit



Step 8 = Nuisance Regression - 6

 Naive people have done these 2 steps in sequence:
o Bandpass the data
o Regress other nuisance vectors from bandpassed data
o Doing these operations in 2 steps (instead of one) is
not just bad, it is WRONG
* Since nuisance regressors will contain some rejected
frequency components, these unwanted components
will “leak” back into the data at second regression
o Unless nuisance regressors were bandpassed also
o The same warning applies to bandpassing and
censoring — they should be done together
* These reasons eusspeet) are why 3d Tproject was written



Preprocessing

Despiking

AFNI’s
recommended

|

Slice-timing correction

|

Motion correction RS - F MRI p I‘e —
processing

Alignment with anatomy

Spatial normalization

| \| Extracting tissue-based Step S

Spatial slmoothing regressors
(with 6 mm FWHM isotropic
Gaussian kernel)

H]J Jo et al, 2010 and
2013

Carried out using
afni_proc.py

Nuisance regression

Bandpass filtering
(0.009 < f < 0.08 Hz)

{ Correlation map }




Preprocess via aftni_proc.py

## Adapted from Example 9b in afni proc.py -help
afni proc.py -subj id s620

-dsets s620 rest rl+orig.HEAD

-blocks despike tshift align tlrc volreg

blur mask regress

-tcat remove first trs 2

-volreg align e2a

-blur size 6

-regress_anaticor fast
-regress_censor motion 0.2

-regress_censor outliers 0.1
-regress bandpass 0.01 0.2
-regress_apply mot types demean deriv

-regress_run clustsim no -regress est blur errts

R R A R



