
AFNI
Didactics and Demonstrations

Regions of Interest (ROIs)
Introduction

-2-

What is an ROI?

• An ROI is a "region of interest" usually used as a mask of voxels

• In AFNI, ROIs are stored as any other dataset (.HEAD/.BRIK, .nii, ...) , typically
with positive integer values for voxels to consider.
o Zero values are outside the mask.
o Positive values are inside the mask

• Note any dataset can be considered as an ROI if it is non-zero in areas in which
you are interested.

• Usually stored as byte integers to save disk space and memory

Voxel with
value of 0

Voxel with
value of 1

-3-

Creating Regions of Interest

• Method 1: Draw. Draw ROIs based on anatomical structures, then
analyze functional datasets within these regions
o Previous studies may identify particular regions
o This method relies on ‘a priori’ assumptions about localization

of brain function and neuroanatomy knowledge

• Method 2: Cluster. Analyze functional dataset for entire brain first,
then use clusters of ‘activity’ (neighboring voxels with values
above a threshold in some statistical map)
o Analyze the entire brain first and then find interesting areas of

activity and do further analyses on those areas
o Use 3dClusterize or the AFNI graphical interface button

[Clusterize] to find larger “blobs” or clusters of activity
o Apply the clusters from a localizer task to apply to a separate

experiment

• Method 3: Atlas. Use atlases to select anatomical regions
o Use whereami program or symbolic notation to create masks

on the command line (3dcalc, 3dresample, ...)
o Parcellations and classifications from FreeSurfer, 3dSeg,

3dkmeans, etc.
o Spheres around published coordinates

-4-

Drawing ROIs

Use AFNI's ROI Draw Dataset plugin (see video)
For large projects, consider drawing tools like a stylus
with a touchscreen or Wacom Cintiq.

Also other drawing tools that support NIFTI output can
be used - MIPAV, Amira,

-5-

Clusterize
• The Clusterize button on the main AFNI graphical interface gives users a quick

and easy way to locate clusters of activity in a functional dataset. Once the user sets
the clusterize parameters, a complete cluster “report” is given, which details the
number of clusters found, based on these parameters.

Clustering

-6-

Jump: sets the crosshairs to the
designated xyz coordinates (default is
the peak of the ROI cluster)

Flash: flashes the cluster voxels in
the image viewer

SaveMask: Click on this button to
write clusters to a mask dataset called
Clust_mask+orig

Clust_mask+orig

Cluster #1 Cluster #2

Clusterize Features

Plot/Save: Allows user to load a
3D+time dataset (Aux Dset button) and
plot the avg time series over a cluster. Plot
 can be saved in .jpg or .png format.

E.g., 3D+time dataset
rall_vr+orig loaded and
avg time series plotted for
voxels within Cluster #1

-7-

3dClusterize
The program 3dClusterize looks for clusters – groups of voxels together that meet some threshold
Example:

3dClusterize -clust_nvox 200 -bisided -2.0 2.0 -ithr 2 -idat 1 \
 -NN 1 -inset func_slim+orig. -pref_map myclusters

The above command tells 3dClusterize to find potential cluster volumes for dataset func_slim+orig, sub-brick #2, where the threshold
has been set to 2.0 (i.e., ignore voxels with an activation threshold absolute value <2.0). Voxels must be facing each other in the
cluster, and cluster volume must be at least 200 voxels (these are not guidelines, just an example!).

Cluster report
#[Option summary = bisided,-2,2,clust_nvox,200,NN1]
#[Threshold value(s) = left-tail stat=-2.000000;right-tail stat=2.000000]
#[Nvoxel threshold = 200; Volume threshold = 4537.500]
#[Single voxel volume = 22.688 (microliters)]
#[Neighbor type, NN = 1]
#[Voxel datum type = float]
#[Voxel dimensions = 2.750 mm X 2.750 mm X 3.000 mm]
#[Coordinates Order = RAI]
Mean and SEM based on absolute value of voxel intensities]
#
#Volume CM RL CM AP CM IS minRL maxRL minAP maxAP minIS maxIS Mean SEM Max Int MI RL MI AP MI IS
#------ ----- ----- ----- ----- ----- ----- ----- ----- ----- ------- ------- ------- ----- ----- -----
 16791 -11.0 13.5 9.6 -96.2 82.6 -120.0 94.5 -17.7 78.3 1.0198 0.0087 11.135 41.3 -70.5 -14.7
 15563 -14.6 20.2 34.4 -93.4 66.1 -103.5 94.5 -17.7 78.3 0.4392 0.0037 -8.114 -90.7 -7.3 30.3
 991 50.9 -5.4 43.7 16.6 68.8 -26.5 23.0 12.3 78.3 0.4297 0.0139 -4.655 55.1 3.7 78.3
 421 48.2 -1.7 -9.9 24.8 63.3 -26.5 36.7 -17.7 6.3 0.4582 0.0126 -1.6187 57.8 -4.5 -2.7
 418 -52.4 -4.0 -9.5 -74.2 -21.9 -29.3 25.7 -17.7 6.3 0.4287 0.0132 -2.2152 -24.7 -12.8 -14.7
 326 -2.6 -55.6 61.6 -24.7 11.1 -89.8 -23.8 45.3 78.3 0.2991 0.011 1.4813 2.8 -87.0 60.3
 206 -23.5 -30.9 -5.5 -49.4 -13.7 -45.8 -1.8 -17.7 12.3 0.6163 0.0445 -4.0194 -16.4 -40.3 -14.7
#------ ----- ----- ----- ----- ----- ----- ----- ----- ----- ------- ------- ------- ----- ----- -----
34716 -10.8 14.3 16.8 0.7196 0.0048

(similar alternatives in AFNI 3dclust and 3dmerge)

-8-

Creating Regions of Interest from Atlases - whereami

whereami can extract ROIs from atlases using symbolic notation

 whereami -mask_atlas_region TT_Daemon:left:amy

Use the Talairach-Tourneaux atlas (TT_Daemon) to create an ROI of the left amygdala.

Find available atlases with whereami -show_atlases

Find available regions with whereami -show_atlas_code

Another example with approximate name and prefix:

whereami -mask_atlas_region MNI_Glasser_HCP_v1.0::L_front_opercular \

 -prefix mniglass_lfront_oper

TT_Daemon.amy.l.tlrc

-9-

You can also specify atlas-based ROI masks directly like this:

3dcalc -a ~/abin/MNI_Glasser_HCP_v1.0.nii.gz'<169>' -expr a \

 -prefix left_front_operc

or this way is preferable:

3dcalc -a \

 ~/abin/MNI_Glasser_HCP_v1.0.nii.gz'<L_Area_Frontal_Opercular>' \

 -expr a -prefix left_front_operc2

Another example:

3dcalc -prefix nice_roi \

 -a 'CA_N27_ML::hippo' -b 'func_FullF_1mm+tlrc' \

 -expr '(step(a)*b)'

ULay: anat+tlrc
OLay: nice_roi+tlrc

F-stat voxels in func
dataset that fall within the
TT left hippocampus ROI

-10-

Compare the left and right amygdala between the Talairach atlas, and the
CA_N27_ML atlas. The result will be 1 if a voxel is marked as amygdala in the
TT_Daemon only, 2 if it is marked as amygdala in the CA_N27_ML only, and 3
where they overlap.

3dcalc -a 'TT_Daemon::amygdala' \

 -b 'CA_N27_ML::amygdala' \

 -expr 'step(a)+2*step(b)' \

 -prefix compare.maps

3drefit -cmap INT_CMAP compare.maps+tlrc

Note: compare.maps+tlrc
displays the TT amygdala
(value=1) in salmon, the N27
amygdala (value=2) in purple,
and the overlap between the
two atlases (value=3) in green.

-11-

Getting around with spheres

Another way to use cluster results –
 make spheres from the cluster peaks or centers of mass

Try this:
adwarp -apar anat+tlrc -dpar func_slim+orig –dxyz 3

In afni GUI, select Underlay: anat, Overlay: func_slim
Switch view to Talairach
Overlay to vrel_coef, Threshold to vrel_tstat
Clusterize, and Save Tabl
1dcat Clust_table.1D'[4..6]' > Clust_PeakXYZ.1D
3dresample -orient RAI -prefix func_slim_RAI \
 -inset func_slim+tlrc
3dUndump -srad 7.5 -master func_slim_RAI+tlrc \
 -prefix clust_spheres -xyz Clust_PeakXYZ.1D

-12-

• ROIs are typically applied to functional datasets – low resolution
• Draw on anatomy or use atlas regions - high resolution

Each voxel inside the original ROI has a nonzero value
When the resolution is changed, what do you do with voxels that are only
partially filled?

Hi-res voxel matrix Low-res voxel matrix

Using ROIs - Resampling

-13-

• 3dfractionize does this resolution conversion:

3dfractionize -template low_res_dset+orig \
 -input ROI_high_res+orig \

 -clip 0.5 -preserve -prefix ROI_low_res
 -template  The destination grid you want your ROI grid to be resampled to

(we’re going from high to low resolution here). Our output dataset
ROI_low_res+orig will be written at the resolution of func+orig

 (Also useful for transforming std space back to orig space
with the -warp dataset)

 -input  Defines the input high-resolution dataset (that needs to be converted
from high resolution to low resolution)

 -clip 0.5  Output voxels will only get a nonzero value if they are at least 50%
filled by nonzero input voxels (you decide the percentage here). E.g., when
going from high to low res, keep a label a voxel as part of the ROI if it is filled
with at least 50% (or more) of the voxel value. For example:

This voxel is 80% filled with the ROI value
-- keep it

This voxel is 30% filled with the ROI value
-- lose it

-14-

 -preserve  once it has been determined that the output voxel will be part of
the ROI, preserve the original ROI value of that voxel (and not some
fraction of that value). This option also allows for "voting" – determine the ROI
that would most fill that voxel. For example, if our ROI mask has values of “4”:

• 3dresample does conversion too but you have less controls for handling partial
overlaps:

3dresample -master low_res_dset+orig \

 -prefix ROI_low_res \

 -inset ROI_high_res+orig \

 -rmode NN

 -master: the destination grid we want our ROI mask resampled to
 -prefix: The output from 3dresample -- in this example, a low resolution ROI

 mask that corresponds with the voxel resolution of our master dataset
 -inset: The ROI mask dataset that is being resampled from high to low resolution
 -rmode NN: If a voxel’s “neighbor” is included in the ROI mask, include the voxel

 in question as well

This voxel is 80% filled with the ROI value -- keep it.

Without the -preserve option, this voxel would be given
a value of “3.2” (i.e., 80% of “4”).

With -preserve, it is labeled as “4”

-15-

Let’s do a class example of 3dresample:
cd AFNI_data6/roi_demo

3dresample -master rall_vr+orig \
 -prefix anat_roi_resam \
 -inset anat_roi+orig \
 -rmode NN

In this class example, we want to take our ROI mask, which has a high voxel resolution of
0.9 x 0.9 x 1.2 mm, and resample to it the lower resolution of the time-series dataset,
rall_vr+orig (2.75 x 2.75 x 3.0mm).

Before, overlay ROI is:
anat_roi+orig
0.9x0.9x1.2 mm voxel grid

After, overlay ROI is:
anat_roi_resam+orig
2.75x2.75x3.0 voxel grid

-16-

Moving ROIs - Back to the "Original"
Standard Space to Native Subject Space

Useful for putting atlas regions into the native space

Affine transformations only (@auto_tlrc) – 3 ways to "inverse talairach":
3dAllineate
cat_matvec -ONELINE anat+tlrc::WARP_DATA > tlrc.aff12.1D
3dAllineate -1Dmatrix_apply tlrc.aff12.1D -prefix invtlrc3dAl+orig \
 -source anat+tlrc -master anat+orig

3dWarp
cat_matvec anat+tlrc::WARP_DATA > tlrc.1D
3dWarp -matvec_out2in tlrc.1D -prefix invtlrc_3dWarp+orig \
 -gridset anat+orig anat+tlrc
3drefit -view orig invtlrc_3dWarp+tlrc.

3dfractionize - slow but useful voting option for multiple ROIs
and manual Talairach transformations
3dfractionize -input anat+tlrc -warp anat+tlrc –preserve \
 -prefix invtlrc_3dfrac -template anat+orig

-17-

Moving ROIS - Back to the "Original" 2
Standard Space to Native Subject Space

Nonlinear and Affine transformation combinations – 3 ways to "inverse
talairach":
getting data to a standard space with @auto_tlrc and auto_warp.py
affinely align to template with @auto_tlrc
@auto_tlrc -base TT_N27+tlrc -input strip_shift+orig. -no_ss \
 -init_xform AUTO_CENTER
nonlinearly align to template
auto_warp.py -skip_affine -base TT_N27+tlrc -input strip_shift+tlrc

3dNwarpApply
cat_matvec -ONELINE "strip_shift+tlrc::WARP_DATA" > at_shift.1D
one step concatenate and apply
3dNwarpApply -prefix tw3 \
 -nwarp 'at_shift.1D INV(awpy/anat.un.aff.qw_WARP.nii)' \
 -source awpy/strip_shift.aw.nii \
 -master strip_shift+orig. \
 -ainterp NN <===== Nearest neighbor interpolation for ROIs

-18-

Moving ROIs - Back to the "Original" 2b
Standard Space to Native Subject Space

Nonlinear and Affine transformation combinations –
3dNwarpCat
3dNwarpCat -prefix anat_total_WARPINV2 \
 -warp2 'INV(anat_qw9_WARP+tlrc)' -warp1 'at.1D'
3dNwarpApply -prefix anat_backtoorig2 \
 -nwarp anat_total_WARPINV2+tlrc. \
 -source anat_qw9+tlrc -master anat+orig

3dNwarpCalc
3dNwarpCalc "&readwarp(anat_qw9_WARP+tlrc.)" "&invert" \
 "&read4x4(at_matrix.1D)" "&compose" "&write(combo_warp3)"
3dNwarpApply -prefix anat_backtoorig5 -nwarp combo_warp3+tlrc. \
 -source anat_qw9+tlrc -master anat+orig

That’s All for Now

	Slide 1
	What is an ROI?
	Region of Interest Drawing and Usage in AFNI
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Getting around with spheres
	Things to Do with ROI Datasets (no matter how you create them)
	Slide 13
	Slide 14
	Slide 15
	Back to the "Original" Standard Space to Native Subject Space
	Back to the "Original" 2 Standard Space to Native Subject Space
	Back to the "Original" 2b Standard Space to Native Subject Space
	That’s All for Now_clipboard0

