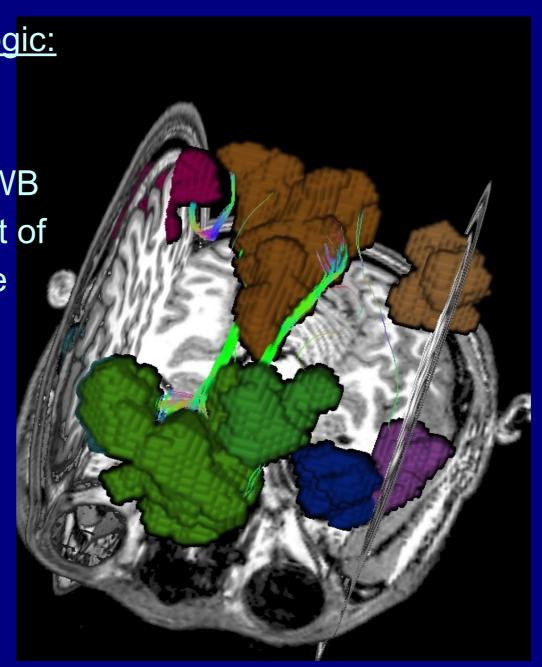

More about DTI-tracking: Practicalities and programs

AFNI Bootcamp (SSCC, NIMH, NIH)

Outline

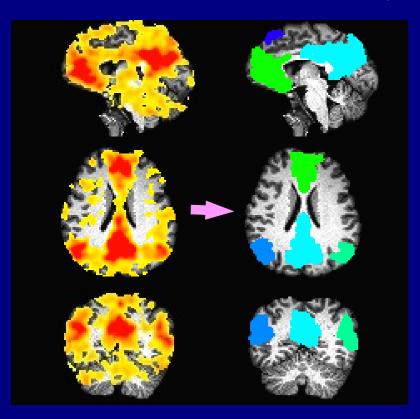

- + Practicalities around tracking with AFNI/FATCAT
- + 3dTrackID's "modes" (a.k.a. styles or types) of tracking
 - and calculating tensor parameter uncertainty
- + Setting up networks of target ROIs with 3dROIMaker
 - examples from anatomical parc/seg and FMRI
- + Checking gradients
- + Additional tracking features

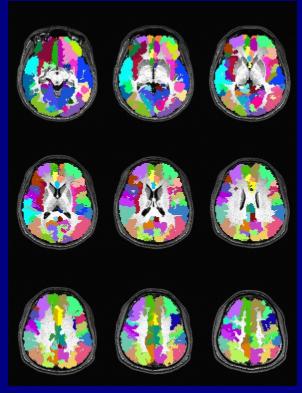
Network tracking paradigm: recall

Useful generalization of AND-logic:

"Network tracking"
through several target ROIs
simultaneously. Find tracts in WB
that go through any pair in a set of
targets, where the targets make
sense to think about together.

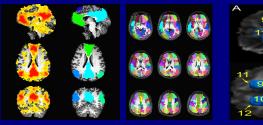
Note that the connections can be "sparse": not every target is connected to every other target. (Physiologically, we would **not** expect otherwise...)

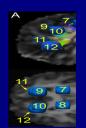



Network tracking paradigm: recall

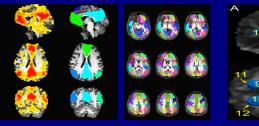
FMRI (e.g., thresholded seed-based or ICA maps)

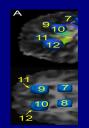
Anatomical parc/seg (e.g., FreeSurfer)


Spheres/simple ROIs (can map across group)



Network tracking paradigm: points

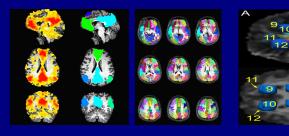




Main criteria for making target ROI networks

- + define meaningful regions (-> sensical to be together for hypothesis)
- + make sure targets border on FA-WM
- + for group analysis, create equivalent/consistent regions across group

Network tracking paradigm: points


Main criteria for making target ROI networks

- + define meaningful regions (-> sensical to be together for hypothesis)
- + make sure targets border on FA-WM
- + for group analysis, create equivalent/consistent regions across group

<u>... Then</u>

- + targets can be defined in subject's own DTI space
- + main quantity: matrix of structural properties for each network

Network tracking paradigm: points

Main criteria for making target ROI networks

- + define meaningful regions (-> sensical to be together for hypothesis)
- + make sure targets border on FA-WM
- + for group analysis, create equivalent/consistent regions across group

... Then

- + targets can be defined in subject's own DTI space
- + main quantity: matrix of structural properties for each network

Different than "voxelwise comparisons"

- + Here, don't need to warp to standard space/WM skeleton
 - -> avoid (some) alignment issues/demands
- + Here: calc "network-wide" properties, then zoom in (big -> small) voxelwise comps: calc voxel diffs and build "clusters" (small -> big)
- + Here, WM structure matters; voxelwise comps ignore this.

Combining FMRI and DTI

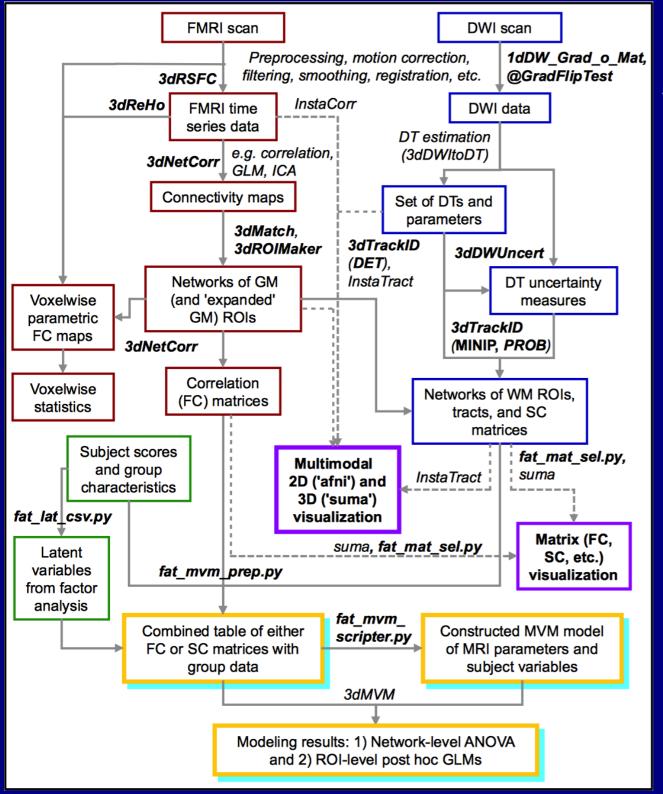
(much applies to any target network)

Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:

- + determining networks from FMRI, parcellation or other data;
- + finding correlations and local properties of functional networks;
- + turning GM ROIs into targets for tractography;
- + doing reasonable tractography to find WM ROIs;
- + estimating stats on WM ROIs...

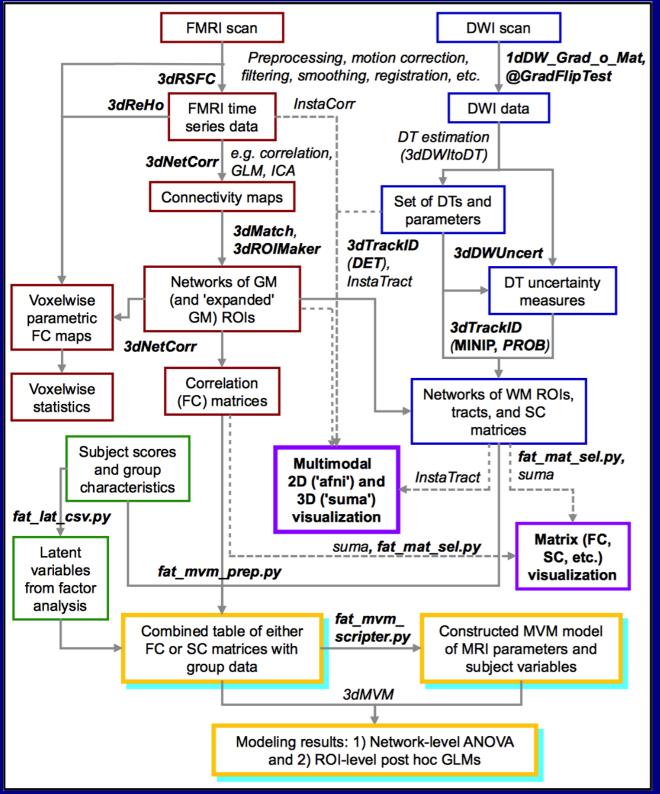
Tools for combining FC and SC:


Combining functional and tractographic connectivity will require:

- + determining networks from FMRI, parcellation or other data;
- + finding correlations and local properties of functional networks;
- + turning GM ROIs into targets for tractography;
- + doing reasonable tractography to find WM ROIs;
- + estimating stats on WM ROIs...

FATCAT: Functional And Tractographic Connectivity Analysis Toolbox (*Taylor & Saad, 2013, BC; Taylor et al. 2015, BC*)

Demos in AFNI: @Install_FATCAT_DEMO, @Install_FATMVM_DEMO



Schematic for combining FMRI and DTI-tractography via FATCAT

FATCAT goals:

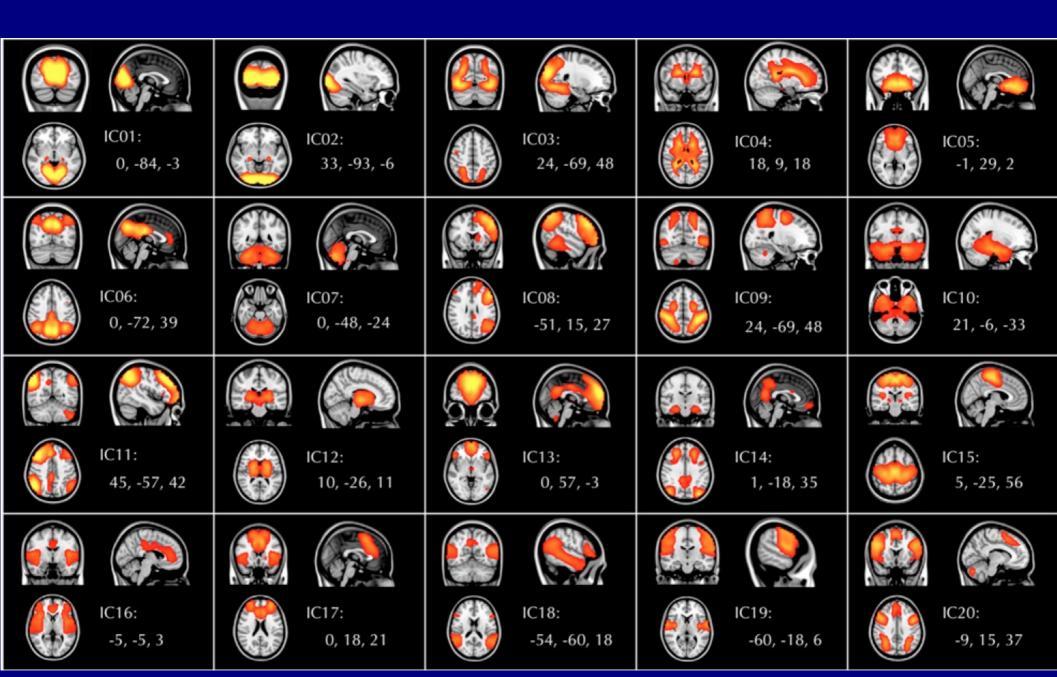
- + Do useful tasks
- + Integrate with existing pipelines/software
- + Derive/use information from the data itself
- + Be "simple" to implement
- + Be network-oriented, when possible
- + Be efficient
- + Be flexible and able to grow

(Taylor, Chen, Cox & Saad, 2016)

Schematic for combining FMRI and DTI-tractography via FATCAT

FATCAT goals:

- + Do useful tasks
- + Integrate with existing pipelines/software
- + Derive/use information from the data itself
- + Be "simple" to implement
- + Be network-oriented, when possible
- + Be efficient
- + Be flexible and able to grow


Main focus today on DTItractography, including making ROIs from FMRI

(Taylor, Chen, Cox & Saad, 2016)

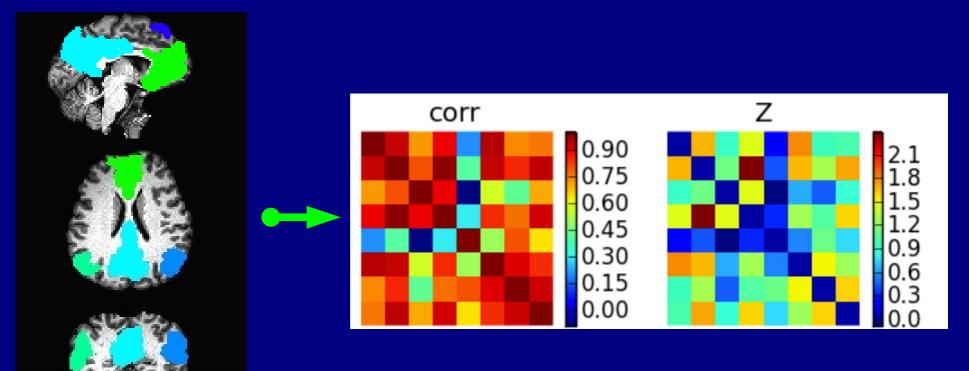
Motivating example

Network view of both functional and structural data

FMRI: GM Networks

FMRI: GM Networks

- Functional connectivity
 networks of distinct GM
 regions, from BOLD
 time series during task
 or rest/no task.
- + Quantify GM properties: ALFF, fALFF, RSFA, σ, ReHo, GMV, etc.
- + Quantify network props: seedbased correlation, ICA, graph theoretical measures, etc.


Sidenote:

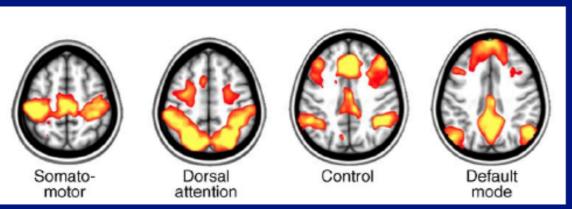
Mention of a few of the FMRI tools

Functional processing, 3

For {RS- | TB-}FMRI: correlation matrices

- + 3dNetCorr: calculated post-processing, input time series data + network maps
 - can be multi-brick maps, 1 network per brick
 - calculate average time series per ROI, correlation among network ROIs
 - outputs correlation matrix/matrices, (can also do Fisher-Z transform output)

++ Can also calculate ReHo, ALFF, fALFF, etc. in FATCAT/AFNI.


Applying tractography

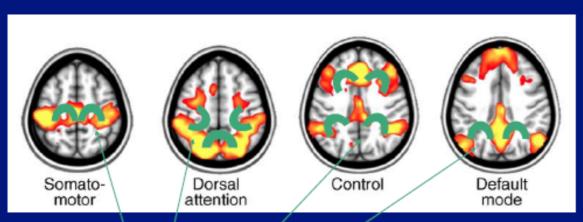
Structure + Function

Simple example:

FMRI provides: maps of (GM) regions working together

GM ROIs network:

Raichle (2010, TiCS)


Structure + Function

Simple example:

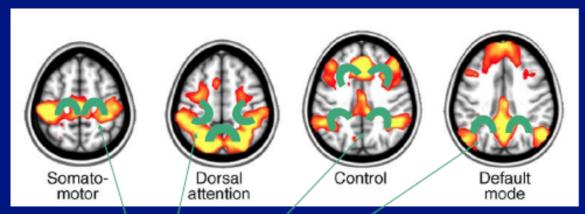
FMRI provides:

maps of (GM) regions working together

GM ROIs network:

Raichle (2010, TiCS)

Associated WM ROIs

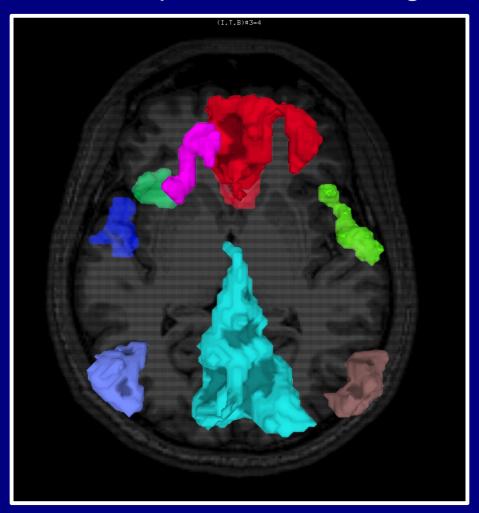

Structure + Function

Simple example:

FMRI provides:

maps of (GM) regions working together

GM ROIs network:

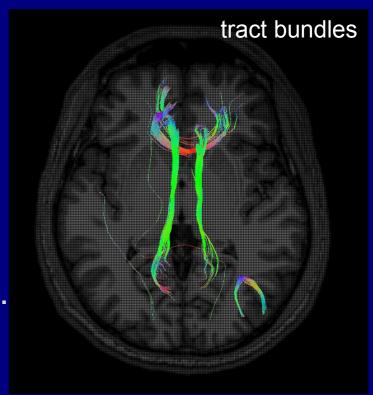


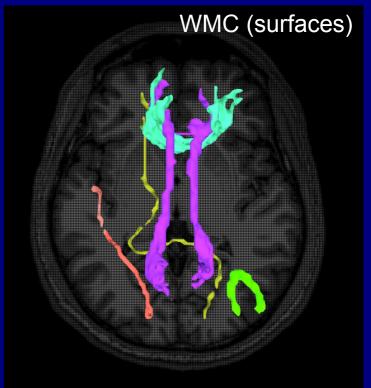
Raichle (2010, TiCS)

Associated WM ROIs

Our goal for tractography-> estimate likely/probable locations of WM associated with GM, and relate ROI quantities with functional/GM properties

Describing and comparing "modes" of tracking in 3dTrackID, with example network of targets:

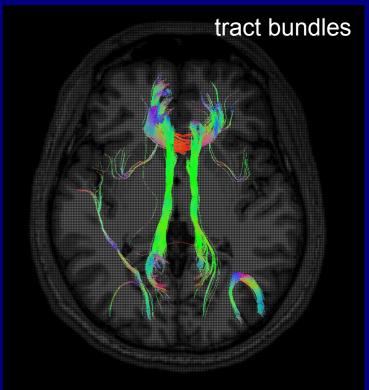


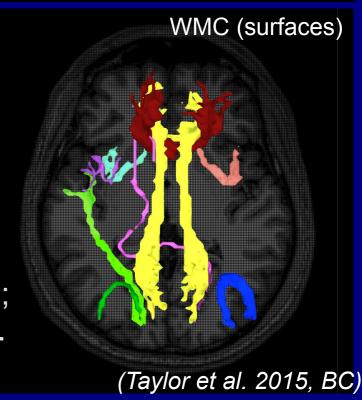

SUMA view of targets from FMRI (axial view, S->I)

Tracking modes: DET

Deterministic tracking

- + For each FA-WM voxel (e.g., FA>0.2), place seedpoint(s), track from each until stop criterion reached, and keep tracts through ROIs (AND- or OR-logic).
- + Can delete "bad" bundles with too few tracts.
- + Output:
 tract bundles,
 volumetric map of WMCs,
 and matrix of structural properties.
- --> DET is OK for quick testing, QC, general data checking, but does not take into account uncertainty; don't know how reliable or noise-dependent results are. Mostly just used for quick, WB QC.

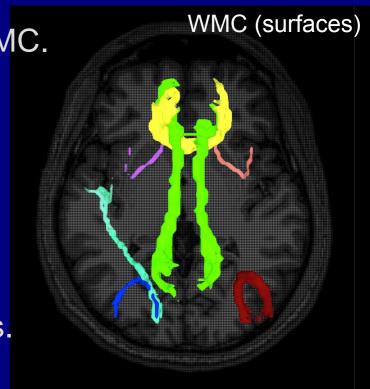




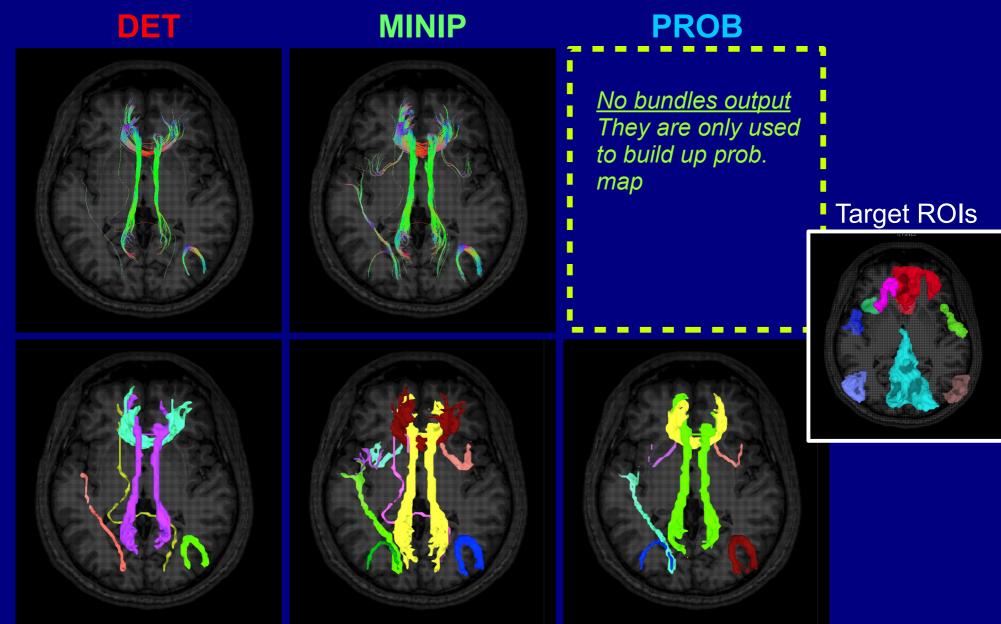
Tracking modes: MINIP

Mini-probabilistic tracking

- + For each FA-WM voxel (e.g., FA>0.2), place seedpoint(s), track from each until stop criterion reached, and keep tracts through ROIs (AND- or OR-logic);
- + **Then**, perturb every tensor randomly, according to its estimated uncertainty (-> desc. below), and then do WB tracking. Repeat a few (~5-7) times.
- + Can delete "bad" bundles with too few tracts.
- + Output:
 tract bundles,
 volumetric map of WMCs,
 and matrix of structural properties.
- --> **MINIP** improves on DET: accounts for noise; easier to detect spurious bundles; better vis. than DET. But no voxelwise thresholding...



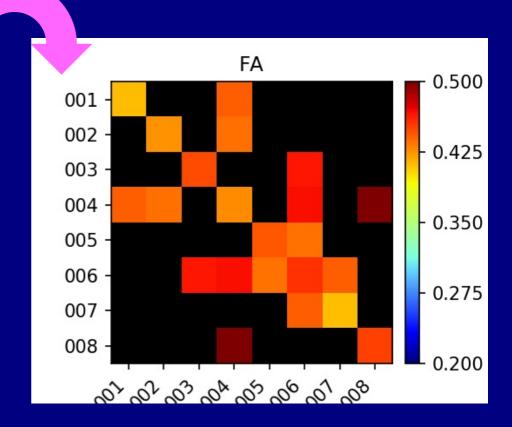
Tracking modes: PROB


(full) probabilistic tracking

- + For each FA-WM voxel (e.g., FA>0.2), place seedpoint(s), track from each until stop criterion reached, and keep tracts through ROIs (AND- or OR-logic);
- + Then, perturb every tensor randomly,
 according to its estimated uncertainty
 (-> desc. below), and then do WB tracking.
 Repeat many (~thousands) times.
- + Threshold tract count **per voxel** to make WMC.
- + Output:
 volumetric map of WMCs,
 and matrix of structural properties.
- --> **PROB** is most robust tracking: noise most strongly accounted for, and each WMC is built with **per voxel** criterion of tract counts. Produces best "likelihood" map of WMC.

No bundles output
They are only used
to build up prob.
map

Bundles/WMCs comparisons per mode


Bundles/WMCs comparisons per mode

Importantly, each mode **automatically** makes a file containing matrices of structural properties

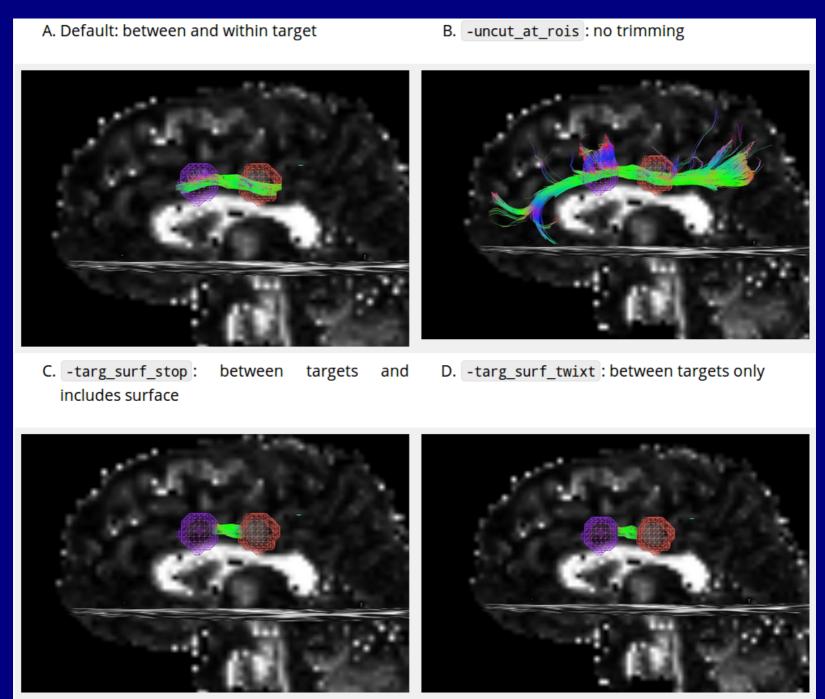
-> these will be used quantitative analysis & statistical modeling.

# 8 #	Number	of network ROIs						
# 15 # Number of grid matrices # WITH ROI LABELS								
# WIII	001 001	002	003	004	005	006	007	008
	1	2	3	4	5	6	7	8
# NT	1	2	3	4	5	0	/	0
# NT	FCOOF					•		
	56825	0	0	69	0	0	0	0
	0	108697	0	50	0	0	0	0
	0	0	32576	0	0	252	0	0
	69	50	0	609454	0	20305	0	6707
	0	0	0	0	238636	4096	0	0
	0	0	252	20305	4096	1216505	82	0
	0	0	0	0	0	82	264950	0
	0	0	0	6707	0	0	0	201024
# fNT								
	18e-03	0.000000e+00	0.000000e+00	4.490698e-06	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
0.0000	00e+00	7.074281e-03	0.000000e+00	3.254129e-06	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
0.0000	00e+00	0.000000e+00	2.120130e-03	0.000000e+00	0.000000e+00	1.640081e-05	0.000000e+00	0.000000e+00
4.4906	98e-06	3.254129e-06	0.000000e+00	3.966484e-02	0.000000e+00	1.321502e-03	0.000000e+00	4.365089e-04
0.0000	00e+00	0.000000e+00	0.000000e+00	0.000000e+00	1.553105e-02	2.665782e-04	0.000000e+00	0.000000e+00
0.0000	00e+00	0.000000e+00	1.640081e-05	1.321502e-03	2.665782e-04	7.917328e-02	5.336771e-06	0.000000e+00
0.0000	00e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	5.336771e-06	1.724363e-02	0.000000e+00
0.0000	00e+00	0.000000e+00	0.000000e+00	4.365089e-04	0.000000e+00	0.000000e+00	0.000000e+00	1.308316e-02
# PV								
1.2416	00e+04	0.000000e+00	0.000000e+00	3.360000e+02	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
0.0000	00e+00	1.908800e+04	0.000000e+00	3.280000e+02	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
	00e+00	0.000000e+00	1.578400e+04	0.000000e+00	0.000000e+00	1.176000e+03	0.000000e+00	0.000000e+00
3.3600	000e+02	3.280000e+02	0.000000e+00	5.860800e+04	0.000000e+00	7.272000e+03	0.000000e+00	4.688000e+03
	00e+00	0.000000e+00	0.000000e+00	0.000000e+00	2.372800e+04	1.584000e+03	0.000000e+00	0.000000e+00
	00e+00	0.000000e+00	1.176000e+03	7.272000e+03	1.584000e+03	1.087440e+05	3.040000e+02	0.000000c+00
	00e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	3.040000e+02	2.150400e+04	0.000000e+00
	00e+00	0.000000c+00	0.000000c+00	4.688000e+03	0.000000e+00	0.000000e+00	0.000000e+00	2.936000e+04
# fNV								
	'99e-03	0.000000e+00	0.000000e+00	2.489907e-04	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
	00e+00	1.414504e-02	0.000000e+00	2.430623e-04	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
	100e+00	0.000000e+00	1.169663e-02	0.000000e+00	0.000000e+00	8.714675e-04	0.000000e+00	0.000000e+00
	07e-04	2.430623e-04	0.000000e+00	4.343109e-02	0.000000e+00	5.388870e-03	0.000000e+00	3.474013e-03
	107e-04 100e+00	0.000000e+00	0.000000e+00	0.000000e+00	1.758349e-02	1.173813e-03	0.000000e+00	0.000000e+00
	00e+00	0.000000e+00	8.714675e-04	5.388870e-03	1.173813e-03	8.058406e-02	2.252773e-04	0.000000e+00
	00e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	2.252773e-04	1.593540e-02	0.000000e+00
	000e+00	0.000000e+00	0.000000e+00	3.474013e-03	0.000000e+00	0.000000e+00	0.000000e+00	2.175704e-02
# NV								
1.5520	00e+03	0.000000e+00	0.000000e+00	4.200000e+01	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00

3dTrackID: choosing a "mode"

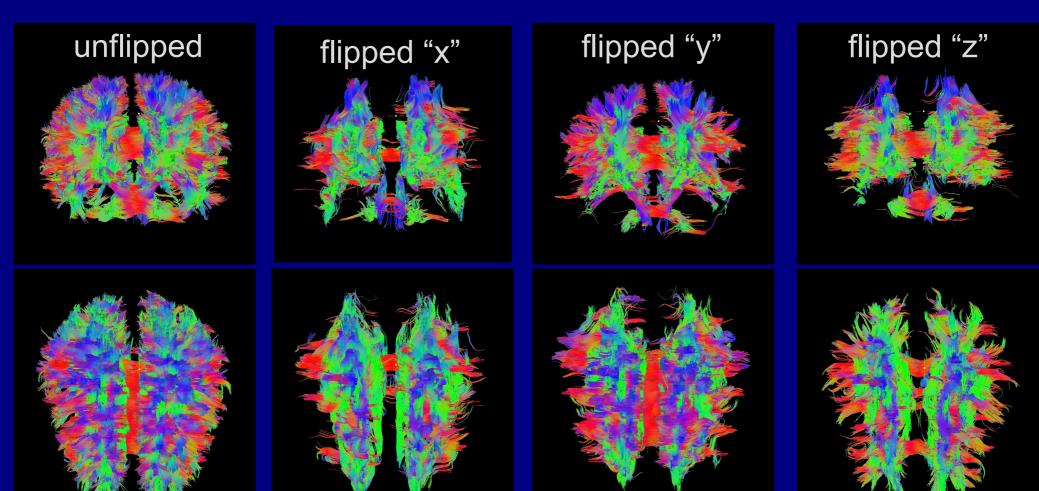
DET

- + Initial, quick QC of full DWI data (e.g., WB tracking)
- + Check gradient flip (-> @GradFlipTest)


MINIP

- + Quick network check
- + Visualize tract bundles, esp. for example figure
- + Requires uncert. calc. (3dDWUncert)

PROB


- + The choice for quantitative work
- + Can also visualize WMCs as RGB or per-bundle coloring
- + Requires uncert. calc. (3dDWUncert)
- + Is slower.... but not too bad.

3dTrackID: control tracts at surface boundaries

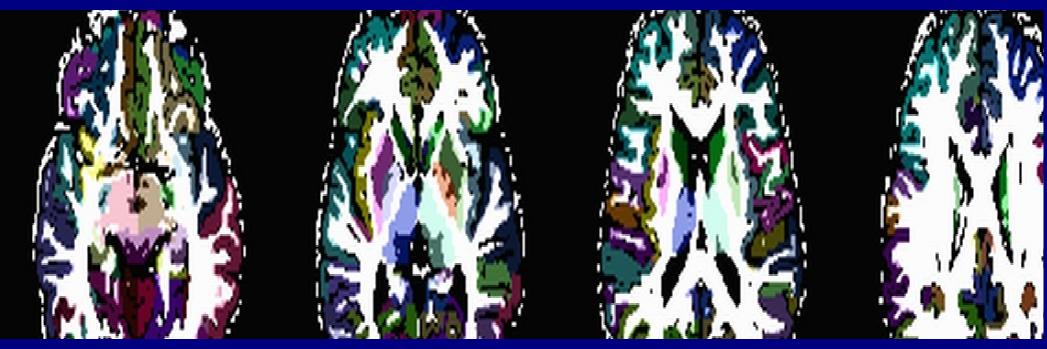
@GradFlipTest: track WB to check grad format

+ Software and scanners have can have different definitions of +/- when interpreting scan directions. So, use WB tracking via @GradFlipTest to check and 1dDW_Grad_o_Mat++ to adjust/fix.

ml

(Taylor et al. 2015, BC)

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/FATCAT/GradFlipTest.html https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/FATCAT/DealingWithGrads.html

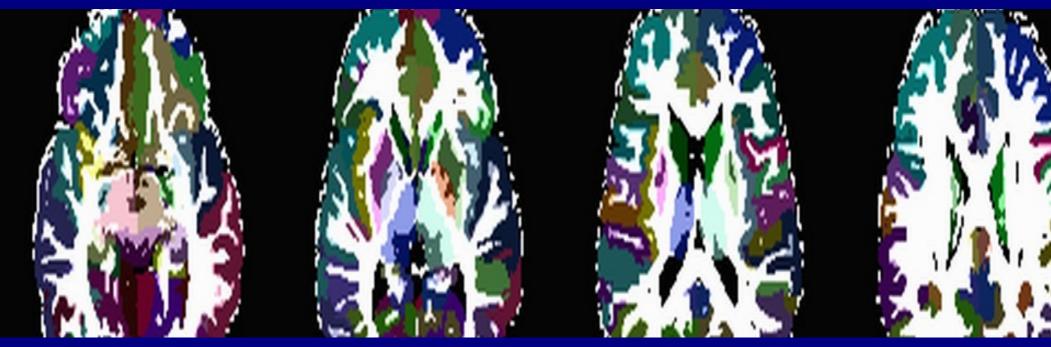

Making network of targets for tracking Ex. 1: from FreeSurfer parc/seg Ex. 2: from FMRI maps

3dROIMaker: (controlled) ROI inflation

+ Target ROIs may be slightly "cut off" from the FA-WM masks, due to thresholding (e.g., FMRI) or alignment/resampling (e.g., FS/template or FMRI).

Can use **3dROIMaker** to inflate targets a little to fill in gaps while not overrunning WM or other targets.

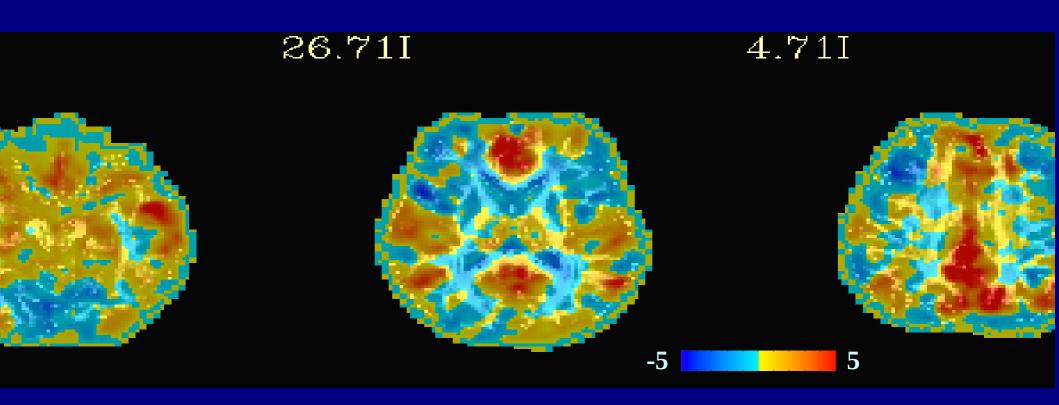
Ex. 1: olay: FS targets pre-inflation; ulay: FA>0.2 mask



3dROIMaker: (controlled) ROI inflation

+ Target ROIs may be slightly "cut off" from the FA-WM masks, due to thresholding (e.g., FMRI) or alignment/resampling (e.g., FS/template or FMRI).

Can use **3dROIMaker** to inflate targets a little to fill in gaps while not overrunning WM or other targets.


Ex. 1: olay: FS targets pre-inflation; ulay: FA>0.2 mask

Ex. 2: FMRI-derived targets

1) Start with some FC map (seed-based correlation, ICA, etc.)
Here: olay = ICA map (Z-score values)

ulay = FA map

Ex. 2: FMRI-derived targets

2) Threshold FC map voxelwise and for size of clusters -> isolated ROIs Here: olay = map of regions after thresholding ulay = mask of FA>0.2 (-> FA-WM)

26.711 4.711

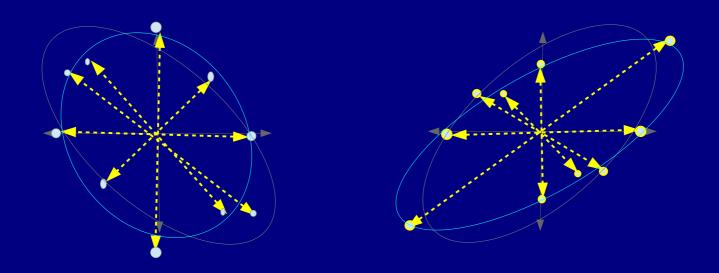
Ex. 2: FMRI-derived targets

3) Inflate isolated targets a small amount, constrain with FA-WM Here: olay = inflated ROIs -> targets for tracking ulay = mask of FA>0.2 (-> FA-WM)

26.711 4.711

3dROIMaker: additional features

- + Can remove overlap of regions with WM or CSF
- + Inflation options: inflation can stop just before or just after overlapping with FA-WM
- + Select subsets of ROIs with *N* highest values
- + Apply a "refset" to have consistent numbering+labelling of ROIs

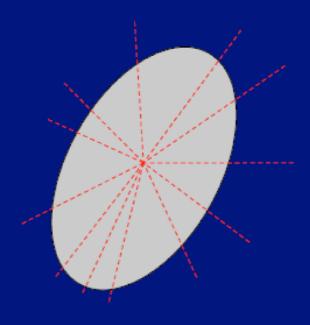

How do we estimate tensor parameter noise/uncertainty for MINIP and PROB tracking?

Recall: noise in DW signals

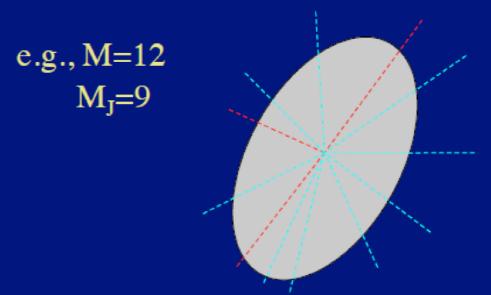
MRI signals have additive noise

$$S_i = S_0 e^{-b g_i^T D g_i} + \varepsilon,$$

where ε is (Rician) noise, with the effect of leading to errors in surface fit, equivalent to *rotations* and *rescalings* of ellipsoids:

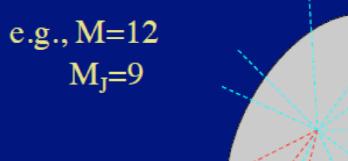

'Un-noisy' vs perturbed/noisy fit

EPI distortions, subject motion, et al. also warp ellipsoids.


DTI Uncertainty

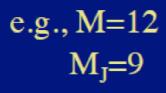
- We use jackknife resampling (e.g., Efron 1982)
 - Other studies have used bootstrapping (e.g., Jones 2003), or theoretical estimates (Jeong & Anderson 2008)
 - Jackknifing is efficient (just need one data set unlike bootstrap), simpler than theory, since, e.g., SNR is likely not constant across voxels

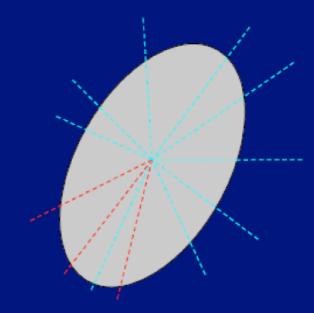
• Basically, take M acquisitions



- Basically, take M acquisitions
- Randomly select M_J < M to use to calculate quantity of interest
 - standard nonlinear fits

$$[D_{11} \ D_{22} \ D_{33} \ D_{12} \ D_{13} \ D_{23}] = \dots$$


- Basically, take M acquisitions
- Randomly select M_J < M to use to calculate quantity of interest
 - standard nonlinear fits
- Repeatedly subsample large number (~10³-10⁴ times)



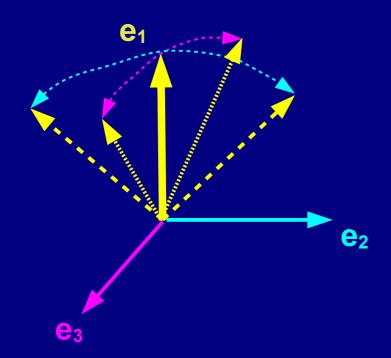
$$\begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots$$

$$\begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots$$

$$\begin{bmatrix} D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23} \end{bmatrix} = \dots$$

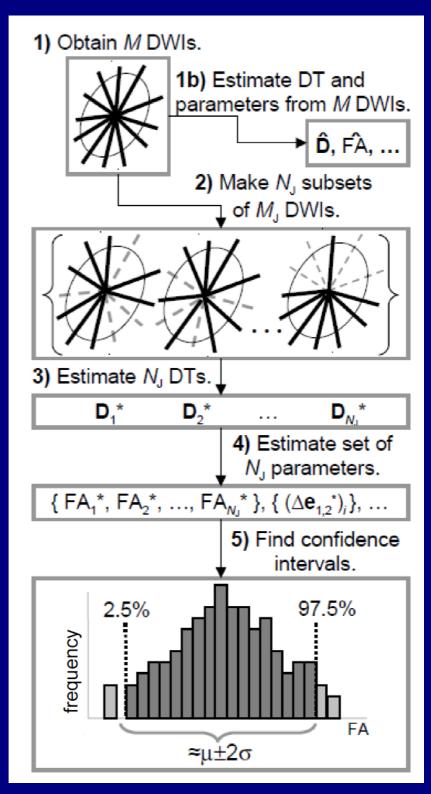
....

- Basically, take M acquisitions
- Randomly select M_J < M to use to calculate quantity of interest
 - standard nonlinear fits
- Repeatedly subsample large number (~10³-10⁴ times)
- Analyze distribution of values for estimator (mean) and confidence interval
 - sort/%iles
 - (not so efficient)
 - if Gaussian, e.g. μ±2σ
 - simple

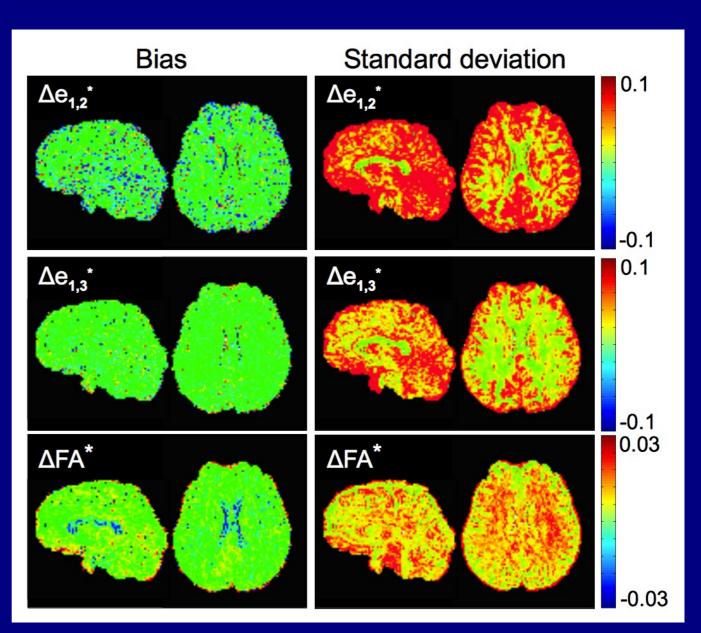


$$\begin{aligned} [D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23}] = \dots \\ [D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23}] = \dots \\ [D_{11} & D_{22} & D_{33} & D_{12} & D_{13} & D_{23}] = \dots \end{aligned}$$

Uncertainty estimation


+ 3dDWUncert estimates

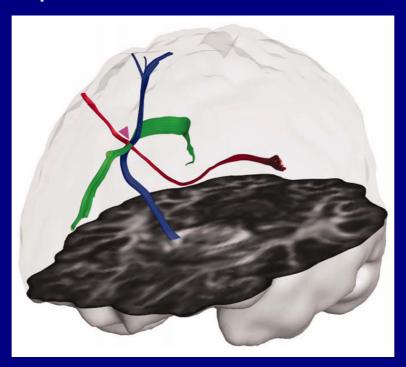
1) bias and σ of the first eigenvector **e**₁ (main direction of diffusion), for two degrees of freedom: how much it could tip toward either **e**₂ or **e**₃:


2) and the bias and σ of (scalar) FA.

(Taylor & Saad. 2013, BC)

Uncertainty example

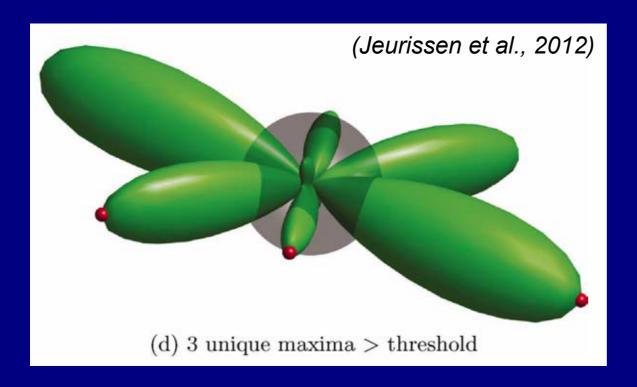
- + Can see difference in
 e₁ uncertainty along
 e₂ and e₃ (in rads).
- + Tissue-dependent differences in FA uncertainty.



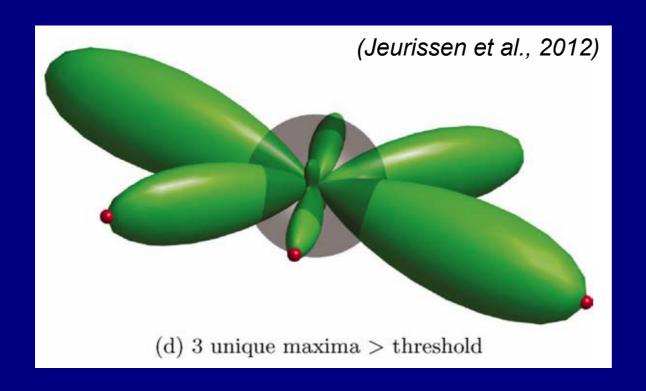
FATCAT addenda: 1) HARDI tracking

Higher order models

DTI tractography:


- + susceptible to false negatives, difficulty with long range tracts (noise/error accumulation)
- + Major diffusion can be average of multiple paths
- + Voxels can have low FA from several WM paths, false ending
- + Can't resolve complex underlying architecture
 - Jeurissen et al. (2012, HBM): 60-90% of WM voxels estimated to have multiple fibers

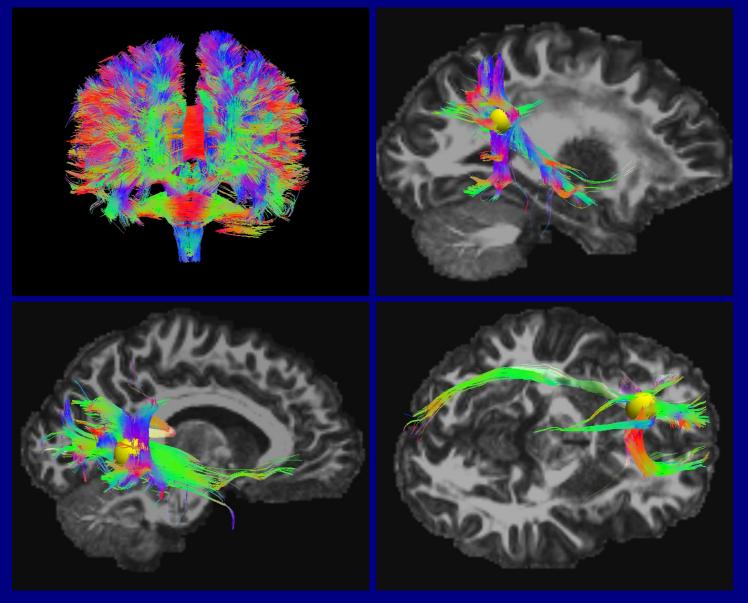
(Jeurissen et al., 2012)


HARDI

- + High Angular Resolution Diffusion Imaging:
 - DSI, ODF, Qball, FOD...
 - model multiple fiber bundle directions per voxel
 - generally need more scan time and acquisitions and computational power, much higher b-values
 - still can't resolve intravoxel tract behavior (which of multiple paths?)
 - higher DW → lower signal, so susceptible to noise

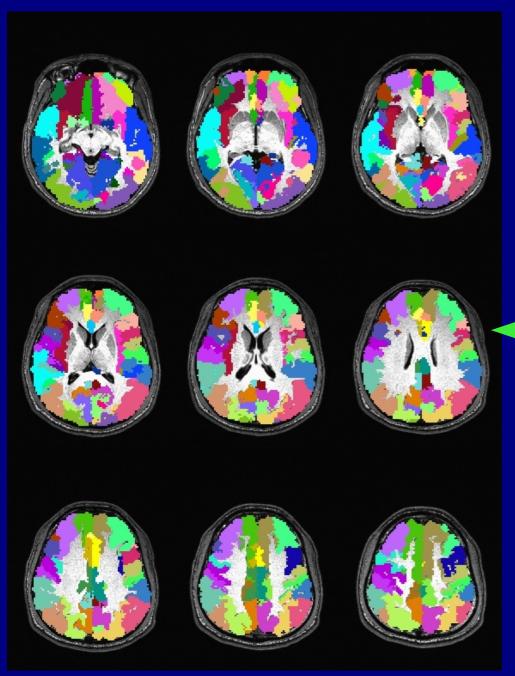
HARDI

- + High Angular Resolution Diffusion Imaging:
 - DSI, ODF, Qball, FOD...
 - model multiple fiber bundle directions per voxel
 - generally need more scan time and acquisitions and computational power, much higher b-values
 - still can't resolve intravoxel tract behavior (which of multiple paths?)
 - higher DW → lower signal, so susceptible to noise



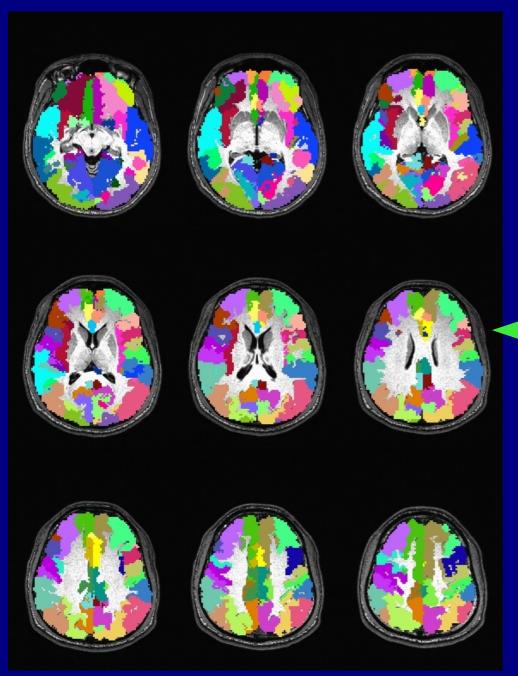
FATCAT can now track through HARDI data

→ HARDI reconstruction
 done outside AFNI
 (e.g., DSI-Studio,
 Diffusion Toolkit, ...),
 and outputs tracked in
 FATCAT.


Example: 3dTrackID on HARDI data

Ex: Human Connectome Project subject, 288 grads, HARDI reconstructed with GQI in DSI-Studio.

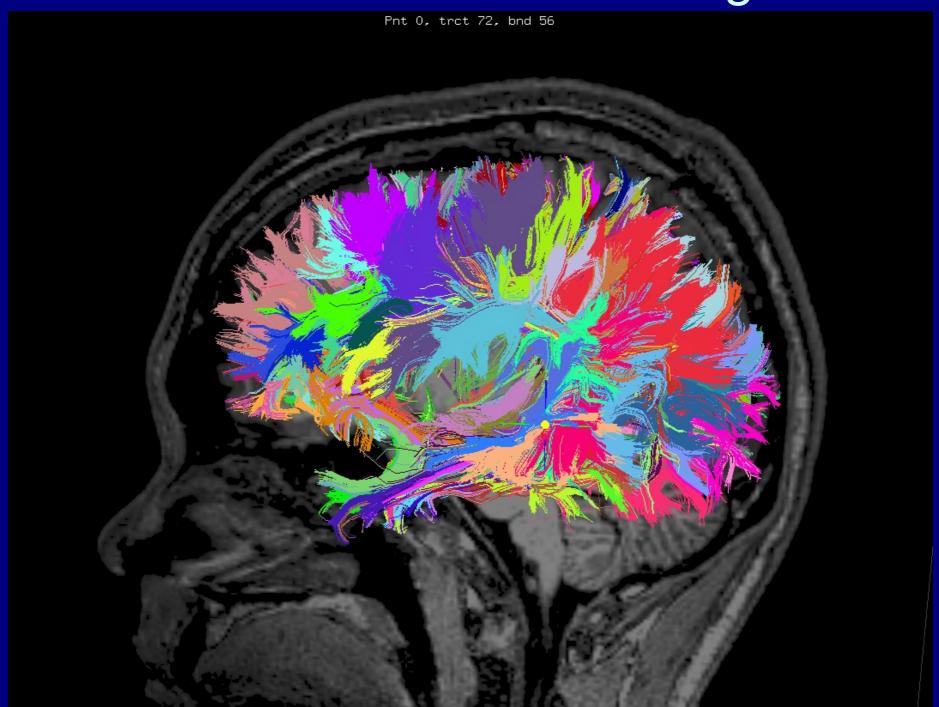
FATCAT addenda: 2) 'Connectome'-type tracking


"Connectome": parcellation of GM

Example (script available in FATCAT DEMO):

- + FreeSurfer parcellation into >112 ROIs.
- + Selected 80 cortical GM ROIs.
- + Used 3dROIMaker to inflate
- by 1 voxel, up to FA>0.2.
- (+ NEW: keep labeltable labels and use them in output.)
- + '3dTrackID' among the regions

"Connectome": parcellation of GM



Example (script available in FATCAT_DEMO):

- + FreeSurfer parcellation into >112 ROIs.
- + Selected 80 cortical GM ROIs.
- + Used 3dROIMaker to inflate
- by 1 voxel, up to FA>0.2.
- (+ NEW: keep labeltable labels and use them in output.)
- + '3dTrackID' among the regions

and a few seconds later...

"Connectome": tracking

SUMMARY

- + We motivated using subject data to make networks of targets
 - e.g., FMRI or anatomical parcellation
- + Tracking estimates most likely locations of WMCs
 - Use PROB mode in 3dTrackID for best estimation
 - 3dDWUncert to estimate DT parameter uncertainty
- + Quantitative output: matrices of properties in tracked WMCs
- + 3dROIMaker is useful for making target ROIs
- + Checking/fixing grads: @GradFlipTest + 1dDW_Grad_o_Mat
- + 3dTrackID also has HARDI-compatible functionality

