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Polls: statistics knowledge
e priors: t-tests, regression, correlation, general linear model (GLM)
o AN(C)OVA: between- and within-individual factors
e linear mixed-effects (hierarchical, multilevel) modeling
@ meta-analysis
o Bayesian modeling

e programming languages: R, Matlab, SPSS, SAS

@ statistics is hard
* science: assessing variability /uncertainty
e popular face: a single p-value
* art: extracting information

o l-sample t-test with outliers?
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Big picture 1: theory vs statistics

scientific theory
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research hypothesis  theory
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> effect of interest
’ |

¥

experimental design —— data generating process
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data statistical model (e.g., ANOVA)
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7777777777777 ; program (e.g., 3dMVM)  statistics

@ See the forest for the trees
* investigation = decision based on a single p-value ("significance")?
* how to select variables and build a model?
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Big picture 2: experiment hierarchy

population group

individual
individual

trial 1 - trial T trial 1 -~ trial T | trial 1 -+ trial T trial 1 -+ trial T

o splitting into two-stage modeling
*  reducing conceptual & modeling complexity
* v reducing computational hurdle
* X no free lunch: neglecting the role of trials
@ no cross-trial variability assumption
o uncertainty of effect estimation at the individual level

e importance of trial sample size
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Big picture 3: spatial hierarchy

} brain }
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e approximation/idealization: networks, regions, voxels

e information integrity: a single integrative model
@ practicality: as many models as number of voxels
*  reducing conceptual & modeling complexity
* v reducing computational hurdle
* X penalty for multiplicity: type I & II
* X estimation errors due to lack of regularization: type M & S (vs type I & II)
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Why individual followed by population?

o Integrative modeling
* ideal: one model that incorporates all hierarchical levels
* reducing information loss
* impractical: unwieldy models and prohibitive computation cost

o Two-stage methodology
* individual level
o time series regression: 3dDeconvolve
e GLS: accounting for residual temporal correlation using ARMA(1,1) with 3dREMLSfit
* Population level

e response variable: individual-level effect estimates (8 values) and their uncertainty info
e predictors: experiment factors, covariates (sex, age, ...)

o Generalizability from samples to hypothetical groups/conditions
* two types of samples: trials and participants
* two types of generalization: trials — task condition; individuals — population
* prior assumption: cross-individual/trial variability ~ N(0,0?)
* cross-trial variability: usually not properly modeled
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Terminology
e Factors (discrete/categorical variables): within- vs between-individuals
* between-individuals (patient vs control, sex): independence
* within-individual (task conditions): relatedness, variance-covariance

Quantitative (continuous) variables: within- vs between-individuals
* between-individuals: age (cross-sectional), brain volume
* within-individual: age (longitudinal), rating across conditions

Covariates: all explanatory variables, quantitative variables, variables of no interest

Fixed- vs random-effects
* fixed: constant; population level (condition, group); effects of interest
* random: varying; lower levels (e.g., participants, trials); exchangeable, generalizeable

e Model structure
* Student’s t, GLM, AN(C)OVA, hierarchical models

R notations
* population level: Ax B=1+ A+ B+ A: B; lower levels: (1|Subj), (1|A:Subj)

@ Decision vs effect estimation
* estimation: accuracy vs precision
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Program list: population level

‘ Spatial Unit H Program ‘ Model
3dttest++ | t-tests, GLM
3AMEMA | 3dttest++ analog with § + t as input
voxel, node, ROI 3dMVM GLM, AN(C)OVA

3dLMEr LME: hierarchical modeling

massively univariate || 3dMSS multilevel smoothing splines: nonlinearity
3dISC inter-subject correlation: naturalistic data
3dICC intra-class correlation: reliability
RBA region-based analysis: Bayesian modeling

ROI PTA profile trajectory analysis: nonlinearity

TRR test-retest reliability

Others: 3dANOVA, 3dANOVA2, 3dANOVA3, 3dRegAna, 3dLME
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Student’s t-test

@ One-sample: 1 group with 1 effect
* data: y;, 1 =1,2,...,n

C S )

x model: y; = pu+ €, ¢ ~N(0,0?)

* OLS/ML estimation
= i v 0= 5ty i (i — )°
t(n — 1)-statistic

* program in AFNI: 3dttest++

e Paired: 1 group with 2 conditions
* data: (y;1,9i2), 1=1,2,...,n
* reducing to one-sample: y;1 — y;2
* program: 3dttest++ -paired

Gang Chen (SSCC/NIMH/NIH)

o Two-sample: 2 groups with 1 effect
* data: yr), 1=1,2,...,m; k=1,2

| individual: €i(k) |
|

* Yitk) = Mk + €ys €y ~ N0, 0?)
* special case: 1-way between-individual
ANOVA; univariate GLM

o Handling missing voxel values: -zskip
* excluding 0 values at the voxel level
* z-stat instead of ¢: unequal #
individuals across voxels
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Accounting for estimation uncertainty

1. . . | ~
rindividual: €; std err: 7;

T ot @ example
/ \ / \ % 2 groups: patient, control

— * input data: estimate, t-statistic
'task: p *w response: f3; — observed: f3;

3dMEMA -prefix output \

e Methodology -jobs 16 \

> ) =N ~ -groups pat ctr \

* data: (Bz; ti)7 1=1,2,..,n; 7; = ﬂz/tz -missing_data 0 \

* model: -set  pat \

Bi=itmy b= it L psnire e
WiNN(Oa Tz'Z)v EiNN(Ov 02) ) )

* same methodology as meta-analysis _set  ctr \

* program in AFNI: 3dMEMA cl cil_B+tlrc cil_T+tlrc \

c2 c2_B+tlrc c2_T+tlrc \

* missing data at voxel level: -missing data 0

Chen, G., Saad, Z.S., Nath, A.R., Beauchamp, M.S., Cox, R.W., 2012. FMRI group analysis combining effect estimates and their
variances. Neurolmage 60, 747-765.

Gang Chen (SSCC/NIMH/NIH) Population-Level Analysis 10 /54



GLM

o all between-individual variables: > 1 groups; > 0 quantitative variables
AN(C)OVA without within-individual variables (factors, quantitative variables)
Data at each spatial unit: (y;, zi1,...), 1 =1,2,..,n

Model: y; = a+ frx1 + ... + €

Effects of interest: «, S, ...

When z; is quantitative
* centering: not needed for f3;; crucial for some effects (e.g., a)
* linearity assumption: too strong?
How to decide what covariates to include? More later
Special GLMs

* regresion
* one-, two-sample {-tests
* AN(C)OVA w/o within-individual variables

e Programs: 3dttest++ -covariates, 3dMVM
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ANOVA with within-individual factors

o 2-way within-individual ANOVA:
Yabi =+ A+ B+ A: B+ + i + B + €abi

o Traditional ANOVA
* economical: sums of squares
* 3dANOVA, 3dANOVA2, 3dANOVA3
* separate for each number of factors
* quantitative covariates: X

o Univariate GLM: unwieldy & problematic

e l-way within-individual
ANOVA yo = p+ A+ 7 + €4
population: u, A; lower: m;, €4

e Multivariate GLM

* more flexible than univariate GLM

* missing data: X

e extension of paired ¢ * within-individual quantitative covariates: X

Chen, G., Adleman, N.E., Saad, Z.S., Leibenluft, E., Cox, R.W., 2014. Applications of multivariate modeling to neuroimaging group

analysis: A comprehensive alternative to univariate general linear model. NeuroImage 99, 571-588.
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AN(C)OVA approach: multivariate GLM - 3dMVM

o Example: 3 factors
* 1 between-individuals - group (Grp): patient & control
* 2 within-individual - intensity (Int): hi & lo; condition (Cond): Pos, Neg, Neu
* 2 x 2 x 3 mixed ANOVA

3dMVM -prefix Output -jobs 16 \
-bsVars ‘Grp’ -wsVars ¢Int*Cond’ \
-num_glt 4 \
-gltlabel 1 Pat_Pos -gltCode 1 ‘Grp : 1*Pat Cond : 1%Pos’ \
-gltLabel 2 Ctl_Pos-Neg -gltCode 2 ‘Grp : 1*Ctl Cond : 1*Pos -1*Neg’ \
-gltlabel 3 Grp_Pos-Neg -gltCode 3 ‘Grp : 1*Ctl -1*Pat Cond : 1%Pos -1xNeg’ \
-gltlabel 4 hi-lo.P-N -gltCode 4 ‘Int : 1xhi -1%xlo Cond : 1*Pos -1x*Neg’ \
-dataTable \
Subj Grp Int Cond ImputFile \
sl ctl hi Pos $1_Pos.nii \
s1 ctl hi Neg S1_Neg.nii \
s1 ctl hi Neu $1_Neu.nii \
s2 Pat lo Pos $2_Pos.nii \
s2 Pat lo Neg s2_Neg.nii \
S2 Pat lo Neu s2_Neu.nii \
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AN(C)OVA: hierarchical modeling - 3dLMEr
Yabi =+ A+ B+ A: B+ + aai + Bri + €ani

3dLMEr -prefix Output -jobs 16 \
-model ¢Int*Cond*Grp+(1]|Subj)+(1|Int:Subj)+(1|Cond:Subj)’ \
-gltCode Pat_Pos ‘Grp : 1xPat Cond : 1%Pos’ \
-gltCode Ctl_Pos-Neg ‘Grp : 1%Ctl Cond : 1*Pos -1xNeg’ \
-gltCode Grp_Pos-Neg ‘Grp : 1*Ctl -1#Pat Cond : 1*Pos -1xNeg’ \
-gltCode hi-lo.P-N  ‘Int : 1%hi -1%lo Cond : 1*Pos -1xNeg’ \
-dataTable \
Subj Grp Int Cond ImputFile \
s1 ctl hi Pos $1_Pos.nii \
s1 ctl hi Neg S1_Neg.nii \
s1 ctl hi Neu $1_Neu.nii \
s2 Pat lo Pos $2_Pos.nii \
s2 Pat lo Neg s2_Neg.nii \
S2 Pat lo Neu s2_Neu.nii \

blog post: https://tinyurl.com/4cx47ew9

Chen, G., Saad, Z.S., Britton, J.C., Pine, D.S., Cox, R.W., 2013. Linear mixed-effects modeling approach to FMRI group analysis.
NeuroImage 73, 176-190.
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Inter-subject correlation analysis

o Naturalistic scanning n =5 individuals: 10 ISC pairs

* task-related FMRI: remote from real life e B
* movie watching, speech/music listening a1 opppp p p 0 0 0

zn|lp L p p p 0 0 p p 0

@ Data structure
il p p 1 p 0 p 0 p 0 p

* correlations: 7, wle 0 2 1 06 0 o 0 o
* n individuals — n(n — 1) ISC pairs 7

* intricate correlation structure e lep 00 0
* how to disentangle the ‘messy’ structure? zp | p 0 p 0 p 1 p p 0 p

@ Previous methods
* random shuffling time series: 7
* one individual vs sum of all others: 7
* permutations, bootstrapping A0 0 0

Chen, G., Shin, Y.-W., Taylor, P.A., Glen, D.R., Reynolds, R.C., Israel, R.B., Cox, R.W., 2016. Untangling the relatedness among
correlations, part I: Nonparametric approaches to inter-subject correlation analysis at the group level. Neurolmage 142, 248-259.
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Inter-subject correlation analysis

3dISC -prefix ISC -jobs 16 \

R SE— -model ‘grp+(1|Subj1)+(1]Subj2)’ \

'individual 7: 7; | -gltCode ave ‘10 -0.5 \

~_ -gltCode G11 ‘110 \

-gltCode G12 ‘101 \

P -gltCode G22 9 -1 -1 \

; -gltCode G11vG22 €0 2 1° \

T -gltCode G11vG12 ‘0 1 -2° \

-gltCode G12vG22 ‘0 1 2° \

-gltCode ave-G12 ‘0 0 -1.5’ \

L - - -dataTable \

(i, j)-pair ISC: ry; Subjl Subj2  grp InputFile \

s1 s2 G11 s1_2+tlrc \

° Modeling approach s1 s3 G11 s1_3+tlrc \

* n individuals — %n(n — 1) ISC pairs s1 s24 ¢12 s1_25+tlr \

% each pair: 75, i # j s1 525 G12 s1_26+t1lr \

* model: z;; = p1 + 7; T s25  s24 622 $25_26+t1r \
* program: 3dISC (variation of 3dLMEr) a5 o5 s 05 27+t1r

Chen, G., Taylor, P.A., Shin, Y.-W., Reynolds, R.C., Cox, R.W., 2017. Untangling the relatedness among correlations, Part II:
Inter-subject correlation group analysis through linear mixed-effects modeling. Neurolmage 147, 825-840.
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Capturing nonlinearity

e Handling a quantitative variable (e.g. age) o
* linearity by default in common practice — quadratic
* alternative: polynomials Z Smooth
o Linearity and polynomials e
* + Simple and economical 5
* + Fitness: (k — 1)th order for k points g

— Difficult to guess the order 0.8
— Maladaptive for whole brain

— Assess difference between 2 curves?

— Non-locality, instability

b e I

0.4

o Extending polynomial fitting
* Fitting with splines 10 ® Timio 2 %
* Similar to HDR estimation at individual level
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Fitting nonlinearity with splines
@ Thin plate splines demo script
3dMSS -prefix MSS -jobs 16 \

* incremental nonlinearity -mrr ‘s(age,k=10)+s(age,k=10,by=grp)’ \

* penalty against roughness: quadratic+ —qVars ‘age’
* unique: baseline and linearity -prediction @pred.txt \
* programs in AFNI -dataTable @data.txt

e voxel/node-wise: 3dMSS

: separation of linearity:
e region-level: PTA

I -mrr ‘grp*age+s(age,k=10,m=c(2,0))+
B . s(age,k=10,by=grp,m=c(2,0))’
. data.txt pred.txt
B Subj grp age InputFile label grp age
S1 -1 17 Si.nii p.tl -1 11

S2 1 12 S2.nii p.t2 -1 11.25

r T T T T 1
00 02 04 06 08 10

Chen, G., Nash, T.A., Cole, K.M., Kohn, P.D., Wei, S.-M., Gregory, M.D., Eisenberg, D.P., Cox, R.W., Berman, K.F., Shane
Kippenhan, J., 2021. Beyond linearity in neuroimaging: Capturing nonlinear relationships with application to longitudinal studies.
NeuroImage 233, 117891.
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Nonlinear modeling: profile tracking analysis

o Layer fMRI data

* 16 individuals
* 11 layers: BOLD/VASO per individual

0.075

0.050

N 0.025

0.000

-0.025

PTA -prefix output -Y Z \
-input input.txt \
-model ‘s(layer,k=10)+s(Subj,bs="re")’> \
-vt Subj ‘s(Subj)’ \

-prediction pred.txt

input data prediction

Subj layer Z

S1 1 0.00511335
S1 2 0.00875758
S1 3 0.0140701

label layer
L1 1
L2 2

0.020

prediction
o
=4
(2

0.010

0.005

layer

Blog post: https://shorturl.at/hwFK9
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Role of sample sizes

,,,,,,, S

oL !
condition: fue reeeeeeeeeeee

|
|
L o e e |

response: Ye;

o Participant sample size N

efficiency

* data at condition level: y., c=1,2, ...

* model: yo; = e + 7 + €

* efficiency ~ VN

* trial sample size does not matter? '

Number of barticipar{ts
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Role of sample sizes

200

150

response: Yeit

~ 100

o Trial sample size T’

* data at trial level: y.;¢, ¢ =1,2,...
* model: Yeit = He + Tei + €cit

mei ~ N(0, 02), €cit ~ N (0, 02)
* efficiency hyperbolically related to S, T
* R, =0./o, > 1: large cross-trial var. : —
* T almost as important as S 0 50 100 150 200

S

Chen, G, Taylor, PA, Haller, SP, Kircanski, K, Stoddard, J, Pine, DS, Leibenluft, E, Brotman, MA, Cox, RW, 2018. Intraclass
correlation: Improved modeling approaches and applications for neuroimaging. Human Brain Mapping 39, 1187-1206.
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Simple size considerations

o Difficulty in estimating sample sizes
* effect sizes usually not reported
results dichotomized at peak voxels

region-specific: substantial variability across regions
current power analysis analysis tools

e

e solely focusing on participants
e pacifiers?

o Suggestions

* gather information from literature
* balance trial and participant samples

@ hyperbolic relationship: leveraging between the two in both efficiency and financial cost
* Interactions

e 2-way interactions: at least a few times more samples than main effects (> 100)
e 3-way interactions: challenging (> 1000)
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Covariate selection

o Statistical modeling
* One model for all effects?
o step-up/down, statistical metrics (p-values, R?, information criteria)
* Two goals
o prediction: forecasting future responses
o inference: estimating the impact of a predictor on response — causal effects

e Data structure for each adult participant
* response variable: short-term memory (STM)
* predictor: voxel-level gray matter density (GMD)
* 5 covariates
o 2 between-individual factors: sex, APOE genotype
e 3 quantitative variables: age, weight, intracranial volume (ICV)

o Questions
* OK to switch predictor and response variable?
* OK to include all covariates?
* are all estimated effects interpretable?
* could more variables have been collected: height, sleep data?

Gang Chen (SSCC/NIMH/NIH) Population-Level Analysis
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Directed Acyclic Graph (DAG)

o Express prior knowledge or hypothesized relations among variables with graphs
* nodes: variables; arrows: directional influence
* directed acyclic graph (DAG): a common language of graphical representation
* jargon: causal path, front/back door, minimally sufficient set, ...

@ 3 basic types

(A) confounder/fork (B) collider (C) mediator/pipe
(noncausal & open) (noncausal & closed) (causal & open)

C': height

O weight

’ X: height }% Y: weight ‘ ’ X: sex } ----- >’ Y: height ‘ ’ X: sex } ----- >’ Y: weight ‘

o 4 auxiliary types: covariate influences either predictor or response, but not both

(A) child/descendant (B) child/descendant (C) parent/ancestor (D) parent/ancestor
of predictor of response of predictor of response

@ Role of statistical metrics
* correlation of 0.8 btw C and Y (or X); multicollinearity
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Quiz

age/site relative to sex/task & BOLD?

head size relative to sex & BOLD

head size

slow drift relative to task & BOLD

head motion relative to task & BOLD

despiking; estimated
,,,,,,,,,,,,,,,,, motion; censoring

fffffff 7

: task-related
" motion
L

Censoring: data points or participants?

Gang Chen (SSCC/NIMH/NIH)
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Revisiting motivating example

o Data structure for each adult participant

* Response variable: short-term memory (STM)
* Predictor: voxel-level gray matter density (GMD)
* b covariates
o 2 between-individual factors: sex, APOE genotype
o 3 quantitative variables: age, weight, intracranial volume (ICV)

o Addressing four questions
* switch predictor and response variable?
* include all covariates?
* are all estimated effects interpretable?
* could more variables have been
collected? height, sleep data?
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Summary: variable selection

o DAGs for model selection

* confounder: v/; collider: X; mediator: A
* ancestors/descendants: only condition on ancestors of response

@ Suggestions
* drawing DAGs
e experiment planning & modeling
o all (including latent) variables
* modeling

o each effect may require a separate model
@ centering, interactions, nonlinearity
* reporting
o state effects of interest
o present DAGs when necessary: transparency
o avoid listing all estimated effects from a model (table 2 fallacy)
e avoiding dichotomization: highlight-but-not-hide

* motion/physiological contamination: be cautious
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BOLD response: standard approach
o Canonical: shape-fixed HRF

e Empirical BOLD response profile

1.00
overshoot: 3-6's
075 - "

> canonical hemodynamic

B response function

£ 050 Z

E 5

2025 =

©
0,004 Aeee Vet
) o 2.0 3ro ................................ e,
time (s) initial dip: 1-2's
time (s)

% h(t) = 5.7t%e~t/T'(6) — 0.95t%e~t /T(16)
* 2 phases: overshoot & undershoot * 3 phases: initial dip, overshoot & undershoot
* overshoot peaks @ 5s * large variability (eg Handwerker et al 2004)
* overshoot / overall duration: 12 / 32s
% undershoot depth: 9% of peak; no initial dip @ Issues with canonical HRF

. . . * seeing what one wanted to see

o Benefit in modehng: Wldely adopted * inflexible: maladaptive to shape variations

* complexity reduction: 1D — 0D (peak height) * lost details: peak location, undershoot, ...
* simplicity: one 8 per response/condition * info loss: inaccuracies & distortion
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BOLD response: other approaches

o Adjusting canonical HRF

*

* ok F X

Gang Chen

= Canonical hacmodynamic response]
== Temporal derivative
== Dispersion derivative

) 5 10 20 25 30

15
Time [s]
1 or 2 more bases: time derivative, dispersion
increased adaptivity: peak location & width
improved model fit

auxiliary info abandoned or rarely utilized
variability ignored: undershoot, initial dip

(SSCC/NIMH /NIH)

o Estimating HDRs at individual level

10

signal intensity

X ok b X X o b

Population-Level Analysis

02 © sampled BOLD response
o

BOLD response

5

0
time (s)

3 3
time x (seconds)

piece-wise linear splines: tents/sticks, FIR
3dDeconvolve -stim_times 1 stim.1D
‘TENT(2,16,8)’

estimated HDR: at sampled data points
shape info: sampled HDR vs 0D (scalar)
more accurate: data-driven

weaker assumption: pure morphology vs peak
challenging for trial-level modeling
complication: dealing with HDR samples
sporadically adopted in neuroimaging
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Estimating HDRs: population level

individual-level HDR

0.2 oO sampled BOLD response
P e
8 0.1 i
c h \
o '
Q ' '
1] ! \
e .
Q : \
o
(o] S Q
@ 0.01© o,/ \ o’
9 | o
,Dl(
) ’
o0
-0.1 ¥
0 5 10 15
time (s)

smooth splines

e [mplementation: 3dMSS in AFNI

Gang Chen C/NIMH/NIH)
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0.2

BOLD response
54

°
=)

smooth fitting

©  — smooth fitting
5 10 15
time (s)
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Estimating HDRs: applied to real data

Congruent

Incongruent

o Experiment: 2 x 2 fMRI

* 2 conditions: attention — congruent & incongruent
* 2 groups: 44 HV & 43 BP
* 288 trials per condition; TR: 1.25 s

o Individual: 2 approaches

* canonical HRF: 1 scalar per condition
* estimated HDRs: sampled at 14 time points -

stim _times ... tent(-2.5,13.75,14)

e Population: 2 approaches

* canonical HRF: 2 x 2 ANOVA — 3dMVM
* estimated HDRs: smooth splines — 3dMSS
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Model comparisons: overall
Much higher sensitivity by estimated HDRs

Group Condition Interaction
=3
aiad
)
g 3
=
S}
=
<
(&)
a
a 0
s
<
—
1S
3
=
n
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Zooming in: weaker evidence with canonical HRF

sensitivity: group difference sensitivity: whole-brain engagement
= = 0.04
Dj © m @ I
i g i £ 002
) a S a 0.00
S 9 > e
g D 01 o @ 0,02
=i =|
< - «© < RN
&) %Q\“ \N\(\ (] Y\\‘o
— BPinc 0.04- — Hvcon
= =
< 9 < g
S 8 2 8
3 3
[% 0 5 10 (% 0 5 10
time (s) time (s)
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HDR estimation:

0.6
0.4
0.2
0.0
-0.2

0.6
0.4
0.2
0.0
-0.2

0.4
0.2
0.0
-0.2

-con
&i
5 10
time (s)
-con
-inc
0 5 10
time (s)
-con
-inc
0 5 10
time (s)

C/NIMH/NIH)

inter-individual variability

different peak & peak/nadir ratio

U.b U.b u.b
0.4 -con 0.4 -con 0.4 -con
-inc -inc -inc
0.2 0.2 0.2
00 0.0 A\/ 00 = SN
-0.2 -0.2 -0.2
0 5 10 0 5 10 0 5 10
time (s) time (s) time (s)
0.6 0.6 0.6
0.4 con 0.4 -con 0.4 -con
-inc -inc -inc
0.2 0.2 0.2
00— — 00 /\54 0.0
-0.2 -0.2 -0.2
0 5 10 0 5 10 0 5 10
time (s) time (s) time (s)
0.6 0.6 0.6
0.4 con 0.4 -con 0.4 -con
-inc -inc -inc
0.2 0.2 0.2
0.0 0.0 /\/ 0.0
-0.2 -0.2 -0.2
0 5 10 0 5 10 0 5 10
time (s) time (s) time (s)

Population-Level Analysis



canonical HRF lacking adaptivity

time-to-peak (s)

o
w

Peak magnnude (BOLD %)

HDR: cross-region variability

Nadir magnitude (BOLD %)

log(peak/nadir)

ol m

o
w

ol mm

peak, nadir & their ratio peak & nadir locations
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Summary: capturing HDR profiles

3dMSS -prefix output -jobs 16

-lme ‘s(TR,k=10)+s(TR,k=10,by=group)’

-ranEff ‘list(Subj="1)’
-qVars ‘TR,group’

-prediction @HDR.table
-dataTable @data.table

data.table

Subj group TR InputFile

sl 1 0 sl.Inc.bO.nii
s1 1 1 sl.Inc.bl.nii
sl 1 2 sl.Inc.b2.nii

HDR.table

label group TR

p.tl 1 0.00
p.t2 1 0.25
c.tl -1 0.00
c.t2 -1 0.25

Shape variability

* large: across regions
* subtle: groups/tasks/individuals

P

@ accuracy/precision/sensitivity
* canonical HRF < esimated HDR
* visualization: scalar vs full HDR

o Program: 3dMSS in AFNI

Blog post:
https://shorturl.at/ahmp?2

Chen, G., Taylor, P.A., Reynolds, R.C., Leibenluft, E.,
Pine, D.S., Brotman, M.A., Pagliaccio, D., Haller, S.P.,
2023. BOLD response is more than just magnitude:
improving detection sensitivity through capturing
hemodynamic profiles. Neurolmage 277, 120224.

Gang Chen (SSCC/NIMH/NIH)
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Multiplicity - NARPS: what to conclude?

e long history of emphasizing stringency: controlling false positives
* salmon (2010), cluster failure (2016), NARPS (2020)
* current result reporting: permutations, voxel-level p of 0.001 (Monte Carlo simulations,
random field theory)

o NARPS: Neuroimaging Analysis Replication and Prediction Study
* ~ 70 teams analyzing same dataset
* requirement: reporting dichotomized decisions on 9 hypotheses

@ 2 conclusions: half full, half empty?
* reproducibility crisis: “sizeable variation”
* largely consistent results: “significant consensus”

@ major points
* can individual studies be decisive/conclusive?
* does result reporting have to be dichotomized?
* OTOH, the intention of imposing strict multiple testing adjustment is to improve
reproducibility, but the emphasis on rigor — information loss & reproducibility crisis?
* scientific investigation: decision-making vs quantification?
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Info integrity

o Voxelwise visualization

e Tabulation: problematic
* selection bias: artificial dichotomization (cf ¢-test example)
* huge info reduction/loss: cluster = peak voxel = region
* unsuitable for meta-analysis

o Optimal meta-analysis: full reporting & data sharing
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Multiplicity
e Definition: simultaneous inferences (key: simultancity!)
* M1: inferences in a study (e.g., voxels, regions, correlation matrix)
* M2: searching a parameter space (e.g., processing/modeling options/pipelines)
* M3: all similar studies (e.g., unipolar depression, ABCD, UK Biobank)
* M4: all studies in a journal, a field (e.g., neuroimaging) or entire history

o Multiple testing adjustment: classical solutions
* focus on overall statistical evidence, but not on effect magnitude, uncertainty, voxel-level
statistics
* Penalize/dilute statistical evidence
o FWE: adjusting for overall false positive rate: leveraging local (not global) spatial
relatedness based on infinite results of pure noise; cluster
o FDR: controlling for overall false discovery rate with current result; voxels (no spatial
consideration)

o Issues
* heavy penalty: losing the sight of the whole hierarchical structure
* FWE: discrimination against small regions
* dichotomization
* disconnection with anatomy
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Multiplicity: conventional approach
o NARPS: 87 ROIs, 47 individuals (equal range group); effect: gain

o Massively univariate analysis
* Strong prior: uniform distribution; only local (not global) relationship

* More reasonable prior: normal distribution

—> 400

—00<«—

_density

density

2 -0.02 -0.01 0.00 0.01 0.02
effect across 87 regions (NARPS)

2 0
effect across regions

e Comnsequence of an unreasonable prior (uniform)

* Model quality: compromised
* Penalty from multiple testing

Population-Level Analysis
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Handling multiplicity through incorporating spatial hierarchy

e Mass univariate (1-sample ¢):

i voxel /region k: 0y, : Yin = pt€n
***** R””” Yiz = b+ €2
‘individual i at Yir = j+ €K

| voxel /region k: €, * K voxels/regions — K models — multiplicity
* FWE only compensates local, but not global,

,,,,,,, / o relatedness — information loss

o Hierarchical: y;p, = p+ 7 + 0 + €1

Ltask: pu feeeee * one single model

* info shared/calibrated/regularized across space
* same mechanism as one-sample t-test process
* program for region-based analysis: RBA

Chen, G., Xiao, Y., Taylor, P.A., Rajendra, J.K., Riggins, T., Geng, F., Redcay, E., Cox, R.W., 2019. Handling Multiplicity in
Neuroimaging through Bayesian Lenses with Multilevel Modeling. Neuroinformatics 17, 515-545.

Chen, G., Taylor, P.A., Cox, R.W., Pessoa, L., 2020. Fighting or embracing multiplicity in neuroimaging? Neighborhood leverage
versus global calibration. Neurolmage 206, 116320.
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Multiplicity: hierarchical modeling

e Data at population level

* 124 individuals; explanatory variable:
behavior measure
* effect of interest: association

e Conventional mass univariate analysis

* 2 clusters survived FWE adjustment
based on voxel-level p of 0.001

e Hierarchical modeling
* 21 regions

RTPJp
RPCC

LTPJ

LIPL
LaMTS/aMTG
pcC
dmMPFC
vmPFC

LSFG

O\

LMTG
RvBG

SGC
RAmy/Hippo
Rins
RIFG_BA9
LvBG
LAmy/Hippo
ACC
RIFG_BA45
LIFG

LCing

e = BTN\

™

-0.02 0.00 0.02 0.04
effect

Gang Chen (SSCC/NIMH/NIH) Population-Level Analysis

1

0.99

0.99
0.98
0.97
0.92
0.88
0.78
0.76
0.76
0.75
0.72
0.71
0.69
0.65
0.6

0.55
0.27

P+

1
I 0.95
0.9

0.1
0.05
0

50 /54



Hierarchical modeling: model quality

o Data at population level ) o
* 124 individuals; explanatory variable: Posterior predictive checks

behavior measure
% effect of interest: association = MoAeLm
o Hierarchical modeling:
Leave-one-out cross-validation
LOOIC | SE
GLM -300 98
RBA 2247 86 05 00 N 05 10 65 00 N 05 10
GLM vs RBA | 1947 | 96 e e

Gang Chen (SSCC/NIMH/NIH)
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Take-home messages

e Experimental design: sample sizes
* participants
* trial numbers: almost equally important as participants
* higher-order interactions requires much larger sample sizes
o differences of differences: much smaller effect magnitude
o for example, 2-way interactions requires a few times samples than main effects
* avoiding tasks with substantial head motion

o Experimental design: variable selection
* draw DAGs — collect data for relevant covariates
* multicollinearity: not a modeling issue - no statistical solution
e human errors, experimental design

e Modeling
* quality control: cautious with task-related motion
* canonical HRF vs estimation of HDRs
* voxel- vs region-level
* draw DAGs: confounder, collider, mediator, parents/children, ...
* different effects may require separate models
* interactions, nonlinearity, centering, data hierarchy, ...
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Take-home messages (cont.)

o Model caveats
* a model is just a data machine
* understanding the caveats of a model enables us to interpret its results with caution

o Result reporting
* science: quantification vs decision
* show effect magnitude and uncertainty
* avoid strict thresholding and adopt soft thresholding
e don’t let statistics fully dictate the process
o OK to set p-value of 0.01 with a cluster size of 20 voxels
e importance of domain knowledge: literature; anatomical structure
o highlight, but don’t hide
* supporting material
@ Taylor, P.A., Reynolds, R.C., Calhoun, V., Gonzalez-Castillo, J., Handwerker, D.A., Bandettini,
P.A., Mejia, A.F., Chen, G., 2023. Highlight results, don’t hide them: Enhance interpretation,
reduce biases and improve reproducibility. Neurolmage 274, 120138.
@ Chen, G., Taylor, P.A., Stoddard, J., Cox, R.W., Bandettini, P.A., Pessoa, L., 2022. Sources of
information waste in neuroimaging: Mishandling structures, thinking dichotomously, and
over-reducing data. Aperture Neuro 2.

* promote transparency and open science: require collective effort!
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