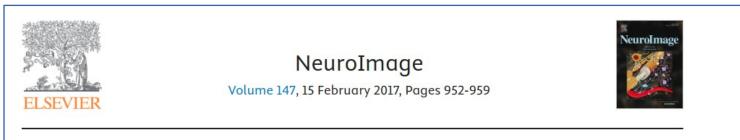
Some comments on results reporting in neuroimaging

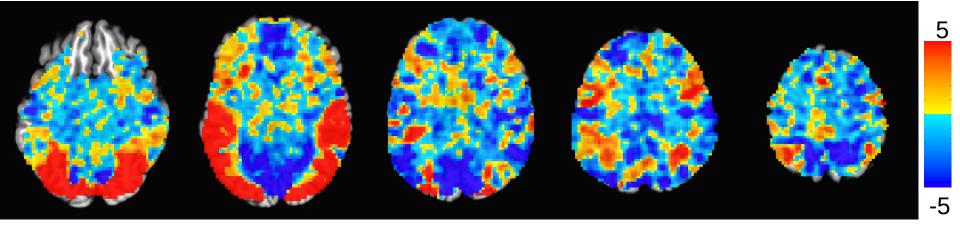


<u>Overview</u>

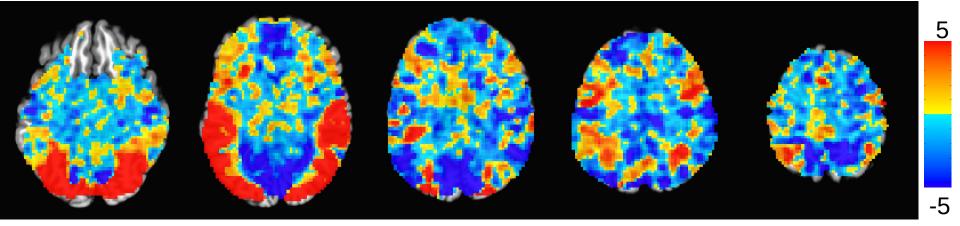
- Brief overview of the data shown here
- Example 0: statistics *and* effect estimates
- Example 1: better thesholding
- Example 2: peak voxel issues
- Example 3: information content and data "digestibility"
- Example 4: improving cross study comparisons
- Conclusions

Example 0: Statistics *and* effect estimates

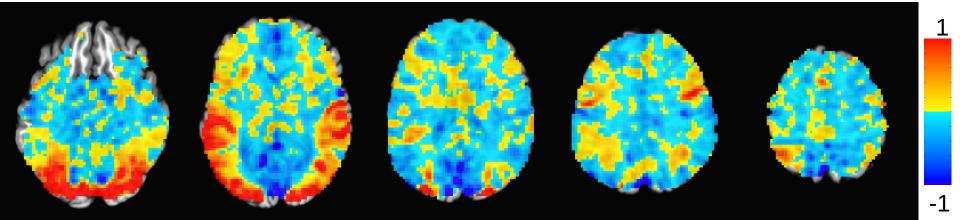
Some neuroimaging software packages only provide statistics from FMRI modeling. Wherever possible, AFNI provides both the effect estimate *and* the statistic. This raises the question:


Is the statistic value all we should care about in neuroimaging?

Gang Chen 🙁 🖾 , Paul A. Taylor, Robert W. Cox


Abstract

Here we address an important issue that has been embedded within the neuroimaging community for a long time: the absence of effect estimates in results reporting in the literature. The statistic value itself, as a dimensionless measure, does not provide information on the biophysical interpretation of a study, and it certainly does not represent the whole picture of a study. Unfortunately, in contrast to standard practice in most scientific fields, effect (or amplitude) estimates are usually not provided in most results reporting in the current neuroimaging publications and presentations. Possible


- Example: FT subj, vis stimulus
- Statistics image (t-stat, DF = 412):

- Example: FT subj, vis stimulus
- Statistics image (t-stat, DF = 412):

• Effect estimate image (BOLD % signal change):

- **TL;DR:** No, stats are *not* the only results.
- Effect estimates (or "point estimates", "betas", "coefs") are the physical response evidence

 \rightarrow these have units like "BOLD % signal change"

• Statistics are the <u>reliability or accuracy</u> of estimate

 \rightarrow no units; e.g., t is ratio of effect to uncertainty σ

- **TL;DR:** No, stats are *not* the only results.
- Effect estimates (or "point estimates", "betas", "coefs") are the physical response evidence

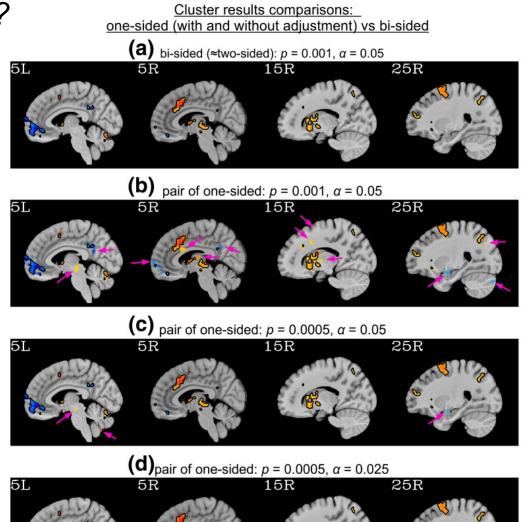
 \rightarrow these have units like "BOLD % signal change"

- Statistics are the <u>reliability or accuracy</u> of estimate \rightarrow no units; e.g., t is ratio of effect to uncertainty σ
- Consider difference between "statistical" and "practical" significance: need effect estimates to compare about latter
- Looking at effect estimates aids reproducibility comparisons
- Seeing effect estimates helps validate modeling/find problems

We *can* include both effects and stats in plots (and using each for what they are good at), so shouldn't we do so?

- effect estimate as overlay: show size of effects
- statistic as threshold: highlight regions with higher reliability

When reporting statistics, also include fundamental information:


- How many degrees of freedom?
- Were tests 1-sided or 2-sided?

Side(dness) note

% signal change: -0.4

Were tests 1-sided or 2-sided?

"One-sided t-tests are widely used in neuroimaging data analysis. While such a test may be applicable when investigating specific regions and prior information about directionality is present, we argue here that it is often misapplied, with severe consequences for false positive rate (FPR) control."

0.4

outlines of bi-sided clusters

 large differences (cluster or boundary) from bi-sided results

Chen G, Cox RW, Glen DR, Rajendra JK, Reynolds RC, Taylor PA (2019). A tail of two sides: Artificially doubled false positive rates in neuroimaging due to the sidedness choice with t-tests. HBM 40:1037-1043. https://pubmed.ncbi.nlm.nih.gov/30265768/

Data description for other examples

Example Data + Processing Summary

- Data: from NARPS project (Botvinik-Nezer et al., 2020)
 - 2 groups, each with 54 subj: 4 EPI runs (2 mm), 1 T1w anatomical
 - task-based FMRI: mixed gambling paradigm, with responses

nature > articles > article

Article Published: 20 May 2020

Variability in the analysis of a single neuroimaging dataset by many teams

Rotem Botvinik-Nezer, Felix Holzmeister, Colin F. Camerer, Anna Dreber, Juergen Huber, Magnus Johannesson, Michael Kirchler, Roni Iwanir, Jeanette A. Mumford, R. Alison Adcock, Paolo Avesani, Blazej M. Baczkowski, Aahana Bajracharya, Leah Bakst, Sheryl Ball, Marco Barilari, Nadège Bault, Derek Beaton, Julia Beitner, Roland G. Benoit, Ruud M. W. J. Berkers, Jamil P. Bhanji, Bharat B. Biswal, Sebastian Bobadilla-Suarez, ... Tom Schonberg 🏱 🕇 Show authors

Nature 582, 84-88 (2020) Cite this article

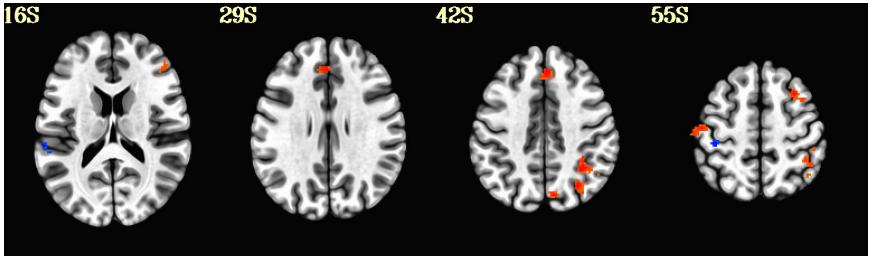
Example Data + Processing Summary

- Group-level analysis here: processing with AFNI (Cox, 1996) and afni_proc.py pipeline:
 - voxelwise analysis: nonlinear alignment to template, 4 mm blur, motion censoring, amplitude modulation in regr. model
 - also performed separate ROI-based analysis
 - details: https://pubmed.ncbi.nlm.nih.gov/37116766/
 - scripts: https://github.com/afni/apaper_highlight_narps

NeuroImage 274 (2023) 120138

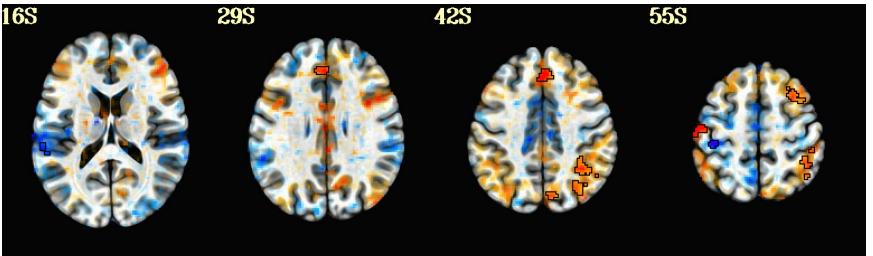
Highlight results, don't hide them: Enhance interpretation, reduce biases and improve reproducibility

Paul A. Taylor^{a,*}, Richard C. Reynolds^a, Vince Calhoun^b, Javier Gonzalez-Castillo^c, Daniel A. Handwerker^c, Peter A. Bandettini^{c,d}, Amanda F. Mejia^e, Gang Chen^a


Example Data + Processing Summary

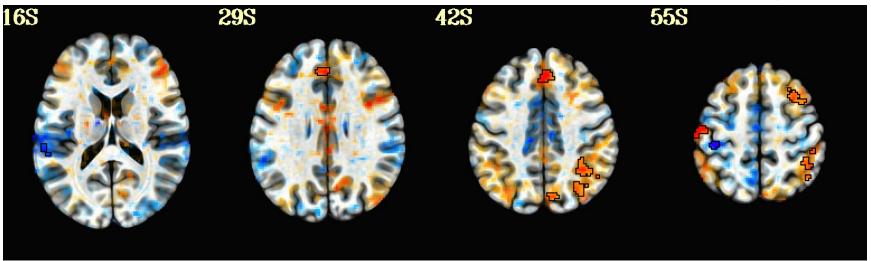
- Group-level analysis here: processing with AFNI (Cox, 1996) and afni_proc.py pipeline:
 - voxelwise analysis: nonlinear alignment to template, 4 mm blur, motion censoring, amplitude modulation in regr. model
 - also performed separate ROI-based analysis
 - details: https://pubmed.ncbi.nlm.nih.gov/37116766/
 - scripts: https://github.com/afni/apaper_highlight_narps
- Cross-study comparisons: from original submissions to NARPS
 - ~70 teams analyzed same data voxelwise, however each wanted
 - A) teams answered yes/no questions about certain hypotheses per group (specific ROIs, contrasts, directionality)
 - B) teams uploaded unthresholded stat maps (no effect maps (>), available on NeuroVault (one link per team, see NARPS paper)

Example 1: Better thesholding


- Consider group-level results from a standard voxelwise analysis:
 - Threshold at voxelwise p = 0.001
 - Cluster-based threshold (multiple comparison adjustment) at FWE=5%

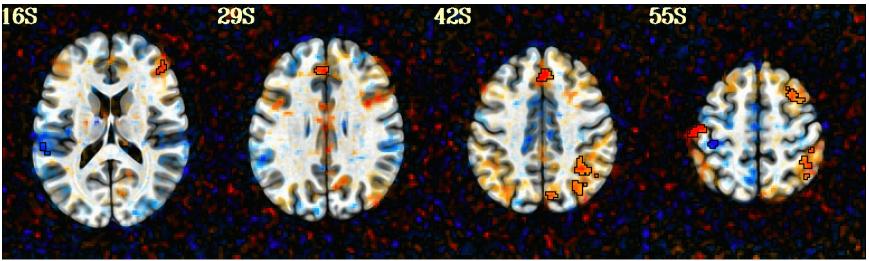
standard thresholding: info at suprathreshold, hide elsewhere

- Consider group-level results from a standard voxelwise analysis:
 - Threshold at voxelwise p = 0.001
 - Cluster-based threshold (multiple comparison adjustment) at FWE=5%

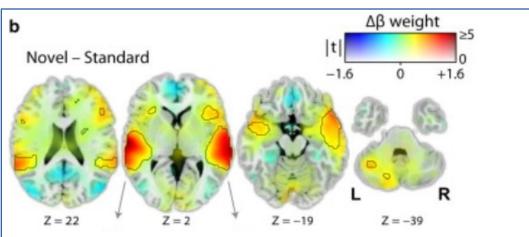

transparent thresholding: highlight suprathreshold, info everywhere*

*overlay more transparent as statistic decreases (Allen et al., 2012)

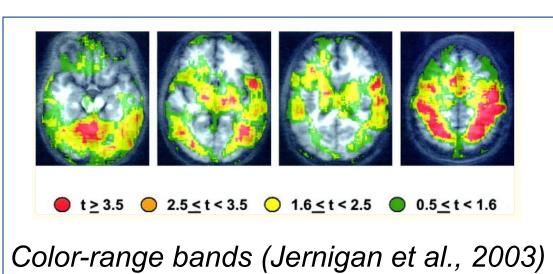
- Consider group-level results from a standard voxelwise analysis:
 - Threshold at voxelwise p = 0.001
 - Cluster-based threshold (multiple comparison adjustment) at FWE=5%

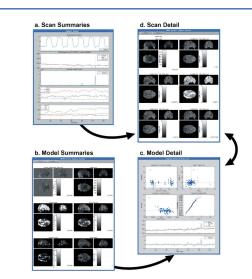

transparent thresholding: highlight suprathreshold, info everywhere

→ Once you see these more full results, does the standard image seem adequate?

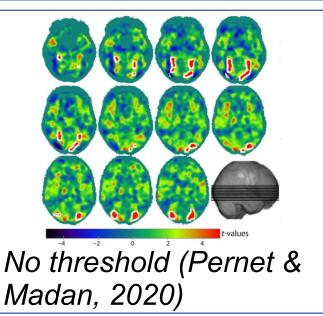

- Consider group-level results from a standard voxelwise analysis:
 - Threshold at voxelwise p = 0.001
 - Cluster-based threshold (multiple comparison adjustment) at FWE=5%

transparent thresholding: highlight suprathreshold, info everywhere

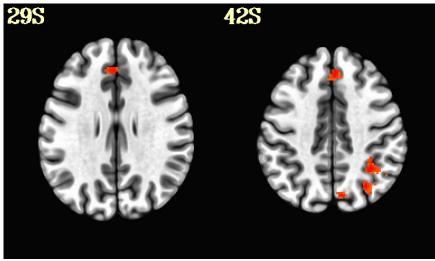



- → Once you see these more full results, does the standard image seem adequate?
- → And why not see everywhere? Data were gathered in full FOV, and this helps quality control, avoiding artifacts, etc.

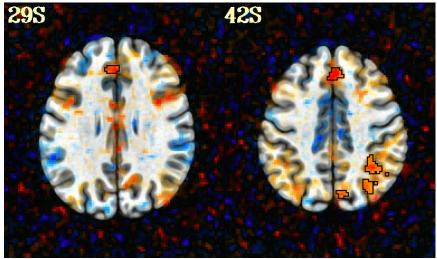
• NB: several previous neuroimaging works to "show more results", including:



Transparent thresholds (Allen et al., 2012)



Model summaries (Luo & Nichols, 2003)


How you visualize results shapes interpretation and understanding, for both you and readers: *highlight, don't hide.*

all-or-nothing thresholding

- strong dependence on thr value
- biases due to thresholding
- waste information
- hinder interpretation
- unrealistic view of noise
- hide poor modeling
- harm reproducibility

transparent thresholding

- more consistent with biology
- more scientific (fuller results)
- assist quality control
- deeper comparisons
- less influence of arbitrariness
- provide more evidence
- improve meta analyses

Example 2: Peak voxel issues

How do cluster results typically get presented? It is common to use: A) peak (statistic) voxel location:

Cluster		Pe	ak Voxel	l (mm, RAI-Dicom)
	x	У	z	ROI location (dist)
1	-43.0	71.0	37.0	R_Area_PGs
2	41.0	27.0	61.0	L_Primary_Sensory_Cortex (1 mm)
3	-3.0	-33.0	43.0	R_Area_8BM
4	-23.0	-19.0	49.0	R_Area_6m_anterior
5	51.0	13.0	57.0	L_Area_1 (1 mm)
6	-9.0	75.0	45.0	R_Parieto-Occ*_Sulcus_Area_2
7	17.0	105.0	-9.0	L_Primary_Vis*_Cortex (5 mm)
8	-49.0	35.0	57.0	R_Area_PFm_Complex
9	69.0	35.0	25.0	L_Area_PF_Complex (2 mm)
10	-55.0	37.0	-19.0	R_Area_TE2_anterior
11	-3.0	35.0	35.0	R_Area_dorsal_23_a+b

How do cluster results typically get presented? It is common to use: B) the cluster center of mass:

Cluster		Ce	nter of	Mass Voxel (mm, RAI-Dicom)					
	x	У	z	ROI location (dist)					
1	-39.4	59.1	44.2	R_Area_PFm_Complex					
2	38.2	26.2	63.6	L_Area_1					
3	0.7	-34.3	37.8	L_Area_8BM					
4	-28.7	-15.9	51.7	R_Area_6m_anterior					
5	51.8	16.5	53.9	L_Area_1					
6	-8.2	74.1	44.3	R_Parieto-Occ*_Sulcus_Area_2					
7	14.5	101.6	-8.4	L_Primary_Vis*_Cortex (1 mm)					
8	-51.4	32.5	50.1	R_Area_IntraParietal_2 (1 mm)					
9	58.3	33.7	21.4	L_PeriSylvian_Lang*_Area (1 mm)					
10	-58.0	40.5	-13.5	R_Area_TE2_anterior					
11	-1.2	34.3	35.2	R_Area_dorsal_23_a+b					

How do volumetric results typically get presented? Note how the atlas attribution differs (gray lines) with either form of single-voxel summary:

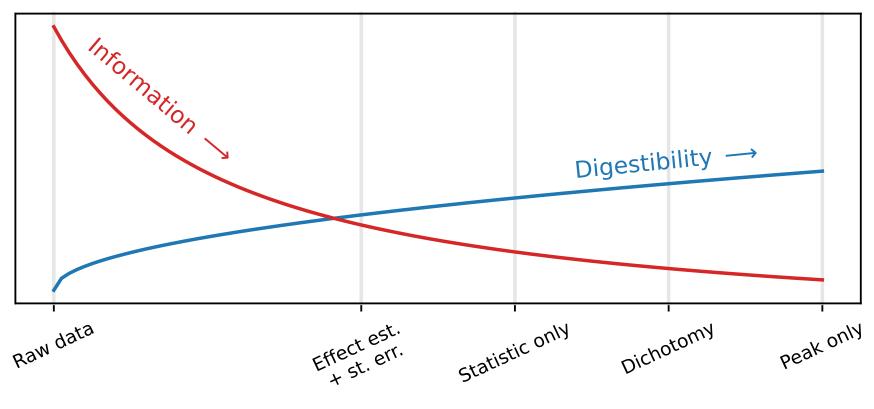
Clu	ster	Pea	ak Voxe	l (mm, RAI-Dicom)	Center of Mass Voxel (mm, RAI-Dicom)				
	x	У	z	ROI location (dist)	x	У	z	ROI location (dist)	
1	-43.0	71.0	37.0	R_Area_PGs	-39.4	59.1	44.2	R_Area_PFm_Complex	
2	41.0	27.0	61.0	L_Primary_Sensory_Cortex (1 mm)	38.2	26.2	63.6	L_Area_1	
3	-3.0	-33.0	43.0	R_Area_8BM	0.7	-34.3	37.8	L_Area_8BM	
4	-23.0	-19.0	49.0	R_Area_6m_anterior	-28.7	-15.9	51.7	R_Area_6m_anterior	
5	51.0	13.0	57.0	L_Area_1 (1 mm)	51.8	16.5	53.9	L_Area_1	
6	-9.0	75.0	45.0	R_Parieto-Occ*_Sulcus_Area_2	-8.2	74.1	44.3	R_Parieto-Occ*_Sulcus_Area_2	
7	17.0	105.0	-9.0	L_Primary_Vis*_Cortex (5 mm)	14.5	101.6	-8.4	L_Primary_Vis*_Cortex (1 mm)	
8	-49.0	35.0	57.0	R_Area_PFm_Complex	-51.4	32.5	50.1	R_Area_IntraParietal_2 (1 mm)	
9	69.0	35.0	25.0	L_Area_PF_Complex (2 mm)	58.3	33.7	21.4	L_PeriSylvian_Lang*_Area (1 mm)	
10	-55.0	37.0	-19.0	R_Area_TE2_anterior	-58.0	40.5	-13.5	R_Area_TE2_anterior	
11	-3.0	35.0	35.0	R_Area_dorsal_23_a+b	-1.2	34.3	35.2	R_Area_dorsal_23_a+b	

- Peak statistic locations will be sensitive and unstable to noise levels, to adding/subtracting subjects, as well as to minor acquisition and/or processing choices. Reproducibility...?(!!??)
- Also, what if clusters overlap multiple atlas regions?
- \rightarrow Is there a better way to summarize clusters?

How docould volumetric results typically get presented? Perhaps a table of overlaps (say, >10%), ... and can even show sub-thr clusters of interest:

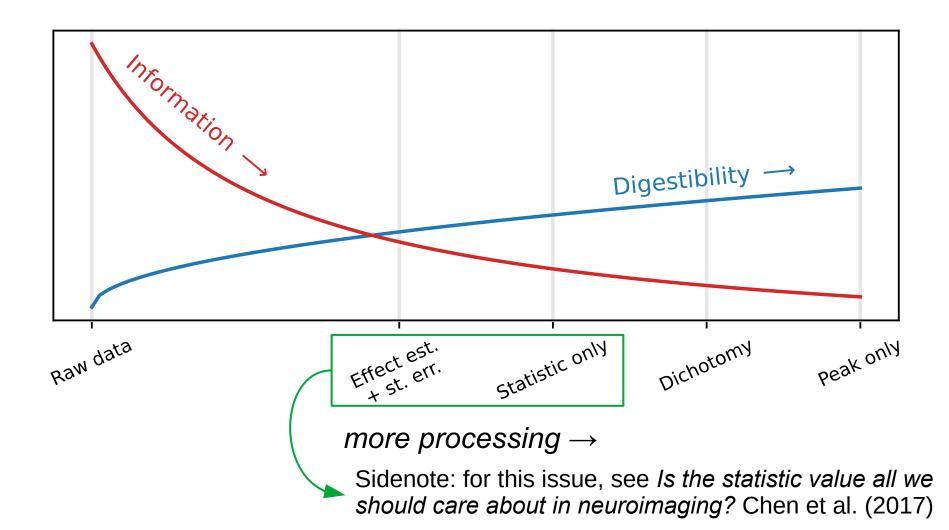
Cluster	Size	Overlap	ROI location				
Primary clusters (p=0.001)			Additional clusters of interest (p=0.01)				
1	551	19.5%	R_Area_PFm_Complex	A-7			R_Rostral_Area_6
		15.7%	R_Area_IntraParietal_1	A /	215		R_Area_IFJa
		13.3%	R_Area_PGs				R_Area_IFJp
2	189	30.1%	L_Primary_Motor_Cortex				R_Area_8C
		28.8%	L_Primary_Sensory_Cortex	A-27	77		L_Area_8C
3	163	31.0%	R_Area_8BM	A 27			L_Area_IFJp
		24.3%	L_Area_dorsal_32				L_Area_IFJa
4	114	39.9%	R_Inferior_6-8_Transitional_Area				L_Rostral_Area_6
		19.5%	R_Area_8Av			14.0%	1_NOSCIAL_AICA_0
		17.9%	R_Area_6_anterior				
5	70	46.8%	L_Area_1				
		34.2%	L_Primary_Sensory_Cortex				
6	69	80.5%	R_Parieto-Occipital_Sulcus_Area_2				
7	64	62.4%	L_Primary_Visual_Cortex				
8	64	41.3%	R_Area_IntraParietal_2				
9	62	32.3%	L_Area_PF_Complex				
		25.0%	L_Area_PFcm				
		16.5%	L_Area_PF_opercular				
10	52	66.8%	R_Area_TE1_posterior				
		18.8%	R_Area_TE2_anterior				
11	40	40.8%	R_Area_dorsal_23_a+b				
		32.6%	L_Area_dorsal_23_a+b				

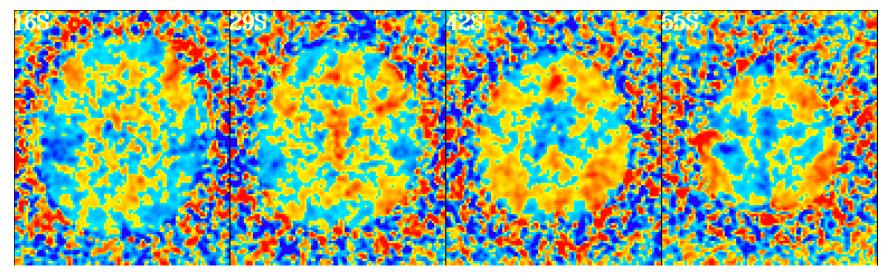
Example 3: Information content and data "digestibility"

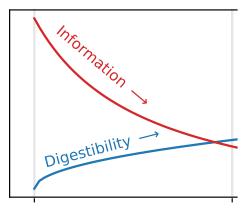

• Much of this example's discussion from Chen et al. (2022):

https://doi.org/10.52294/ApertureNeuro.2022.2.ZRJI8542

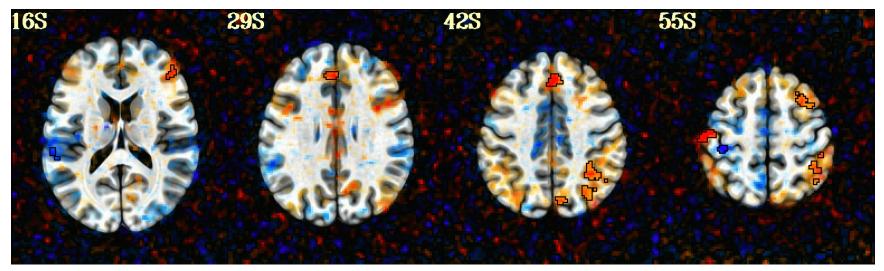
Neuroimaging analysis as information extraction

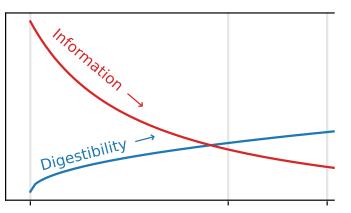

With data processing and analysis, there is a trade-off between: information reduction and ease of interpretability.

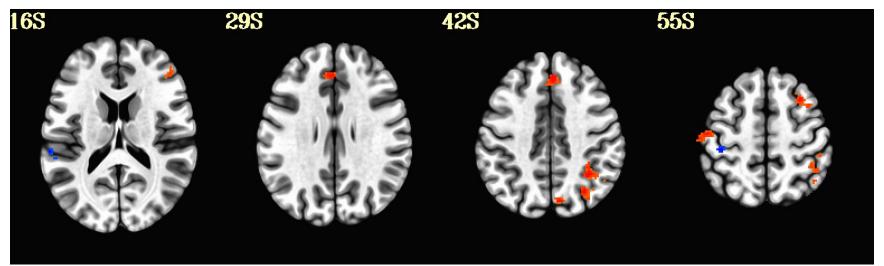

more processing \rightarrow

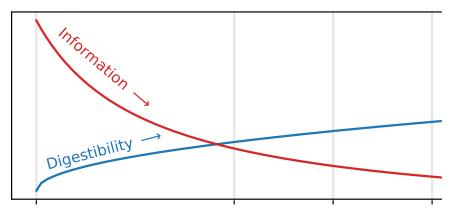

Neuroimaging analysis as information extraction

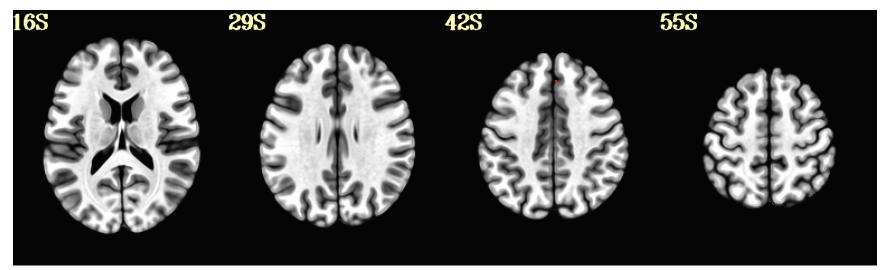
With data processing and analysis, there is a trade-off between: information reduction and ease of interpretability.

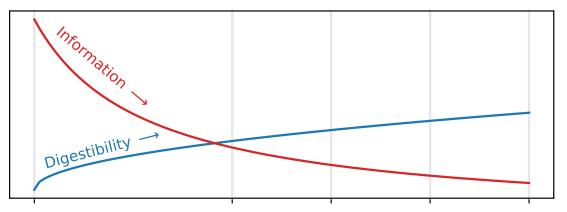


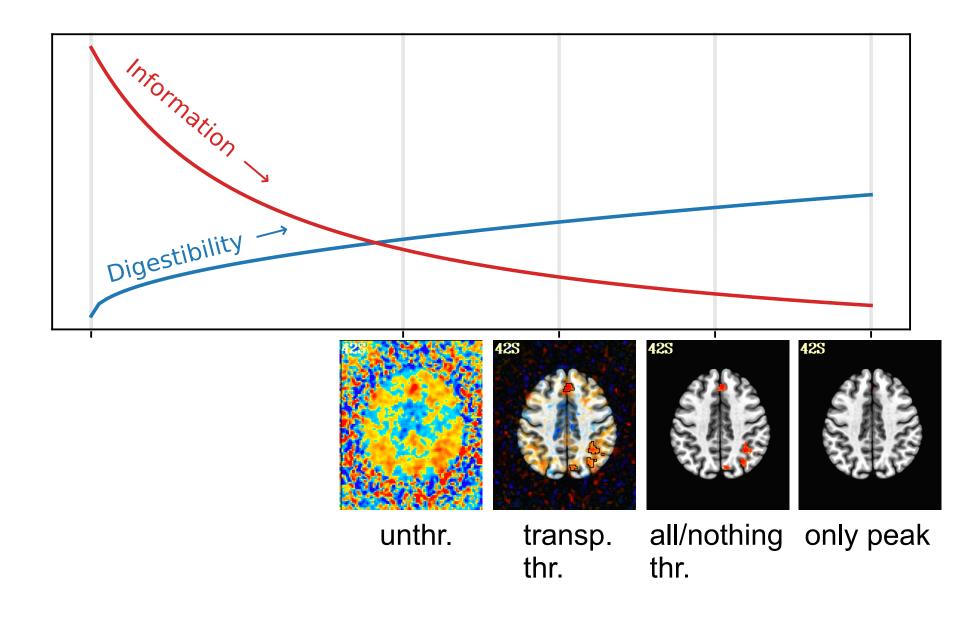

Group-level results: unthresholded

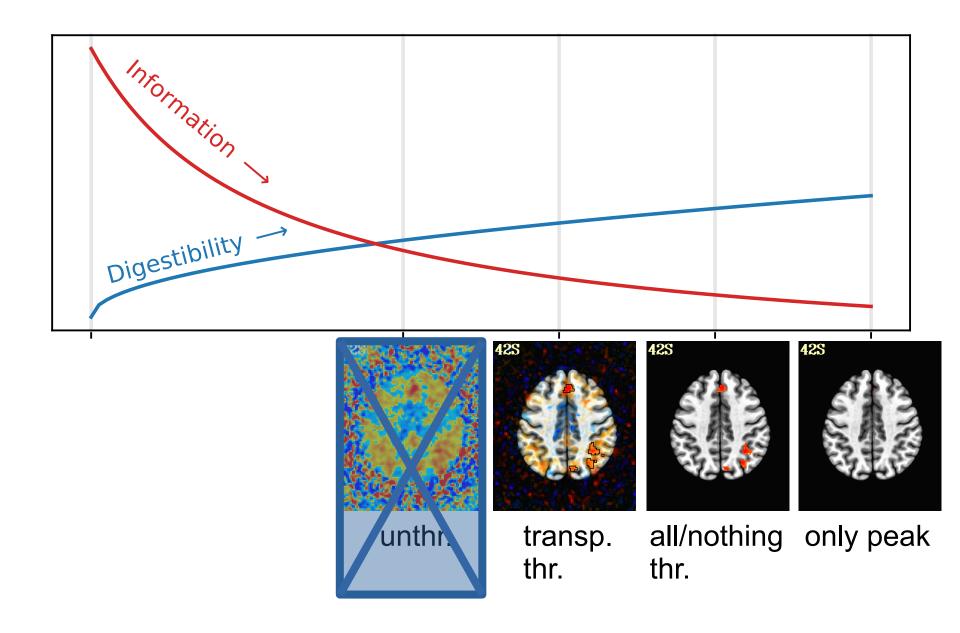



Group-level results: transparent threshold (*p* = 0.001, FWE = 5%)

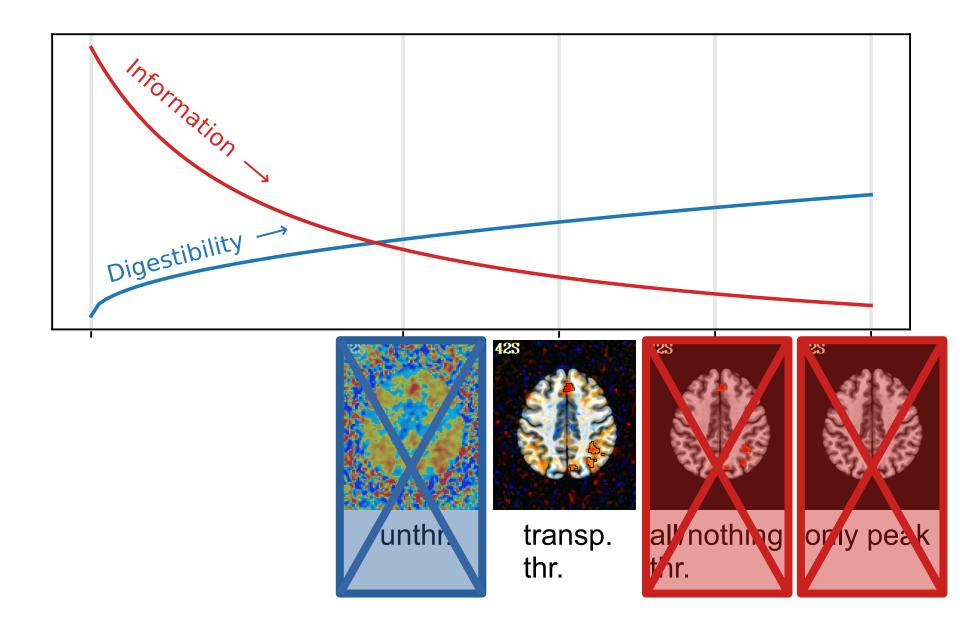

Group-level results: all-or-nothing threshold (p = 0.001, FWE = 5%)

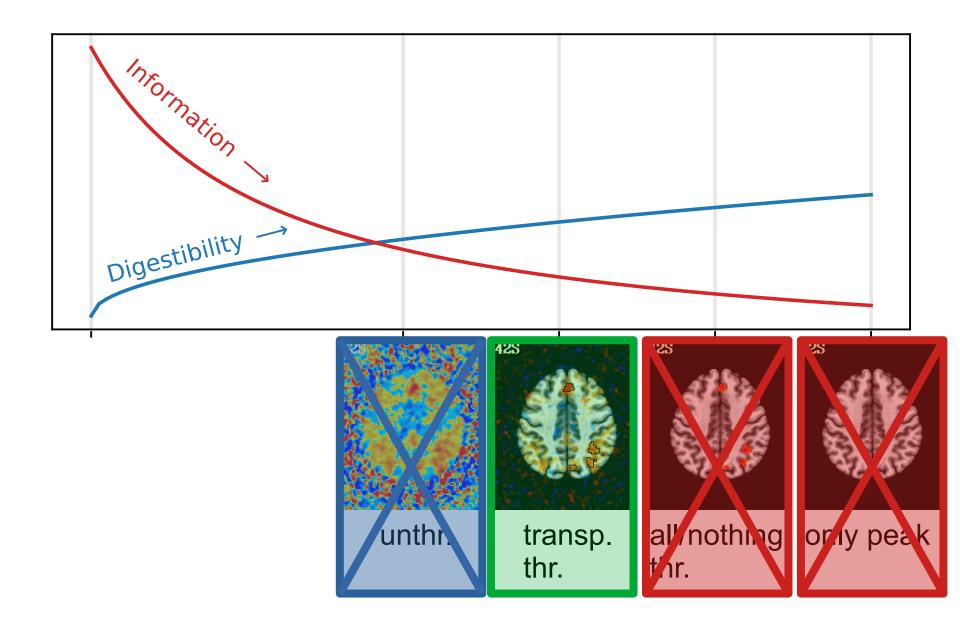





Group-level results:

all-or-nothing threshold (p = 0.001, FWE = 5%) \rightarrow peak voxels





How much should we reduce data in figures?

How much should we reduce data in figures?

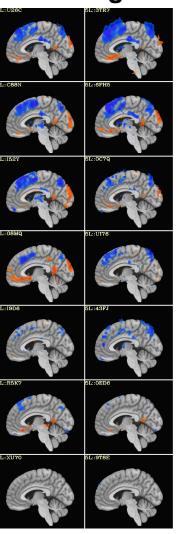
Example 4: improving cross study comparisons

NARPS teams' results (Hyp #3): **all-or-nothing** thresholding

5L::U26C	5L::3TR7	5L::J7F9	5L::L7J7	5L::L3V8	5L::R9K3	5L::B516	5L::50GV	5L::E3B6
	SL::6FH5		5L:R7D1	5L:90eR	БL::К9Р0	5L::3060	5L:E6R3	5L::C22U
				SL:46CD	SLET54A	SL:6VV2		5L::98BT
	SLEUT78	SL:27SS	51::9U7M	5L:277P	5L::1KB2	SL::OHSE	SLEXIYS	5L:014U
		SI.::94GU	SL::9PQ2	SL:51PW	str:000	sta:0210	SL::003M	5L:SM54
	5L:OED8		51::B230	SL::OBR8	SL:R42Q	SLE:107H	SL:L905	5L:4522
51.::XU70	SL: 9TAE	SL::POY	SL:BOCC	SL:41Q6	SL::Q58J	SL:UR24	-5	, <i>t</i> 5 Z > 3

NARPS teams' results (Hyp #3): transparent thresholding

5111980		51I2E0	51.01010	5L::L3V8	51 DOV2	51		ELESD2
5L::U28C	5L::0PH5	SL:J7F9 SL:X19V	5L::L7J7 5L::L7J7 5L::R7D1	5L::J3V8	SL:R9K3 SL::K9P0	SL:B516	5L::50GV 5L::E0R3	5L::C22U
	5L:007Q	5L::2165	5L::DC61	5L::46CD	SL::T54A	SL::6VV2	SL:V56J	SL::90BT
								EL::014U
	SL:UT78	51:2755	SL::9U?M	SL:2T7P	SIT: IKB5	SL:OHOE	5L::X1Y6	
	5L::43PJ	SL::94GU	SL::3PQ2	5L::51PW	SLEOJOO	SLEO2TU	51::003M	5L::SM54
	SL::OEDe	SL::A098	SL:#B230	SL::OBRE	SLER42Q	SL:107H	51::L9G5	5L::4572
	SL:978E	SL: 1POY	SL:BOOC	SL:4TQ6	SL: Q50J	SL:UK24	Z -5 thr: <i>t</i> ,	, t 5 Z > 3

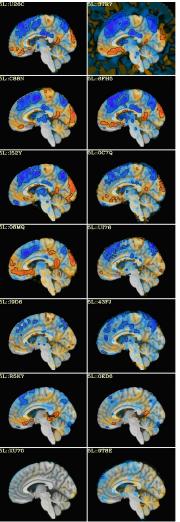

Researcher's choice of what to compare (decided in large part by thresholding filter) greatly affects perceived+measured outcomes (!)

Opaque thresholding

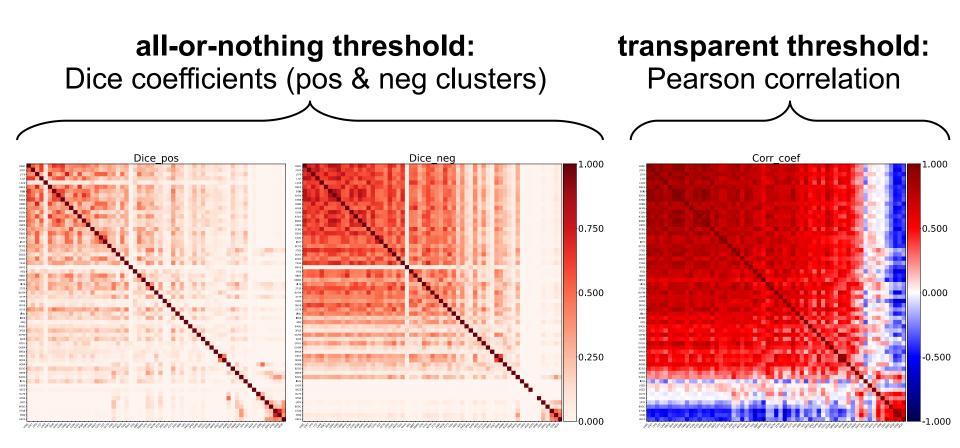
Match blobs

 \rightarrow

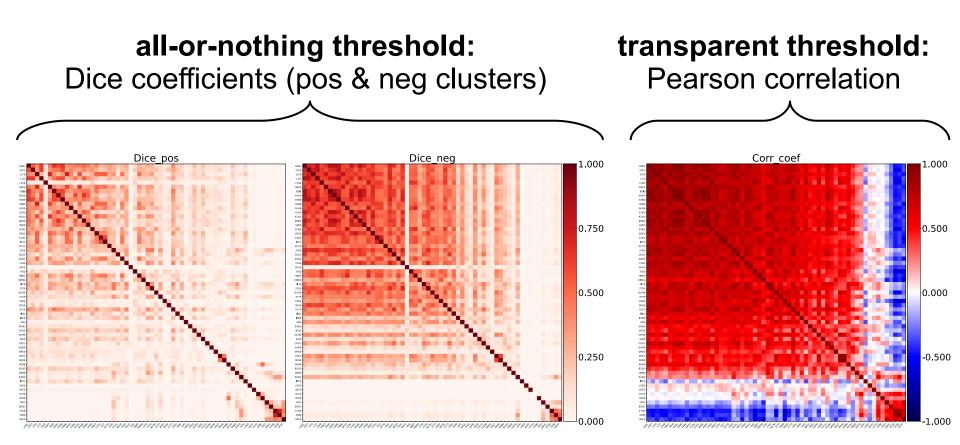
Overlap in first rows, but then perceive *notable disagreement* and large variability, perhaps *"lack of reproducibility"*



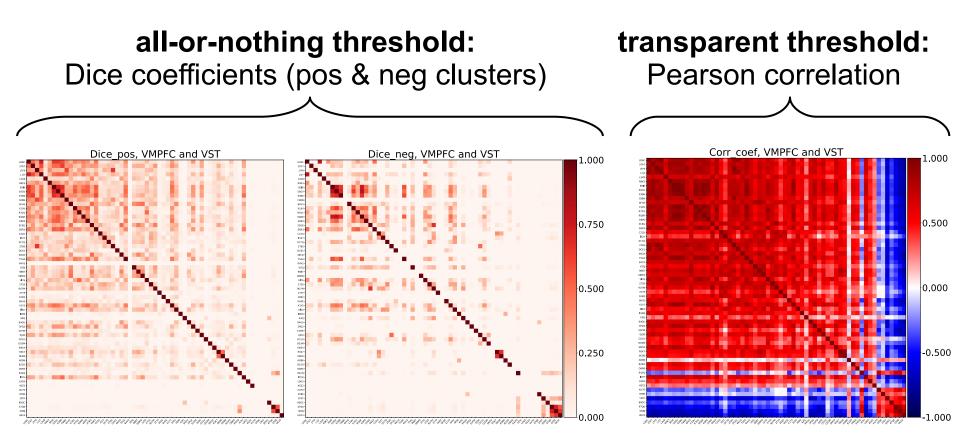
Opaque thresholding


Match colors

 \rightarrow

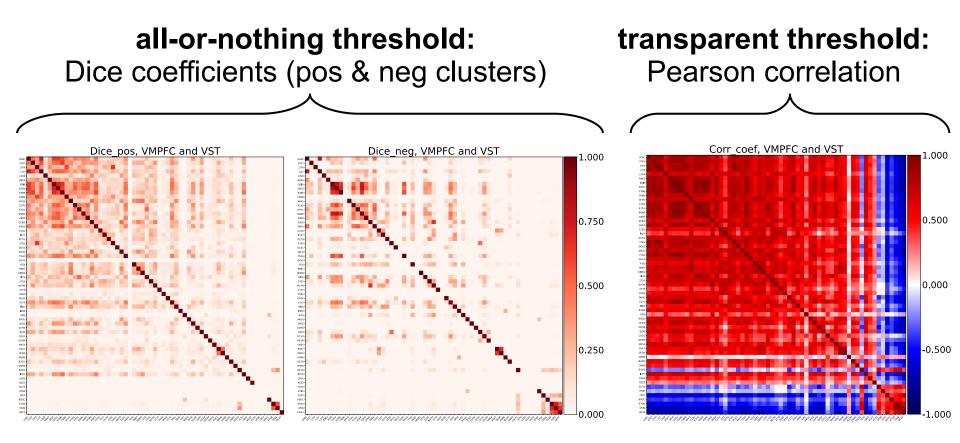

Similar hot-cold patterns (except last 1.5 rows): general agreement with varied strength (befits allowed flexibility)

Similarity matrices, derived from the preceding team results (whole brain)


Similarity matrices, derived from the preceding team results (whole brain)

Might interpret as poor agreement or high variability of results \rightarrow *crisis!*

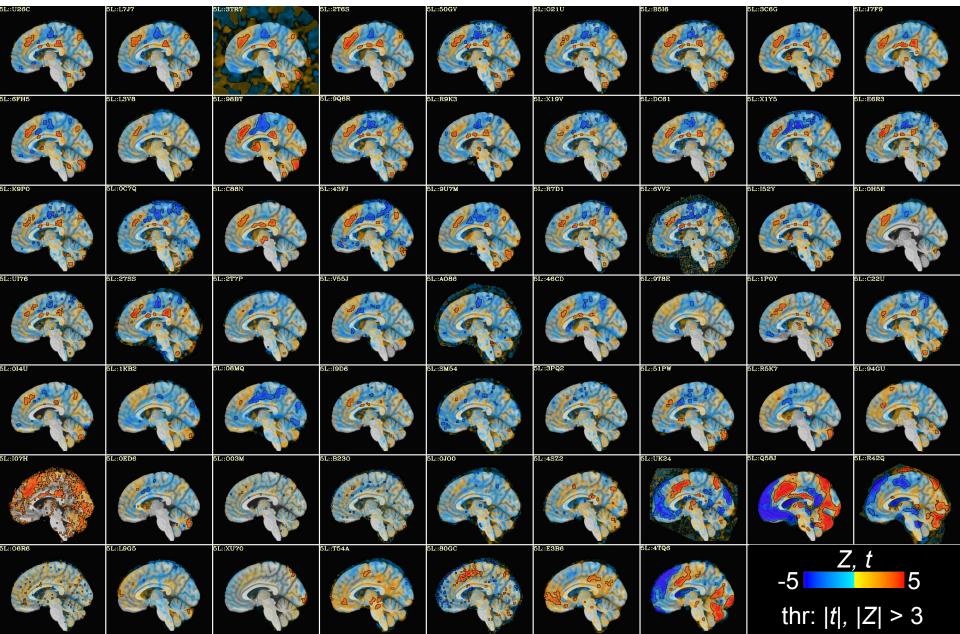
General agreement → mainly consistent results (with varied strengths)


Similarity matrices, derived from the preceding team results (region specific) \rightarrow NARPS design had specific ROIs per Hyp (here, VMPFC and VST)

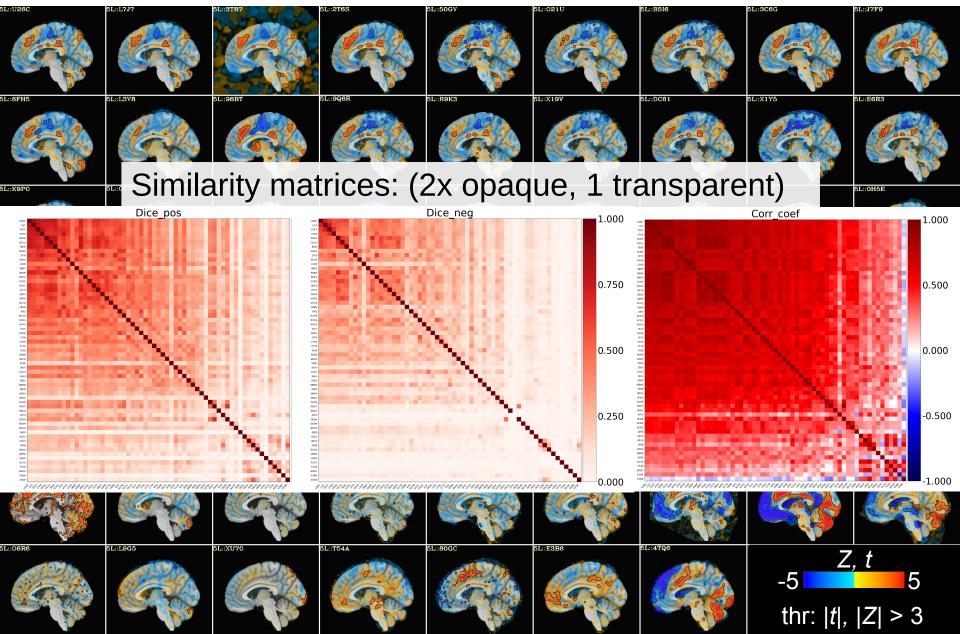
Might interpret as poor agreement or high variability of results \rightarrow *crisis!*

General agreement → mainly consistent results (with varied strengths)

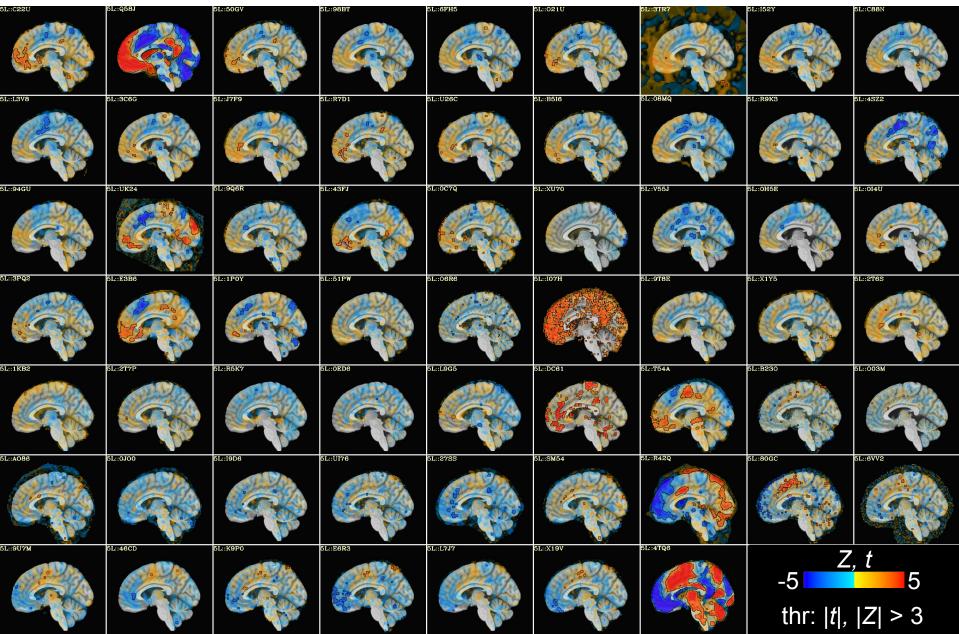
Similarity matrices, derived from the preceding team results (region specific) \rightarrow NARPS design had specific ROIs per Hyp (here, VMPFC and VST)

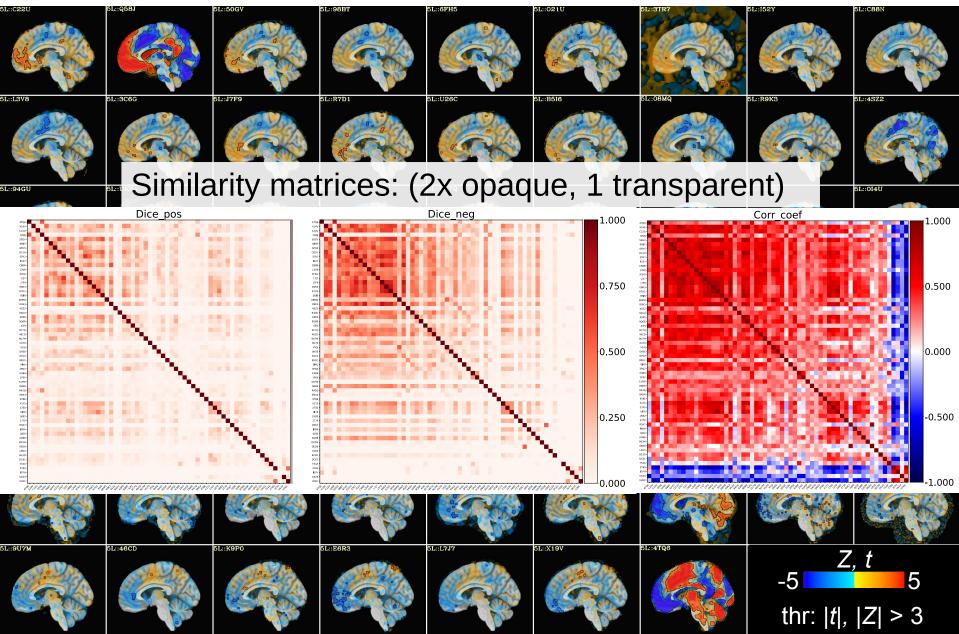


Might interpret as poor agreement or high variability of results \rightarrow *crisis!*


General agreement → *mainly consistent results* (with varied strengths)

Thresholding before meta analysis removes valuable information!


NARPS teams' results (Hyp #2&4): transparent thresholding


NARPS teams' results (Hyp #2&4): transparent thresholding

NARPS teams' results (Hyp #6): transparent thresholding

NARPS teams' results (Hyp #6): transparent thresholding

Conclusions

"Highlighting" is simple, improves information/interpretation within a study, and aids accuracy of comparisons across studies.

A study provides *evidence*, so show more full results.

- A study is part of a conversation, not 'the answer'.

Highlight key findings, and don't hide everything else.This philosophy applies beyond voxelwise studies.

All-or-nothing thresholding reduces information content, is sensitive to arbitrary values, hides artifacts, and more

Cross study comparisons should be based on unthresholded results (and certainly not just peak voxels)

- Thresholding introduces strong biases into meta analyses
- This will improve the ability to assess reproducibility.

Bibliography

- Cox RW (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162-173.
- Jernigan TL, Gamst AC, Fennema-Notestine C, Ostergaard AL (2003). More "mapping" in brain mapping: statistical comparison of effects. Hum. Brain. Mapp. 19 (2), 90–95.
- Luo WL, Nichols TE (2003). Diagnosis and exploration of massively univariate neuroimaging models. Neuroimage 19 (3), 1014–1032.
- Allen EA, Erhardt EB, Calhoun VD (2012). Data visualization in the neurosciences: overcoming the curse of dimensionality. Neuron 74, 603–608 .
- Chen G, Taylor PA, Cox RW (2017). Is the statistic value all we should care about in neuroimaging? Neuroimage. 147:952-959. doi:10.1016/j.neuroimage.2016.09.066 https://pubmed.ncbi.nlm.nih.gov/27729277/
- Pernet CR, Madan CR (2020). Data visualization for inference in tomographic brain imaging. Eur. J. Neurosci. 51 (3), 695–705.
- Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J, Johannesson M, et al. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582 (7810), 84–88.
- Lindquist M (2020). Neuroimaging results altered by varying analysis pipelines. Nature 582 (7810), 36–37.
- Chen G, Taylor PA, Stoddard J, Cox RW, Bandettini PA, Pessoa L (2022). Sources of information waste in neuroimaging: mishandling structures, thinking dichotomously, and over-reducing data. Aperture Neuro. 2: DOI: 10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea
- Taylor PA, Reynolds RC, Calhoun V, Gonzalez-Castillo J, Handwerker DA, Bandettini PA, Mejia AF, Chen G (2023). Highlight Results, Don't Hide Them: Enhance interpretation, reduce biases and improve reproducibility. Neuroimage 274:120138. doi: 10.1016/j.neuroimage.2023.120138 https://pubmed.ncbi.nlm.nih.gov/37116766/