

QC – the AFNI way Always looking for trouble...

What is quality control (QC), particularly in FMRI?

- Finding good and bad (and "other") datasets
- Checking the *consistency* of initial dataset
- Evaluating the success of processing steps
- Determining if the data are suitable for this particular study ... and more.

What is quality control (QC), particularly in FMRI?

- Finding good and bad (and "other") datasets
- Checking the *consistency* of initial dataset
- Evaluating the success of processing steps
- Determining if the data are suitable for this particular study ... and more.

Rather than viewing QC as simply filtering datasets into "good" or "bad" bins, we regard it as <u>the larger procedure of being as</u> <u>sure as possible about the contents of the data collection, from</u> <u>acquisition properties to artifact checking to regression</u> <u>evaluation.</u>

(Reynolds et al., 2023, Frontiers Open QC Project article)

Processing + QC = afni_proc.py (AP)

- AFNI's recommended pipeline for FMRI processing
 - Python program that generates full pipeline processing script
 - The "proc script" is a commented and readable form of *full* pipeline
 - Full provenance at code and user understanding levels
- Can be used for full / partial processing
- Simplifies choices by choosing processing blocks: tshift align volreg regress ...
- Flexible with hundreds of options for your analysis needs

Creates automatic quantitative summaries and HTML reports that we need for QC ...

1) **GTKYD**

\$ } ||||| Getting To Know Your Data: check dataset properties and consistency

2) APQUANT

Quantitative review of basic processing features: censor fraction, GCOR, ...

3) APQUAL

Qualitative and systematic visual checks via afni_proc.py's QC HTML

4) **GUI**

In-depth investigation, via the graphical user interface: InstaCorr, graph viewer, ...

5) **STIM**

Task-specific investigations of stimulus timing: event timing, duration, ...

1) GTKYD

>> >>

Getting To Know Your Data: check dataset properties and consistency

2) APQUANT

Quantitative review of basic processing features: censor fraction, GCOR, ...

3) APQUAL

Qualitative and systematic visual checks via afni_proc.py's QC HTML

4) **GUI**

In-depth investigation, via the graphical user interface: InstaCorr, graph viewer, ...

5) **STIM**

Task-specific investigations of stimulus timing: event timing, duration, ...

Getting To Know Your Data

- Tabulate/compare dataset basics
 - Orientation, data type, voxel size, ...
 - min, max values, NIFTI properties, ...
- Check consistency across runs, sessions, subjects; missing/extra data

older (more

newer (more

convenient)

• Programs:

work for user)

- 3dinfo, nifti_tool, 3dBrickstat
- gtkyd_check.py, gen_ss_review_table.py

GTKYD - Getting information

Example: Tabulate raw dataset properties (e.g., all subject EPIs).

gtkyd_check.py -infiles group_study/sub*/func*/epi*.nii.gz -outdir group_summary

Ni	Nj	Nk	Nv	orient	ADi	ADj	ADk	oblq	TR	prefix
128	128	34	144	RPI	1.875004	1.874996	4.000003	23.147	2.000000	sub-501.nii.gz
128	128	34	144	RPI	1.874997	1.874997	4.000003	3.695	2.000000	sub-502.nii.gz
128	128	34	144	RPI	1.874999	1.874997	3.999999	6.245	2.000000	sub-503.nii.gz
128	128	34	144	RPI	1.874996	1.875002	3.999995	4.795	2.000000	sub-504.nii.gz
80	80	34	144	RPI	3.000002	3.000005	3.999999	1.887	2.000000	sub-505.nii.gz
80	80	35	144	RPI	3.000001	2.999996	3.999999	6.980	2.000000	sub-506.nii.gz
80	80	35	144	RPI	3.000001	3.000000	4.000004	9.429	2.000000	sub-507.nii.gz
80	80	39	144	RPI	2.999999	2.999998	4.000004	9.190	2.000000	sub-508.nii.gz

inconsistent
matrix sizes

inconsistent
 voxel sizes

GTKYD - Getting information

Example: Which subject's data are not like the others?

- "infiles" are a set of simple text file dictionaries of properties
- "report_outliers" are list of properties to compare/search
 - Includes: >, >=, <, <=, !=, ==, varying across dsets
- Scriptable, shareable QC command to make a table of outlier subjects

```
gen_ss_review_table.py \
  -outlier_sep space \
  -report_outliers 'ad3' VARY \
  -report_outliers 'ad3' GT 2.8 \
  -report_outliers 'orient' VARY \
  -report_outliers 'is_slice_timing_nz' EQ 0 \
  -infiles group_summary/dset*.txt \
  -write_outliers group_summary.vary.txt
```

1) GTKYD

Getting To Know Your Data: check dataset properties and consistency

2) APQUANT

Quantitative review of basic processing features: censor fraction, GCOR, ...

3) APQUAL

Qualitative and systematic visual checks via afni_proc.py's QC HTML

4) **GUI**

In-depth investigation, via the graphical user interface: InstaCorr, graph viewer, ...

5) **STIM**

Task-specific investigations of stimulus timing: event timing, duration, ...

AP Quantitative review

- Particularly useful after running afni_proc.py (outputs useful summary file)
 - Check motion, censoring counts, ...
 - Compare GCOR, TSNR, ...
- Programs:
 - gen_ss_review_table.py

AP Quant – tabulate/search quantities

Example: Single, scriptable command of quantitative exclusion criteria

- Too few final degrees of freedom (DFs), too many time points censored
- Too much motion even after censoring, too high instance(s) of motion
- Too high global correlation (GCOR), appears to have left-right flipping

```
gen ss review table.py
  -outlier sep space
  -report outliers 'final DF fraction'
                                                LE 0.6
  -report outliers 'censor fraction'
                                                GE 0.2
                                                GE 0.15
  -report outliers 'average censored motion'
  -report outliers 'max censored displacement'
                                                GE 8
  -report outliers 'global correlation (GCOR)'
                                                GE 0.20
  -report outliers 'flip guess'
                                                EQ DO FLIP
  -infiles
                   ${all infiles}
```

AP Quant – tabulate/search quantities

→ **Output:** Simple output table listing subjects

- Might use to exclude or warn about
- Can rerun as more subjects are acquired
- Share with others and/or publish

Subject	final DF fraction	censor fraction	flip guess
SHOW	LE:0.6	GE:0.2	EQ:DO_FLIP
sub-507	0.277778	0.618056	_
sub-511	0.479167	0.416667	
sub-512		0.250000	
sub-518			DO_FLIP
sub-519	0.409722	0.486111	DO FLIP

1) GTKYD

Getting To Know Your Data: check dataset properties and consistency

2) APQUANT

Quantitative review of basic processing features: censor fraction, GCOR, ...

3) APQUAL

Qualitative and systematic visual checks via afni_proc.py's QC HTML

4) **GUI**

In-depth investigation, via the graphical user interface: InstaCorr, graph viewer, ...

5) **STIM**

Task-specific investigations of stimulus timing: event timing, duration, ...

AP Qualitative review

- Visualize data for "quick review"
 - data properties/coverage
 - processing success (e.g., align)
 - spatiotemporal aspects (stats/corr)
- Tools
 - afni_proc.py generates HTML report
 - open_apqc.py -infiles QC/index.html

AP Qual – QC HTML

Versatile to use, and "open_apqc.py" starts local server running

- View many properties across a given subject
- View the same property across many subjects (double-click gold text)
- Save QC ratings and notes instantly
- Fire up AFNI GUI and NiiVue viewer instances with single button clicks

```
# basic usage: open one HTML with local server running
open_apqc.py
-infiles data 21 ap/sub-001/*results/QC */index.html
```

open many subject HTMLs, jump all to same starting
location:

```
open_apqc.py
  -infiles data_21_ap/sub*/*results/QC_*/index.html
  -jump_to vstat
```

Some APQC HTML examples (from the Open QC Project data)

APQUAL: vorig (views of original data)

APQUAL: vorig

APQUAL: vstat (DMN)

APQUAL: vstat DMN (views of statistics: seed-based corr of DMN from L-PCC)

A) sub-505: seed-based correlation OK (expected network, no non-phys. patterns)

B) sub-203: artifactual pattern issue, non-physiological high correlation

C) sub-118: quality issue (noisy patterns)

D) sub-413: guality issue (low and missing correlation pattern)

olay: -0.6 **(Pearson r)** thr <u>:</u> 0.3 (alpha+boxed on)

APQUAL: vstat (vis)

APQUAL: vstat vis (views of statistics: seed-based corr of visual cortex)

A) sub-505: seed-based correlation OK (expected network, no non-phys. patterns)

B) sub-209: artifact issue (non-physiological patterns)

C) sub-305: guality issue low correlation in visual

D) sub-403: quality issue (high, extended correlation throughout brain)

olay: -0.6 (Pearson r) thr : 0.3 (alpha+boxed on)

APQUAL: corr_brain

APQUAL: regr. corr_brain (correlation of WB-ave residual time series)

A) sub-505: correlation pattern OK (no obvious artifact or non-physiological patterns)

B) sub-610: quality issue (extended area of high corr.)

C) sub-508: artifact issue (non-physiological corr/anticorr.)

D) sub-118: artifact issue (low corr in brain, odd pattern of high corr.)

olay: -0.6 (Pearson r) thr : 0.3 (alpha+boxed on)

APQUAL: radcor

APQUAL: TSNR

APQUAL: regr. TSNR (temporal SNR for regressed time series)

A) sub-313: TSNR pattern OK (generally high TSNR, full coverage, no obvious artifacts)

B) sub-614: low TSNR in subcortex, temporal lobes and frontal cortex

C) sub-403: low TSNR stripes (artifactual pattern)

APQUAL: variance lines

EPI variance lines warnings										
medium										
Lines per run : 4 3 5 Intersecting : 3 Coordinates (see images of the first 7, below, check locations with InstaCorr)										
ecting a	11	r01			r02					
-40.30	30.35	-2.70	-40.30	30.35	-2.70	-40.30	30.35			
-65.00	30.35	-41.20 -8.20 -27.40	-12.80 -65.00 -59.50	30.35 30.35 30.35	-41.20	-15.50	30.35			
	run : 4 ing : 3 es (see ecting a -40.30 -15.50 -65.00	run : 4 3 5 ing : 3 es (see images o ecting all 	EPI run : 4 3 5 ing : 3 es (see images of the fi ecting all -40.30 30.35 -2.70 -15.50 30.35 -41.20 -65.00 30.35 -8.20 -27.40	EPI variance m run : 4 3 5 ing : 3 es (see images of the first 7, be ecting all r01 -40.30 30.35 -15.50 30.35 -65.00 30.35 -27.40 -59.50	EPI variance lines w medium run : 4 3 5 ing : 3 ees (see images of the first 7, below, chee ecting all r01 -40.30 30.35 -15.50 30.35 -65.00 30.35 -27.40 -59.50 -27.40 -59.50	EPI variance lines warnings medium run : 4 3 5 ing : 3 es (see images of the first 7, below, check locat ecting all r01 -40.30 30.35 -2.70 -40.30 30.35 -2.70 -15.50 30.35 -41.20 -12.80 30.35 -41.20 -65.00 30.35 -8.20 -65.00 30.35 -8.20	EPI variance lines warnings medium run : 4 3 5 ing : 3 ees (see images of the first 7, below, check locations with ecting all r01 -40.30 30.35 -2.70 -40.30 30.35 -2.70 -40.30 -15.50 30.35 -41.20 -12.80 30.35 -41.20 -15.50 -65.00 30.35 -8.20 -65.00 30.35 -8.20 -65.00	EPI variance lines warnings medium 1 run : 4 3 5 1 ing : 3 ees (see images of the first 7, below, check locations with InstaC ecting all r01		

ulay: vlines.pb00.tcat/var*scale*.nii.gz (scaled variance per run)
olay: line markers for inter:1, inter:2, inter:3, r01:1, r01:2, r01:3, r01:4

APQUAL: LR flips

(Glen et al., 2020)

APQUAL: Left-right flip check warns (EPI-anatomical agreement)

A) sub-606: flip check OK (cortical features match, cost function agreement)

B) sub-101: EPI-anatomical flip issue (relative cortical structure match, cost function evidence)

1) GTKYD

>> >>

Getting To Know Your Data: check dataset properties and consistency

2) APQUANT

Quantitative review of basic processing features: censor fraction, GCOR, ...

3) APQUAL

Qualitative and systematic visual checks via afni_proc.py's QC HTML

4) **GUI**

In-depth investigation, via the graphical user interface: – InstaCorr, graph viewer, ...

5) **STIM**

Task-specific investigations of stimulus timing: event timing, duration, ...

Graphical User Interface

- Some datasets need more in-depth follow-ups to determine what is there
- Visualize with deep dives, now more efficiently connected within AFNI QC HTML
- Tools
 - APQC HTML pages, afni or NiiVue
 - afni GUI, suma GUI, InstaCorr

GUI: InstaCorr examples for Groups 1, 2 and 4

GUI: InstaCorr

olay: -0.6 (Peatric on) 0.6 (Peatric on)

GUI: InstaCorr graphs

1) GTKYD

>> >> >>

Getting To Know Your Data: check dataset properties and consistency

2) APQUANT

Quantitative review of basic processing features: censor fraction, GCOR, ...

3) APQUAL

Qualitative and systematic visual checks via afni_proc.py's QC HTML

4) **GUI**

In-depth investigation, via the graphical user interface: InstaCorr, graph viewer, ...

5) **STIM**

Task-specific investigations of stimulus timing: event timing, duration, ...

Stimulus timing (task FMRI)

- Motion plots
- Stimulus timing
- Stimulus correlation: was the model setup OK?
- Participant responses: was the task done?
- F-stats, t-stats: full model, individual stimulus response mapping

STIM: Full F-stat

APQUAL: sub-024 (stimulus-correlated motion?)

A) vstat, full F-stat: spatial pattern issue (noisy, low peak values, scattered, low in some/many expected areas)

vol index

other QC: *motion plots*

Summary

- Real-world data quality issues often missed
- There are more problems out there than shown here
- There will be new problems with data
- AFNI has many tools, generally designed with the motto of: *"Helping users stay close to their data"*
 - <u>Use QC steps to stay close to your own data!</u>

<u>Acknowledgments</u>

Rick Reynolds - the chief architect of afni_proc.py Paul Taylor - quality is his middle name - chief QC reporter Bob Cox - AFNI founder, developer of GUI and InstaCorr Taylor Hanayik and Chris Rorden - NiiVue authors