We speak about acquiring "a volume" of EPI data in the interval of one TR (say, 2s). That *sounds* like an instantaneous snapshot of the whole volume every TR, like this:

We speak about acquiring "a volume" of EPI data in the interval of one TR (say, 2s). That *sounds* like an instantaneous snapshot of the whole volume every TR, like this:

n = 0, *t* = 0.000 s

We speak about acquiring "a volume" of EPI data in the interval of one TR (say, 2s). That *sounds* like an instantaneous snapshot of the whole volume every TR, like this:

We speak about acquiring "a volume" of EPI data in the interval of one TR (say, 2s). That *sounds* like an instantaneous snapshot of the whole volume every TR, like this:

But in reality, a volume is acquired slice-by-slice throughout the TR interval. Moreover, the ordering is typically *not* sequential, but like this:

The slice selection pattern is called **interleaved**. This is done to reduce signal contamination from neighboring slices by acquiring them approximately $\frac{1}{2}$ TR apart in time.

This particular slice selection alternates upward through the *z*-axis, so it is abbreviated **alt+z**.

In the special case of **multiband acquisitions**, multiple subsets of the slices are acquired simultaneously, where each set could use alt+z timing and MB factor = 2, for example.

In the special case of **multiband acquisitions**, multiple subsets of the slices are acquired simultaneously, where each set could use alt+z timing and MB factor = 2, for example.

In the special case of **multiband acquisitions**, multiple subsets of the slices are acquired simultaneously, where each set could use alt+z timing and MB factor = 2, for example.

In the special case of **multiband acquisitions**, multiple subsets of the slices are acquired simultaneously, where each set could use alt+z timing and MB factor = 2, for example.

In the special case of **multiband acquisitions**, multiple subsets of the slices are acquired simultaneously, where each set could use alt+z timing and MB factor = 2, for example.

How does slicewise acquisition affect the *time series*? Consider a subject with identical time series at every voxel.

Because each slice is acquired at a **different** time, the sampled time series will differ across slices.

This can affect the results of linear regression modeling.

Correcting for differential slice timing: $3dTshift -tzero 0 \dots$ \rightarrow We can perform **slice timing correction** to adjust each time series to appear *as if* it had been acquired at the same time in each slice, via interpolation (blue time series); here, each slice is adjusted to time=0s.

The later a slice is acquired, the later the (black) curve is sampled, hence it looks "left-shifted" compared to the corrected (blue) curve.

The corrected (blue) curves *should* look more like the one at slice k=0 (for: 3dTshift -tzero 0).

Correcting for differential slice timing: **3dTshift** -tzero 0 ... \rightarrow In an ideal case, the adjusted time series looks the same as an "instantaneous volume" acquisition would (pink line, for reference). \rightarrow In reality, motion spikes and other noise features present challenges, as they get blurred across time (hence we despike first).

