FreeSurfer Workshop - Begin the Hands-On...

1) Create AFNI dataset using to3d

to3d [-options] <image_files>

Class Example (the long way):

cd lc_play

to3d -prefix mprage1 001/I.*

to3d -prefix mprage2 002/I.*

to3d -prefix mprage3 003/I.*

to3d -prefix mprage4 004/I.*

Shortcut - Using the *foreach* loop

foreach is a UNIX command that implements a loop, where the loop value (e.g., "x") takes on values from a list (e.g., 1, 2, 3, 4).

Class Example:

```
foreach x (1 2 3 4)
    to3d -prefix mprage{$x} 00{$x}/I.*
end
```


* Datasets we've created using *to3d*:

ls lc_play/

mprage1+orig.BRIK mprage1+orig.HEAD

mprage2+orig.BRIK mprage2+orig.HEAD

mprage3+orig.BRIK mprage3+orig.HEAD

mprage4+orig.BRIK mprage4+orig.HEAD

2) Perform N3 Correction on each dataset with AFNI 3dUniformize

3dUniformize -anat <AFNI BRIK> -prefix <pname>

Class Example: (from within lc_play/ directory)

foreach x (1 2 3 4)

3dUniformize -quiet -anat mprage{\$x}+orig \
-prefix mprage{\$x}_n3

end

* Datasets we've created using *3dUniformize*:

lc_play/

mprage1_n3+orig.BRIK mprag

mprage2_n3+orig.BRIK

mprage3_n3+orig.BRIK

mprage4_n3+orig.BRIK

mprage1 n3+orig.HEAD

mprage2_n3+orig.HEAD

mprage3_n3+orig.HEAD

mprage4_n3+orig.HEAD

3) Perform Volume Registration using AFNI 3dvolreg

3dvolreg -base <bfile> -prefix <pname> <target file>

Base dataset:

mprage1_n3+orig

Target datasets:

mprage2_n3+orig mprage3_n3+orig mprage4_n3+orig

Prefix for output datasets:

mprage2_n3vr mprage3_n3vr mprage4_n3vr Class Example: (from within lc_play/ directory)

end

```
foreach x (2 3 4)

3dvolreg -base mprage1_n3+orig \
 -prefix mprage{$x}_n3vr \
 mprage{$x}_n3+orig
```

* Datasets we've created using *3dvolreg*:

ls lc_play/

mprage2_n3vr+orig.BRIK mprage2_

mprage3_n3vr+orig.BRIK

mprage4_n3vr+orig.BRIK

mprage2_n3vr+orig.HEAD

mprage3_n3vr+orig.HEAD

mprage4_n3vr+orig.HEAD

4) Average the datasets using AFNI 3dMean

3dMean -prefix <pname> <datasets ...>

Class Example: (from within lc_play/ directory)

3dMean -prefix mprage_avg \
mprage*_n3vr+orig.BRIK mprage1_n3+orig

* Datasets we've created using *3dMean*:

ls lc_play/
mprage_avg+orig.BRIK mprage_avg+orig.HEAD

4 This dataset can be viewed in AFNI.

5) Create FreeSurfer directory tree using *mksubjdirs*

(note: be sure to source your .fs_login file first)

mksubjdirs <subject_name>

Class Example: (from within lc_play/ directory)
mksubjdirs lc_avg

Result from mksubjdirs lc_avg:

6) Convert volume dataset into COR format:

(i.e., 256 coronal slices, 256 x 256 in-plane, 1mm³ voxel resolution)

mri_convert <volume_dataset>

Class Example: (from within lc_play/ directory)

mri_convert mprage_avg+orig.BRIK lc_avg/mri/orig

HOW TO RUN FREESURFER:

TYPE csurf ON THE COMMAND LINE!

If you like, go to the Freesurfer GUI, select PREFERENCES --> VIEW LOGS to see "stuff" spewing onto the screen.

Process Volume using FreeSurfer's program, segment_subject

segment_subject <subject_name>

Class Example: (from FreeSurfer GUI):

Subject Tools → Process Volume

(do this for BOTH hemispheres)

Class Example: (from Command Line):

cd ../../.. takes you up to lc_play/

segment_subject lc_avg

or... recon-all -stage1 -stage2 -nomotioncor -subjid lc avg

Result of 'Process Volume':

Intensity Normalization (lc_avg/mri/T1)

Skull Stripping (lc_avg/mri/brain)

White Matter Segmentation (lc_avg/mri/wm)

Note:

If using command line option, *segment_subject* or *recon-all -stage2* will also do a first pass inflation of the surface.

mri/wm

mri/brain

Create an inflated surface using FreeSurfer's inflate_subject

Class Example: (from FreeSurfer GUI):

Subject Tools → Create Surface

Command Line users: Skip this step.

Go to TK Surfer interface to examine the inflated surface.

The most commonly derived defects that require manual editing:

- **4 Fornix** (handles)
- **4** Lateral Ventricle (hole)
- Basal Ganglia (hole)
- **4** Optic Nerve (interferes with inflation)

- ♣ Manual Editing is done in the wm matter volume. This is the MAIN volume.
- Load T1 as your AUXILLARY volume.

Alternate between volumes 📮 🔁

To begin manual editing:

Subject Tools --> Edit Segmentation

This will load the wm volume and inflated surface simultaneously. The white matter outline will appear on the surface as well.

Load T1 volume as the auxillary volume:

From TKMedit (volume GUI)

File --> Load Auxillary --> T1

Manual editing and inflation steps should be repeated until all large topologic defects have been corrected.

From GUI: SubjectTools → Create Surface

From Command Line: *inflate_subject < subject_name >*

Class Example: (from within lc_play/ directory) inflate subject lc avg

or... recon-all -stage2 -subjid lc avg

FreeSurfer's automated topology fixer removes smaller topological defects.

From GUI: SubjectTools → Fix Surface Topology

From Command Line: fix_subject <subject_name>

Class Example: (from within lc_play/ directory)
fix subject lc avg

or... recon-all -stage3 -subjid lc avg

Create the final surfaces with FreeSurfer's make_final_surfaces_subject (i.e., final wm outline, pial outline)

From GUI: SubjectTools → Make Final Surface

From Command Line: make_final_surfaces_subject <subject_name>

Class Example: (from within lc_play/ directory)

make final surfaces subject lc avg

or... recon-all -stage4a -subjid lc_avg

* For a Full Surface Patch:

- 1) Main GUI: SubjectTools → Make Full Surface Cuts.
- 2) Make 5 "relaxation cuts" on medial side and press CUT LINE button on TK Surfer GUI.

3) Enclose midline region and press CUT CLOSED LINE button.

4) Mark a point on the region that will be saved and press the CUT AREA button.

5) Save the patch as ?h.full.patch.3d

* For an Occipital Patch:

- Main GUI: SubjectTools → Make
 Occip Surface Cuts.
- 2) Select points across calcarine fissure and press CUT LINE.

- 3) Select 3 points to define the cutting plane: 2 on medial side and 1 on lateral side.
- 4) Choose a fourth point to specify which portion of surface to keep.

5) Press the CUT PLANE button to create the occipital patch.

6) Save as ?h.occip.patch.3d

From GUI: SubjectTools → Flatten Surface

From Command Line:

mris_flatten <input patch> <output patch>

♣ Class Example: (from within lc_play/ directory)GUI: SubjectTools → Flatten Surface

Command Line:

mris_flatten ?h.full.patch.3d ?h.full.patch.flat mris_flatten ?h.occip.patch.3d ?h.occip.patch.flat

Your surfaces are now ready to be transferred over to SUMA.

4 The AFNI SUMA hands-on is scheduled for:

FRIDAY, November 19,2004, 8:30am-5:00pm

Instructor: Dr. Ziad Saad, NIMH

THAT'S ALL FOLKS!!!!!!!!