Outline of Dual Thresholding plus ETAC: Equitable Thresholding And Clustering

-1-

Voxel-Wise Group Analysis

- Do *first level* time series analysis on each subject's data separately (<u>afni_proc.py</u>)
 - Transformed to common template (e.g., MNI)
 - Best with nonlinear transformation (3dQwarp)
 Can restrict analysis to dilated gray matter mask
- Second level group analysis on voxel β values = % signal change (not ROIs)
 - Can be as simple as *t*-tests (3dttest++)
 - Or a complicated model such as Linear Mixed Effects (3dLME), etc.

Group Spatial Inference - 1

- Goal: control global False Positive Rate (FPR) – to 5% level (e.g.)
 - FPR = FWE = Family-Wise Error
 - = rate of errors across the family of voxel tests
 - "error" = when anything is found in noise-only data vs global null hypothesis (no "activity")

Different approach: to control the False Discovery Rate (FDR, voxel-wise)
= fraction of "discoveries" that are "errors"
Not what I'm going to talk about at this moment
Difficult to allow for inter-voxel correlation in noise

Group Spatial Inference - 2

- Voxel-wise thresholding on group *t*statistic is usually super conservative (to get global FPR≈5%)
- A Solution: form clusters of neighboring voxels, each above a lower (less strict) voxel-wise t-statistic (or z-statistic)

• With a larger voxel-wise *p*-value (=smaller *t*)

- Then: threshold on cluster-size as well
 - Given voxel-wise *p*, adjust cluster-FOM threshold to get desired global FPR →→…

Group Spatial Inference - 3

- Dual threshold method (voxel then cluster) can still be weak (low power to detect)
- A Solution: use spatial blurring ≈ average nearby voxel β ("Coef") values together, in each subject, before group statistics
 - To reduce noise and reinforce commonality
 - To reduce effective number of independent statistical tests (but lose spatial resolution)
 - To select the *minimum* spatial scale of what we are hunting for

Definitions of "Cluster" in 3D

Old ClustSim - 1

- Spatial correlation of "noise" in FMRI data means no exact formula for cluster-FOM threshold, for a given p threshold
- So: Assume Gaussian-shape for spatial auto-correlation function (ACF) of noise
 - Fit Gaussian width parameter (FWHM)
 - Compute cluster-size threshold to get 5% FPR

 $ACF(r) = exp[-r^2/(2b^2)]$ b = 0.4246 · FWHM

<u>Old ClustSim - 2</u>

- 1) Generate *random noise-only* dataset with Gaussian ACF (with chosen FWHM)
- 2) Threshold at diverse per-voxel *p*-values
- 3) Find largest cluster in brain mask
- 4) Repeat steps 1-3 10,000+ times
- 5) For each per-voxel *p*-value, cluster-size threshold is largest cluster size which occurs only in 5% (*e.g.*) of cases

• **3dClustSim** outputs tables like this:

#	CLUSTER	SIZE TH	IRESHOLI)(pthr,a	lpha)	
#	-NN 2	alpha=	=Prob (C]	luster >	given	size)
#	pthr	.10000	.05000	.02000	.01000	
#						-
0.	010000	50.3	57.2	66.3	73.6	
0.	005000	34.4	39.5	46.3	51.6	
0.	002000	22.1	25.7	30.4	34.1	
0.	001000	16.0	19.0	22.8	26.0	
0.	000500	12.0	14.5	17.4	20.1	
0.	000200	8.1	10.0	12.6	14.6	
0.	000100	6.1	7.7	9.9	11.6	

-log(p) or t- or z-statistic voxel-wise threshold

The Great Cluster Panic - 2016

FPR >> 5%: notably for voxel-wise p=0.01
A lot of doom-crying about this in 2016: "Could Invalidate 15 Years of Brain Research"

<u>3 Solutions in AFNI</u>

- 1) Extend ACF model in 3dClustSim to be more complicated than a Gaussian shape (the mixed model)
- 2) Eliminate ACF modeling by extending 3dClustSim to directly use residuals from 3dttest++ via randomization
- Generalize cluster-thresholding model in a couple more directions: ETAC

 $ACF(r) = a \exp[-r^2/(2b^2)] + (1-a)\exp[-r/c]$

1) How to: ACF method

- Run 3dFWHMx with '-acf' option to get (*a,b,c*) for each subject, from residuals dataset errts*+tlrc.HEAD
 - This calculation is done now in afni_proc.py
 - Average each of the 3 ACF parameters across subjects (not automatic)
- Use 3dClustSim with '-acf' option (giving it the 3 averaged parameters) to get cluster size threshold tables for group analysis
 - This method is OK, if per-voxel $p \le 0.002$

2) A Different Solution: Nonparametric Clustering in AFNI

Nonparametric clustering: "3dttest++ -Clustsim"

t-test residuals are permuted/randomized (10000 times)

-19

10000 re-t-tests computed from residuals fed to 3dClustSim

2) How to: Nonparametric Clustering

- Only for t-tests (or GLM) at this time
 - Re-running many **3dLME** cases (*e.g.*) is too slow
- 3dttest++ with the -Clustsim option
- Gives excellent FPR control 🙂
- Has fairly large cluster-size thresholds
 - Led me to next set of ideas \implies \implies ETAC!

Arbitrary Choices

- I've mentioned two parameters that must be chosen by the researcher in the "usual" methods:
 - Voxel-wise *p*-value for first-level thresholding
 - Typical FMRI values range from 0.001 to 0.01
 - Amount of spatial blurring to add to data
 - Typical FMRI values range from 4 to 10 mm
- But there are no "best" values 😕
 - ETAC can rescue you! (from these choices)

<u>3) ETAC</u> © © © ©

- Equitable Thresholding And Clustering
- Uses multiple sub-methods at same time
 - Equity = balancing FPRs of sub-methods
- 1) Voxel-wise thresholding at *multiple p*-values, then cluster-FOM thresholding
- 2) *Multiple* cases of spatial blurring
- No model for ACF
 - As before, uses randomization/permutation

-log(p) or t- or z-statistic voxel-wise threshold

-23-

Equity: Across Methods

- Balancing can apply to any multi-choice method for selecting voxel clusters
 - Each sub-method has a cluster-FOM threshold adjustable to get desired FPR
 - Balance = choose each sub-method's cluster-FOM threshold to have the same global FPR $\alpha_0 < \alpha_{Goal}$ (e.g., 5%)
- ETAC method (set union): accept a voxel if it survives at least one sub-method
 - Adjust α_0 up or down to get final FPR = α_{Goal}

Equity: Across Blur Cases

- Blurring at (*e.g.*) 4, 6, 8, 10 mm
- Potential to detect both small intense clusters and larger weak clusters
 - Blur = 10 mm might "wash out" small cluster
 - Blur = 4 mm might not reduce noise enough to find larger weak cluster
- Combined with multi-thresholding (different *p*-values), reduces number of arbitrary choices to make in thresholding

ETAC: FPR Control

ETAC FPRs (Beijing-Zang Datasets)

Task Detection Power: 1000 simulations ETAC minus Single Threshold

UCLA Phenomics study (*pamenc vs control task*) 20 (out of 81) subjects per test; single blur=7mm, 10 *p*-s → data from OpenFMRI web site

Cluster Size: ETAC/single p

ETAC Sample Command

3dttest++

- -setA datasets
- -setB datasets { other options here ... }
- -prefix Gtest.nii
- -prefix_clustsim Gtest
- -ETAC
- **-ETAC_blur 4** 7 \leftarrow Combines with any other blurring
- -ETAC_opt
- sid=2:pthr=0.01/0.001/10:name=TestA
- -ETAC_opt
- sid=2:pthr=0.01/0.001/91:name=TestB

Conclusions (At Long Last/)

- If 3dttest++ can do your group analysis, ETAC might be your new friend
 - Fewer arbitrary thresholding choices
 - Little loss of power, perhaps some gain 🙂
 - Publication just accepted (May 2019)
- If you need 3dLME, 3dMVM, etc., then the mixed model ACF method is decent
 - With per-voxel $p \le 0.002$
 - Publication you can cite

AFNI Clustering Papers

Accepted in Brain Connectivity – ETAC paper

- <u>https://www.biorxiv.org/content/10.1101/29593</u>
 <u>1v2</u>
- FMRI Clustering and False Positive Rates.
 PNAS 114: E3370–E3371, 2017.
 - <u>https://arxiv.org/abs/1702.04846</u>
 - https://doi.org/10.1073/pnas.1614961114
- FMRI Clustering in **AFNI**: False Positive Rates Redux. Brain Connectivity 7:152-171, 2017.
 - https://arxiv.org/abs/1702.04845
 - https://doi.org/10.1089/brain.2016.0475

Where It Started Clear Creek trail, Grand Canyon

