

QC – the AFNI way
Always looking for trouble...

What is quality control (QC), particularly in FMRI?

● Finding good and bad (and “other”) datasets
● Checking the consistency of initial dataset
● Evaluating the success of processing steps
● Determining if the data are suitable for this particular study
… and more.

What is quality control (QC), particularly in FMRI?

● Finding good and bad (and “other”) datasets
● Checking the consistency of initial dataset
● Evaluating the success of processing steps
● Determining if the data are suitable for this particular study
… and more.

 Rather than viewing QC as simply filtering datasets into “good”
or “bad” bins, we regard it as the larger procedure of being as
sure as possible about the contents of the data collection, from
acquisition properties to artifact checking to regression
evaluation.

(Reynolds et al., 2023, Frontiers Open QC Project article)

Processing + QC = afni_proc.py (AP)
● AFNI’s recommended pipeline for FMRI processing

● Python program that generates full pipeline processing script
● The “proc script” is a commented and readable form of full pipeline
● Full provenance at code and user understanding levels

● Can be used for full / partial processing
● Simplifies choices by choosing processing blocks:

 tshift align volreg regress ...
● Flexible with hundreds of options for your analysis needs

Creates automatic quantitative summaries and HTML
reports that we need for QC ...

● Tabulate/compare dataset basics
– Orientation, data type, voxel size, ...
– min, max values, NIFTI properties, ...

● Check consistency across runs, sessions,
subjects; missing/extra data

● Programs:
– 3dinfo, nifti_tool, 3dBrickstat
– gtkyd_check.py,

gen_ss_review_table.py

Getting To Know Your Data

older (more
work for user)

newer (more
convenient)

Ni Nj Nk Nv orient ADi ADj ADk oblq TR prefix
128 128 34 144 RPI 1.875004 1.874996 4.000003 23.147 2.000000 sub-501.nii.gz
128 128 34 144 RPI 1.874997 1.874997 4.000003 3.695 2.000000 sub-502.nii.gz
128 128 34 144 RPI 1.874999 1.874997 3.999999 6.245 2.000000 sub-503.nii.gz
128 128 34 144 RPI 1.874996 1.875002 3.999995 4.795 2.000000 sub-504.nii.gz
80 80 34 144 RPI 3.000002 3.000005 3.999999 1.887 2.000000 sub-505.nii.gz
80 80 35 144 RPI 3.000001 2.999996 3.999999 6.980 2.000000 sub-506.nii.gz
80 80 35 144 RPI 3.000001 3.000000 4.000004 9.429 2.000000 sub-507.nii.gz
80 80 39 144 RPI 2.999999 2.999998 4.000004 9.190 2.000000 sub-508.nii.gz
...

inconsistent
matrix sizes

inconsistent
voxel sizes

GTKYD - Getting information
Example: Tabulate raw dataset properties (e.g., all subject EPIs).

gtkyd_check.py \
 -infiles group_study/sub*/func*/epi*.nii.gz \
 -outdir group_summary

gen_ss_review_table.py \
 -outlier_sep space \
 -report_outliers 'ad3' VARY \
 -report_outliers 'ad3' GT 2.8 \
 -report_outliers 'orient' VARY \
 -report_outliers 'is_slice_timing_nz' EQ 0 \
 -infiles group_summary/dset*.txt \
 -write_outliers group_summary.vary.txt

Example: Which subject’s data are not like the others?
● “infiles” are a set of simple text file dictionaries of properties
● “report_outliers” are list of properties to compare/search

● Includes: >, >=, <, <=, !=, ==, varying across dsets
● Scriptable, shareable QC command to make a table of outlier subjects

GTKYD - Getting information

● Particularly useful after running
afni_proc.py (outputs useful summary file)
– Check motion, censoring counts, ...
– Compare GCOR, TSNR, ...

● Programs:
– gen_ss_review_table.py

AP Quantitative review

 gen_ss_review_table.py \
 -outlier_sep space \
 -report_outliers 'final DF fraction' LE 0.6 \
 -report_outliers 'censor fraction' GE 0.2 \
 -report_outliers 'average censored motion' GE 0.15 \
 -report_outliers 'max censored displacement' GE 8 \
 -report_outliers 'global correlation (GCOR)' GE 0.20 \
 -report_outliers 'flip guess' EQ DO_FLIP \
 -infiles ${all_infiles}

AP Quant – tabulate/search quantities

Example: Single, scriptable command of quantitative exclusion criteria
● Too few final degrees of freedom (DFs), too many time points censored
● Too much motion even after censoring, too high instance(s) of motion
● Too high global correlation (GCOR), appears to have left-right flipping

→

Subject final DF fraction censor fraction ... flip guess
SHOW LE:0.6 GE:0.2 EQ:DO_FLIP
sub-507 0.277778 0.618056
sub-511 0.479167 0.416667
sub-512 0.250000
sub-518 DO_FLIP
sub-519 0.409722 0.486111 DO_FLIP

AP Quant – tabulate/search quantities

→ Output: Simple output table listing subjects
● Might use to exclude or warn about
● Can rerun as more subjects are acquired
● Share with others and/or publish

● Visualize data for “quick review”
– data properties/coverage
– processing success (e.g., align)
– spatiotemporal aspects (stats/corr)

● Tools
– afni_proc.py generates HTML report
– open_apqc.py -infiles QC/index.html

AP Qualitative review

AP Qual – QC HTML

basic usage: open one HTML with local server running
open_apqc.py \
 -infiles data_21_ap/sub-001/*results/QC_*/index.html
open many subject HTMLs, jump all to same starting
location:
open_apqc.py \
 -infiles data_21_ap/sub*/*results/QC_*/index.html \
 -jump_to vstat

Versatile to use, and “open_apqc.py” starts local server running
● View many properties across a given subject
● View the same property across many subjects (double-click gold text)
● Save QC ratings and notes instantly
● Fire up AFNI GUI and NiiVue viewer instances with single button clicks

Some APQC HTML examples
(from the Open QC Project data)

APQUAL:
vorig

APQUAL:
vstat (DMN)

APQUAL:
vstat (vis)

APQUAL:
corr_brain

APQUAL:
radcor

APQUAL:
TSNR

APQUAL:
variance lines

APQUAL:
LR flips

(Glen et al., 2020)

● Some datasets need more in-depth
follow-ups to determine what is there

● Visualize with deep dives, now more
efficiently connected within AFNI QC
HTML

● Tools
– APQC HTML pages, afni or NiiVue
– afni GUI, suma GUI, InstaCorr

Graphical User Interface

GUI:
InstaCorr

GUI:
InstaCorr graphs

● Motion plots
● Stimulus timing
● Stimulus correlation: was the model

setup OK?
● Participant responses: was the task

done?
● F-stats, t-stats: full model, individual

stimulus response mapping

Stimulus timing (task FMRI)

STIM:
Full F-stat

other QC:
motion plots

Summary
● Real-world data quality issues - often missed
● There are more problems out there than shown here
● There will be new problems with data
● AFNI has many tools, generally designed with the motto of:

“Helping users stay close to their data”
– Use QC steps to stay close to your own data!

Acknowledgments
Rick Reynolds - the chief architect of afni_proc.py

Paul Taylor - quality is his middle name - chief QC reporter
Bob Cox - AFNI founder, developer of GUI and InstaCorr

Taylor Hanayik and Chris Rorden - NiiVue authors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

