AFNI & FMRI
Introduction, Concepts, Principles

Analysis of Functional NeuroImages
by
Robert W Cox, PhD

Released under the GNU General Public License Version 2 (GPL)
[or any later GPL version]

AFNI is a research tool.
Clinical uses are not supported or advised.

http://afni.nimh.nih.gov/afni
AFNI = Analysis of Functional NeuroImages

• Developed to provide an environment for FMRI data analyses
 • And a platform for development of new software

• AFNI refers to both the program of that name and the entire package of external programs and plugins (more than 200)

• Important principles in the development of AFNI:
 • Allow user to stay close to the data and view it in many different ways
 • Give users the power to assemble pieces in different ways to make customized analyses
 ̶ “With great power comes great responsibility”
 — to understand the analyses and the tools
 • “Provide mechanism, not policy”
 • Allow other programmers to add features that can interact with the rest of the package
Principles (and Caveats) We* Live By

• Fix significant bugs as soon as possible
 ▪ But, we define “significant”
• Nothing is secret or hidden (AFNI is open source)
 ▪ But, possibly not very well documented or advertised
• Release early and often
 ▪ All users are beta-testers for life
• Help the user (message board; consulting with NIH users)
 ▪ Until our patience expires
• Try to anticipate users’ future needs
 ▪ What we think you will need may not be what you actually end up needing

*
Before We Really Start

- AFNI has many programs and they have many options
- Assembling the programs to do something useful and good seems confusing (OK, *is* confusing) when you start
- To help overcome this problem, we have “super-scripts” that carry out important tasks
 - Each script runs multiple AFNI programs
 - We recommend using these as the basis for FMRI work
 - When you need help, it will make things simpler for us and for you if you are using these scripts
- `afni_proc.py` = Single subject FMRI pre-processing and time series analysis for functional activation
 - `uber_subject.py` = GUI for `afni_proc.py`
- `align_epi_anat.py` = Image alignment (registration), including anatomical-EPI, anatomical-anatomical, EPI-EPI, and alignment to atlas space (Talairach/MNI)
What is Functional MRI?

- **1991**: Discovery that MRI-measurable signal increases a few % *locally* in the brain subsequent to increases in neuronal activity (Kwong, *et al.*)

Cartoon of MRI signal in a single “activated” brain voxel

- **A**: Pre-activation baseline
- **B**: 5 s neural activity
- **C**: ≈ 2 s delay
- **D**: 4-5 s rise
- **E**: 5 s plateau
- **F**: 4-6 s fall
- **G**: Return to baseline (or undershoot)

Signal increase caused by change in H₂O surroundings: more oxygenated hemoglobin is present

Contrast through time
How FMRI Experiments Are Done

• Alternate subject’s neural state between 2 (or more) conditions using sensory stimuli, tasks to perform, ...
 • Can only measure relative signals, so must look for changes in the signal between the conditions

• Acquire MR images repeatedly during this process

• Search for voxels whose NMR signal time series (up-and-down) matches the stimulus time series pattern (on-and-off)
 • FMRI data analysis is basically pattern matching in time

• Signal changes due to neural activity are small
 • Need 500 or so images in time series (in each slice) takes 30 min or so to get reliable activation maps
 • Usually break image acquisition into shorter “runs” to give the subject and scanner some break time

• Other small effects can corrupt the results post-process the data to reduce these effects & be vigilant

• Lengthy computations for image recon and temporal pattern matching data analysis usually done offline
Sample Data Time Series

- 64×64 matrix (TR=2.5 s; 130 time points per imaging run)
- Somatosensory task: 27 s “on”, 27 s “rest”
- Note that this is *really* good data

Pattern of expected BOLD signal

Pattern fitted to data

One echo-planar image

One anatomical image, with voxels that match the pattern given a color overlay
• Basic unit of data in AFNI is the **dataset**
 - A collection of 1 or more 3D arrays of numbers
 - Each entry in the array is in a particular spatial location in a 3D grid (a **voxel** = 3D pixel)
 - Image datasets: each array holds a collection of slices from the scanner
 - Each number is the signal intensity for that particular voxel
 - Derived datasets: each number is computed from other dataset(s)
 - e.g., each voxel value is a t-statistic reporting “activation” significance from an FMRI time series dataset, for that voxel
 - Each 3D array in a dataset is called a **sub-brick**
 - There is one number in each voxel in each sub-brick
A Little Bit Bigger

one voxel

Sub-brick 0

Sub-brick 1

Sub-brick 2

Sub-brick 3
What's in a Dataset: Header Stuff

• Besides the voxel numerical values, a dataset also contains auxiliary information, including (some of which is optional):
 - xyz dimensions of each voxel (in mm)
 - Orientation of dataset axes;
 for example, x-axis=R-L, y-axis=A-P, z-axis=I-S
 = axial slices (we call this orientation “RAI”)
 - Location of dataset in scanner coordinates
 - Needed to overlay one dataset onto another
 - Very important to get right in FMRI, since we deal with many datasets
 - Time between sub-bricks, for **3D+time** datasets
 - Such datasets are the basic unit of FMRI data (one per imaging run)
 - Statistical parameters associated with each sub-brick
 - e.g., a t-statistic sub-brick has degrees-of-freedom parameter stored
 - e.g., an F-statistic sub-brick has 2 DOF parameters stored
 - Et cetera, et cetera, et cetera …
AFNI Dataset Files - 1

• AFNI formatted datasets are stored in 2 files
 - The .HEAD file holds all the auxiliary information
 - The .BRIK file holds all the numbers in all the sub-bricks

• Datasets can be in one of 3 2 coordinate systems (“views”)
 - Original data or +orig view: from the scanner
 - AC-PC aligned or +acpc view:
 - Dataset rotated/shifted so that the anterior commissure and posterior commissure are horizontal (y-axis), the AC is at (x,y,z) = (0,0,0), and the hemispheric fissure is vertical (z-axis)
 - Talairach or +tlrc view:
 - Dataset has also been rescaled to conform to the Talairach-Tournoux atlas dimensions (RL=136 mm; AP=172 mm; IS=116 mm)
 - AKA Talairach or Stereotaxic coordinates
 - Not quite the same as MNI coordinates, but very close
 - All datasets scaled+aligned to some atlas are labeled +tlrc
 - Header can contain name of actual atlas “space” (e.g., MNI)
AFNI Dataset Files - 2

• AFNI dataset filenames consist of 3 parts
 ▪ The user-selected **prefix** (almost anything)
 ▪ The view (one of +orig, +acpc, or +tlrc)
 ▪ The **suffix** (one of .HEAD or .BRIK)
 ▪ Example: **BillGates+tlrc.HEAD** and **BillGates+tlrc.BRIK**
 ▪ When creating a dataset with an AFNI program, you supply the **prefix**; the program supplies the rest

• AFNI programs can **read** datasets stored in several formats
 ▪ ANALYZE (.hdr/.img file pairs); i.e., from SPM, FSL
 ▪ MINC-1 (.mnc); i.e., from mnitools [but not MINC-2]
 ▪ CTF (.mri, .svl) MEG analysis volumes
 ▪ ASCII text (.1D) — numbers arranged into columns
 ▪ Have conversion programs to write out MINC-1, ANALYZE, ASCII, and NIfTI-1.1 files from AFNI datasets, if desired
NIfTI Dataset Files

- NIfTI-1 (.nii or .nii.gz) is a standard format that AFNI, SPM, FSL, BrainVoyager, et al., have agreed upon
 - Adaptation and extension of the old ANALYZE 7.5 format
 - Goal: easier interoperability of tools from various packages
- All data is stored in 1 file (cf. http://nifti.nimh.nih.gov/)
 - 348 byte header (extensions allowed; AFNI uses this feature)
 - Followed by the image binary numerical values
 - Allows 1D–5D datasets of diverse numerical types
 - .nii.gz suffix means file is compressed (with gzip)
- AFNI now reads and writes NIfTI-1 (and NIfTI-2) datasets
 - To write: when you give the prefix for the output filename, end it in “.nii” or “.nii.gz”, and all AFNI programs will automatically write NIfTI-1.1 format instead of .HEAD/.BRIK
 - To read: just give the full filename ending in “.nii” or “.nii.gz”
Getting and Installing AFNI

• AFNI runs on Unix systems: Linux, Sun, Mac OS X
 ▪ Can run under Windows with Cygwin Unix emulator
 ○ This option is really just for trying it out — not for production use!

• You can download precompiled binaries from our Website
 ▪ Also: documentation, message board, humor, data, class materials, …

• You can download source code and compile it
 ▪ Also from GitHub: https://github.com/afni/AFNI

• AFNI is updated fairly frequently, so it is important to update occasionally -- [@update.afni.binaries](https://github.com/afni/AFNI)
 ▪ We can’t help you with outdated versions!
 ▪ Please check for updates every 6 months (or less)
AFNI at the NIH Scanners

- AFNI can take 2D images in “realtime” from an external program and assemble them into 3D+time datasets slice-by-slice
- FMRI Facility scanners at the NIH (GE and Siemens) are set up to start AFNI on a remote Linux computer automatically when EPI acquisition starts, and then the Dimon program is used to send images into AFNI as they are reconstructed:
 - For immediate display (images and graphs of time series)
 - Plus: graphs of estimated subject head movement
- Goal is to let you see image data as they are acquired, so that if there are any big problems, you can fix them right away
 - Sample problem: someone typed in the imaging field-of-view (FOV) size wrong (240 cm instead of 24 cm), and so got garbage data, but only realized this too late (after scanning 8 subjects this way) — D’oh!
Other Parts of AFNI

• Batch mode programs and scripts
 ▪ Are run by typing commands directly to computer, or by putting commands into a text file (script) and later executing them

• Good points about batch mode
 ▪ Can process new datasets exactly the same as old ones
 ▪ Can link together a sequence of programs to make a customized analysis (a personalized pipeline)
 ▪ Some analyses take a long time (are not interactive)

• Bad points about batch mode
 ▪ Learning curve is “all at once” rather than gradual
 ▪ If you are, like, under age 35, you may not know how to, like, type commands into a computer to make it do things
 o But we don’t make you use punched cards or paper tape (yet)
AFNI Batch Programs

Many many important capabilities in AFNI are only available in batch programs

- A few examples (of more than 100, from trivial to complex)

 - **3dDeconvolve** + **3dREMLfit** = multiple linear regression on 3D+time datasets; fits each voxel’s time series to activation model, tests these fits for significance (**3dNLfim** = nonlinear fitting)

 - **3dvolreg** = 3D+time dataset registration, to correct for small subject head movements, and for inter-day head positioning

 - **3dANOVA** + **3dLME** = 1-, 2-, 3-, and 4-way ANOVA/LME layouts: combining & contrasting datasets in Talairach space

 - **3dcalc** = general purpose voxel-wise calculator (very useful)

 - **3dsvm** = SVM multi-voxel pattern analysis program

 - **3dresample** = re-orient and/or re-size dataset voxel grid

 - **3dSkullStrip** = remove “skull” from anatomical dataset

 - **3dDWItoDT** = compute diffusion tensor from DWI (nonlinearly)
SUMA, et alii

- **SUMA** is the AFNI surface mapper
 - For displaying surface models of cortex
 - Surfaces from [FreeSurfer](https://surfer.nmr.mgh.harvard.edu) (MGH) or [Caret](http://www.caret.org) (Wash U) or [BrainVoyager](https://www.brainvoyager.com) (Brain Innovation)
 - Can display functional activations mapped from 3D volumes to the cortical surface
 - Can draw ROIs directly on the cortical surface
 - vs. AFNI: ROIs are drawn into the 3D volume
- SUMA is a separate program from AFNI, but can “talk” with AFNI (like a plugout) so that volume & surface viewing are linked
 - Click in AFNI or SUMA to change focus point, and the other program jumps to that location at the same time
 - Functional (color) overlay in AFNI can be sent to SUMA for simultaneous display
- And much more — stayed tuned for the SUMA talks to come!
Color from AFNI, Images from SUMA
Images captured with the ‘R’ recorder function, then saved as animation with Save:aGif control
Other Educational Presentations

• How to get images into AFNI or NIfTI format (program: to3d)
• Detailed hands-on with using AFNI for data viewing (fun)
• Signal modeling & analysis: theory & hands-on (3dDeconvolve et al.)
• Image registration (3dvolreg et al.)
• Volume rendering hands-on (fun level=high)
• ROI drawing hands-on (fun level=extreme)
• Transformation to Talairach hands-on (fun level=low)
• Group analysis: theory and hands-on (3dANOVAX and beyond)
• Experiment design
• FMRI analysis from start to end (the “soup to nuts” hands-on)
• SUMA hands-on (fun level=pretty good)
• Surface-based analysis
• Connectivity (resting state, white matter tracts)
• AFNI “Jazzercise” (practice sessions & directed exercises)