Alignment and Atlases

What does aligning mean and why do we want to do it?

- Alignment means to bring two objects into the same space so that each location within one object corresponds to the same location in the other
- Why?
 - motion correction across time
 - align EPI to anatomical data or vice versa to assign a location with a functional result
 - compare data from longitudinal studies
 - compare data from different scanners, sites
 - compare results with a standard template or atlas for standardized locations and structures

Alignment goals and tools in AFNI

- EPI data across time in a single run or across runs to a base image
 - 3dvolreg motion correction (rigid)
- Align data to template
 - 3dWarpDrive, @auto_tlrc align similar volumes (affine) even across subjects
 - * 3dQwarp, auto_warp.py align similar volumes nonlinearly to template
- Align images across modalities EPI to anat
 - * **3dAllineate** align different or similar volumes
 - align_epi_anat.py general alignment script to align EPI with anatomical data
- Include motion correction, alignment of EPI to anatomical in fMRI processing pipeline script
 - * afni_proc.py
- Correct for motion between two volumes by aligning in two dimensions using corresponding slices
 - ♦ @2dwarper.Allin non-linear alignment of slices
 - ♦ @2dwarper, 2dimreg limit alignment to specific plane

Alignment tools in AFNI (continued)

- Align partial data to roughly the right part of the brain
- Nudge plug-in visually align two volumes
- rotate by known amount between volumes
- 3drotate moves (shifts and rotates) volumes
- 3dWarp make oblique, deoblique to match another dataset
- Put centers of data from outside sources in roughly the same space
- @Align_Centers, 3dCM put centers or centers of mass of dataset in same place
- align specific regions across subjects
- 3dTagalign, tagset plugin place and align volumes using corresponding fiducial marker points
- align one jpeg image to another
- imreg align two 2D images

Image and Volume Registration with AFNI

- Goal: bring images collected with different methods and at different times into spatial
- Facilitates comparison of data on a voxel-by-voxel basis
 - Functional time series data will be less contaminated by artifacts due to subject movement
 - Can compare results across scanning sessions once images are properly registered
 - Can put volumes in standard space such as the stereotaxic Talairach-Tournoux coordinates
- Most (all?) image registration methods now in use do pair-wise alignment:
 - Given a base image J(x) and target (or source) image I(x), find a geometrical transformation T[x] so that I(T[x]) ≈ J(x)
 - T[x] will depend on some parameters
 - \heartsuit Goal is to find the parameters that make the transformed I a 'best fit' to J
 - To register an entire time series, each volume I_n(x) is aligned to J(x) with its own transformation T_n[x], for n=0, 1, ...
 - \bigcirc Result is time series $I_n(T_n[x])$ for n=0, 1, ...
 - User must choose base image J(x)

- Most image registration methods make 3 algorithmic choices:
 - How to measure mismatch E (for error) between I(T[x]) and J(x)?
 - \bigcirc **Or** ... How to measure goodness of fit between **I**(**T**[x]) and **J**(x)?
 - **△ E**(parameters) = **–Goodness**(parameters)
 - How to adjust parameters of T[x] to minimize E?
 - How to interpolate I(T[x]) to the J(x) grid?
 - \bigcirc So we can compare voxel intensities directly
- The input volume is transformed by the optimal **T**[**x**] and a record of the transform is kept in the header of the output.
- Finding the transform to minimize **E** is the bulk of the registration work. Applying the transform is easy and is done on the fly in many cases.
- If data starts off far from each other, may add a coarse pass (twopass) step
 - ◆ guess a lot among all the parameters (rotations, shifts, ...), measure cost
 - best guesses, tweak the parameters (optimize) and measure again

Now, applications of alignment...

Alignment process - overview

• Preprocess – mask data, weight data

-7-

- If far off, take some random guesses (-twopass)
- Optimize parameters on initial or best sets (6,12,39,1000's)
 - Use new parameters to transform input
 - Interpolate onto base data's grid
 - Measure alignment error with cost functional
 - Less than minimum error finished
 - Better keep adjusting with same direction
 - Worse try other parameters
- Create final output by interpolating onto output grid
 - save datasets, transform parameters

Within Modality Registration

- AFNI 3dvolreg and 3dWarpDrive programs match images by grayscale (intensity) values
 - E = (weighted) sum of squares differences = $\sum_{x} w(x) \cdot \{I(T[x]) J(x)\}^2$

○ Only useful for registering 'like images':

▲ Good for SPGR SPGR, EPI EPI, but not good for SPGR EPI

Several interpolation methods :

- Sdvolreg is designed to run VERY fast for EPI@EPI registration with small movements — good for FMRI purposes but restricted to 6-parameter rigidbody transformations.
- Solution Solution

afni GUI – graph-image video/ricochet, arrow keys. Graph spikes.

Image courtesy of Jonathan Power, NIMH

In statistical results, "activation" / "deactivation" occurs at high contrast boundaries like edge of brain or ventricles.

- AFNI program 3dvolreg is for aligning 3D volumes by rigid movements
 - T[x] has 6 parameters:
 - \heartsuit Shifts along *x*-, *y*-, and *z*-axes; Rotations about *x*-, *y*-, and *z*-axes
 - Generically useful for intra- and inter-session alignment
 - Motions that occur within a single TR (2-3 s) cannot be corrected this way, since method assumes rigid movement of the entire volume
- AFNI program 3dWarpDrive is for aligning 3D volumes by affine transformations
 - T[x] has up to 12 parameters:
 - Same as 3dvolreg plus 3 Scales and 3 Shears along *x*-, *y*-, and *z*-axes
 - Generically useful for intra- and inter-session alignment
 - Generically useful for intra- and inter-subject alignment
 - AFNI program 2dImReg is for aligning 2D slices
 - T[x] has 3 parameters for each slice in volume:
 - \wp Shift along *x*-, *y*-axes; Rotation about *z*-axis
 - Useful for sagittal EPI scans where dominant subject movement is 'nodding' motion that may be faster than TR
 - It is possible and sometimes even useful to run 2dImReg to clean up sagittal nodding motion, followed by 3dvolreg to deal with out-of-slice motion

• Intra-session registration example:

```
3dvolreg -base 4 -heptic -zpad 4 \
    -prefix fred1_epi_vr \
    -1Dfile fred1_vr_dfile.1D \
    fred1_epi+orig
```

- ◇ -base 4 ⇒ Selects sub-brick #4 of dataset fred1_epi+orig as base image J(x)
- ◆ -heptic ⇒ Use 7th order polynomial interpolation
- -zpad 4 ⇒ Pad each target image, I(x), with layers of zero voxels 4 deep on each
 face prior to shift/rotation, then strip them off afterwards (before output)
 - Zero padding is particularly desirable for -Fourier interpolation
 - ♀ also good for large rotations, some data may get 'lost' if no zero padding
- -prefix fred1_epi_vr ⇒ Save output dataset into a new dataset with the given
 prefix name (e.g., fred1_epi_vr+orig)
- **-1Dfile fred1_vr_dfile.1D** ⇒ Save estimated movement parameters into a
 1D (i.e., text) file with the given name
 - Movement parameters can be plotted with the **1dplot** command and used later....

Try this (in AFNI_data6/afni) :

3dvolreg -base 3 -cubic -prefix epi_r1_vrt -1Dfile vr_dfile.1D epi_r1+orig 1dplot -volreg vr_dfile.1D & Can now register second dataset from same session:

```
3dvolreg -base 'fred1_epi+orig[4]' -heptic -zpad 4 \
    -prefix fred2_epi_vr -1Dfile fred2_vr_dfile.1D \
    fred2_epi+orig
```

- Note base is from different dataset (fred1_epi+orig) than input
 (fred2_epi+orig)
 - Aligning all EPI volumes from session to EPI closest in time to SPGR (if not aligning to anatomical)

 \bigcirc Note motion peaks at time \approx 160s: subject jerked head up at that time

"Fixing Motion"

- Motion occurs over slices and not volumes and moves data off original grid
- "Regressing out" motion parameters, derivatives, displacement, euclidean norm of derivatives (summary parameters)
- Censoring ("scrubbing", "sweeping under the mat",...)
- Experimental design kids, monkeys, juice, talking, waving hands wildly....
- Interpreting results differences in motion between groups or something physiological
- Notice activation following high contrast borders, "blinds" effects

```
Try this (in AFNI_data6/afni) :

1d_tool.py -infile vr_dfile.1D -set_nruns 1 -censor_motion 1 ett

1dplot ett_enorm.1D &

cat ett_CENSORTR.txt
```

Motion correction – caveats

- Motion is usually not completely correctable, so set motion parameters as regressors of no interest. Interpolation generally blurs data and depends on method and grid/resolution of EPI.
- Check in the AFNI GUI to be sure the data is not bouncing around after correction
- Example Monkey sips juice at stimulus time, and large jaw muscles move. If the muscles are not masked, then motion correction may track muscles rather than brain.

-14-

Cross Modality Registration

- **3dAllineate** can be used to align images from different methods
 - * For example, to align EPI data to SPGR / MPRAGE:
 - Run 3dSkullStrip on the SPGR dataset so that it will be more like the EPI dataset (which will have the skull fat suppressed)
 - O Use 3dAllineate to align the EPI volume(s) to the skull-stripped SPGR volume
 - Allows more general spatial transformations affine, bilinear, non-linear (polynomial warping)
- **3dAllineate** has several different "cost" functions (E) available
 - teastsq = Least Squares (3dvolreg, 3dWarpDrive)
 - * mutualinfo = Mutual Information
 - norm_mutualinfo = Normalized Mutual Information
 - hellinger = Hellinger Metric [the default cost function]
 - corratio_mul = Correlation ratio (symmetrized by multiplication)
 - correlatio_add = Correlation ratio (symmetrized by addition)
 - corratio_uns = Correlation ratio (unsymmetric)
 - **lpc** = Local Pearson Correlation (negative)
 - **1pa** = Local Pearson Correlation (absolute value)

-15-

align_epi_anat.py

- Goal: Want to align anat and EPI (anat to EPI or EPI to anat or dset1to2 or dset2to1)
- LPC method Local Pearson Correlation to match dark CSF in anatomical data with bright CSF in EPI data.
- align_epi_anat.py script preprocessing and calls 3dAllineate for alignment
- @AddEdge for visualization
- Simple Example:

```
align_epi_anat.py -anat anat+orig \
-epi epi_r1+orig \
-AddEdge -epi_base 0 -suffix _al4class
cd AddEdge
afni -niml -yesplugouts &
```

@AddEdge

Combines deoblique, motion correction, alignment and talairach transformations into a single transformation. Also performs slice timing correction and applies transformations to "child" datasets.

@AddEdge display

Before

After

@snapshot_volreg anat+orig. epi_r1+orig edges.jpg
aiv edges.jpg

Alignment Visualization in AFNI

- Graph and image travel through time for motion correction or for a thousand datasets in a row.
- Multiple controllers and crosshairs up to ten datasets at a time, quick and rough.
- Overlay display opacity control, thresholding. A single pair good for different or similar datasets.
- Overlay toggle, Underlay toggle wiggle, good but a little tricky ('o' and 'u' keys in image viewer)
- Sliding Overlay ('4'/'5' keys), Fade-in overlay ('6' key), Checkerboard Underlay ('#' key) two similar datasets in underlay but must be virtually identical. Good for comparing two processing methods
- Edge display for underlay effective pairwise comparison for quick fine structure display and comparison with overlay dataset with opacity. One dataset should have reliable structure and contrast. Now with 'e' toggle.
- @AddEdge single or dual edges with good contrast for pairwise comparison.

Alignment strategies with align_epi_anat.py

- Defaults work usually (>90% FCON1000)
 - Problems:
- Far off start "-big_move", "-giant_move","-ginormous_move"
- Poor contrast "-cost Ipa", "-cost nmi", "-cost Ipc+ZZ"
- Poor non-uniformity "-edge", "-cost lpa"
- stroke/MS lesions, tumors, monkeys, rats, multi-modality (CT/PET/DTI/...), something else? – see us, post message

Real and Imaginary Problems

Saved by the contrast

 However, bias may result in erroneous group differences

.s.s 10/04/10

Alignment-special cases

DBS – align CT with electrodes to pre-surgical MRI, PET

Dataset courtesy of Justin Rajendra, (Formerly at Emory, Now in our group. Woohoo!) Also see @Install_DBSproc for DBS with CT and DTI processing

(S. Horovitz)

ECOG – align CT with electrodes to pre-surgical MRI

Dataset courtesy of Anna Gaglianese (University of Utrecht, Netherlands)

Rat Brains

Alignment of 12 hour Manganese enhanced MRI scan (MEMRI) to start

#!/bin/tcsh
align_times.csh
set basedset = 14_pre+orig
foreach timedset (14_*hr+orig.HEAD)
 align_epi_anat.py -prep_off -anat \$timedset -epi \$basedset \
 -epi_base 0 -anat_has_skull no -epi_strip None -suffix _edge2prep \
 -cost lpa -overwrite -edge -rat_align
end
3dTcat -prefix 14_timealigned_edge 14_pre+orig. 14*edge2prep+orig.HEAD

Data from Der-Yow Chen (NINDS)

uber_align_test.py

select input data set options create script run script

OOO 🔿 🔿 kuber_align_test.	ру	(Current Atlas: L
<u>F</u> ile ⊻iew Hidde <u>n</u> <u>H</u> elp		
dataset inputs		
anat browse anat sers/dglen/data/temp/peter/hires_strip+orig.HEAD Ouit Save		
EPI browse EPI //Users/dglen/data/temp/peter/episb0+orig.HEAD		
EPI base 0	000 🛛	processing command: tcsh -xef s
all options Cost functions Clear costs Plpc+ZZ Plpc+ Plpa Plpa Plpy costs Plpy costs Plpy costs	set top_dir = /Users/dglen/data/temp/peter set in_anat = /Users/dglen/data/temp/peter/hires_strip set in_epi = /Users/dglen/data/temp/peter/hires_strip set in_ebase = 0 set center_base = /Users/dglen/data/temp/peter/hires set cost_main = lpc+ZZ set align_opts = (-tshift off -volreg off -giant_move -an set results_dir = align.results if (-e align.results) then mkdir align.results) then mkdir align.results) anat /Users/dglen/data/t ++ 3dbucket: AFNI version=AFNI_2011_05_26_1457 (A *+ WARNING: If you are performing spatial transforma such as /Users/dglen/data/temp/peter/hires_strip+or or viewing/combining it with volumes of differing obliq you should consider running: 3dWarp -deoblique	
costs to apply: Ipc+ZZ	See 3dWarp -help fo ++ Oblique dataset: 3dbucket -prefix alig ++ 3dbucket: AFNI v	or details. :/Users/dglen/data/temp/peter/hir¢ In.results/epi /Users/dglen/data/te /ersion=AFNI_2011_05_26_1457 (A
	3drefit -deoblique ar	nat+orig epi+orig
generate align epi anat.py align script		
	exec directory:	tool_results/tool.001.align_test
t short _ 🖉 _	exec command:	tcsh -xef script.align & tee outp
	status:	process finished: SUCCESS
		Sta

afni_proc.py – alignment handling

- Single script to do all the processing of a typical fMRI pipeline including motion correction (3dvolreg), alignment (align_epi_anat.py)
- combines transformations when possible
- from example 6 in afni_proc.py's prodigious help:

```
afni_proc.py -subj_id sb23.e6.align \
    -dsets sb23/epi_r??+orig.HEAD \
    -do_block align tlrc \
    -copy_anat sb23/sb23_mpra+orig \
    -tcat_remove_first_trs 3 \
    -volreg_align_to last \
    -volreg_align_e2a \
    -volreg tlrc warp \
```

To process in orig space, remove -volreg_tlrc_warp. To apply manual tlrc transformation, use -volreg_tlrc_adwarp. To process as anat aligned to EPI, remove -volreg_align_e2a.

Transformation Chains Example

-26-

Alignment across two sessions

http://afni.nimh.nih.gov/sscc/dglen/alignmentacross2sessions

-27-

Nonlinear Warping

3dQwarp

- $I_{\text{new}}(\mathbf{x}) = I_{\text{old}}(\mathbf{W}(\mathbf{x}))$
 - where W(x) depends on a *lot* of parameters (1000-50000+)
 - * Method: Incremental transformation with Hermite cubic polynomials over finer and finer 3D patches. Output is both aligned dataset and the warp and the inverse warp deformations in Dx,Dy,Dz
 - * Better alignment of anatomical volumes to template space
 - Then carry the functional results to template space for better group analyses?
 - ♀ As an aid to brain segmentation and atlas-ing accuracy?
- ★ Pre- and post-surgical alignment, EPI distortion correction
- Related programs and scripts:
 - * 3dNwarpApply, 3dNwarpCat, 3dNwarpCalc, 3dNwarpAdjust, 3dNwarpFuncs
 - * auto_warp.py, afni_proc.py

UnwarpEPI.py - blipup-blipdown script (Vinai Roopchansingh)

Blip-up/down distortion correction

Blip-up (uncorrected)

Blip-down

Corrected

Left and Right - flipping

align_epi_anat.py -anat anat+orig -epi epi_r1+orig -epi_base 0 \ -giant_move -check_flip

DWI Motion Correction

Original motion

FA maps with iteration

ATLASES

ATLAS DEFINITIONS

Template - a reference dataset used for matching shapes. Examples: TT_N27+tlrc, MNI_EPI+tlrc, TT_ICBM452+tlrc.

TT_N27+tlrc

ATLAS DEFINITIONS

Template Space - x,y,z coordinate system shared by many datasets (the basic shoebox) Examples: TLRC (Talairach-Tourneaux), MNI, MNI_ANAT, ORIG.

ATLAS DEFINITIONS

Atlas - segmentation info. Examples: TTatlas+tlrc, TT_N27_EZ_ML+tlrc, roidset+orig.

TT_N27_EZ_ML+tlrc

Registration To Standard Spaces

Transforming Datasets to Talairach-Tournoux Coordinates

- The original purpose of AFNI (circa 1994 A.D.) was to perform the transformation of datasets to Talairach-Tournoux (stereotaxic) coordinates
 Co-Planar Stereotaxic
- The transformation can be manual, or automatic
- In manual mode, you must mark various anatomical locations, defined in

Jean Talairach and Pierre Tournoux

"Co-Planar Stereotaxic Atlas of the Human Brain"

Thieme Medical Publishers, New York, 1988

- Arking is best done on a high-resolution T1-weighted structural MRI volume
- In automatic mode, you need to choose a template to which your data are aligned. Different templates are made available with AFNI's distribution. You can also use your own templates.
- Transformation carries over to all other (follower) datasets in the same directory
 - This is where the importance of getting the relative spatial placement of datasets done correctly in to3d really matters
 - You can then write follower datasets, typically functional or EPI timeseries, to disk in Talairach coordinates

 - May want to blur volumes a little before comparisons, to allow for residual anatomic variability: AFNI programs 3dmerge or 3dBlurToFWHM
- Hidden in GUI right click on "DataDir" or set AFNI_ENABLE_MARKERS to YES in .AFNIRC
- Manual Transformation proceeds in two stages:
 - 1. Alignment of AC-PC and I-S axes (to +acpc coordinates)
 - 2. Scaling to Talairach-Tournoux Atlas brain size (to +tlrc coordinates)
- Stage 1: Alignment to **+acpc** coordinates:
 - Anterior commissure (AC) and posterior commissure (PC) are aligned to be the y-axis
 - The longitudinal (inter-hemispheric or mid-sagittal) fissure is aligned to be the yzplane, thus defining the z-axis
 - The axis perpendicular to these is the x-axis (right-left)
 - Five markers that you must place using the [Define Markers] control panel:

 AC superior edge = top middle of anterior commissure
 AC posterior margin = rear middle of anterior commissure
 PC inferior edge = bottom middle of posterior commissure
 First mid-sag point = some point in the mid-sagittal plane
 Another mid-sag point = some other point in the mid-sagittal plane

 * This procedure tries to follow the Atlas as precisely as possible
 - ♀ Even at the cost of confusion to the user (e.g., you)

• Stage 2: Scaling to Talairach-Tournoux (+tlrc) coordinates:

 Once the AC-PC landmarks are set and we are in ACPC view, we now stretch/ shrink the brain to fit the Talairach-Tournoux Atlas brain size (sample TT Atlas pages shown below, just for fun)

- Selecting the Talairach-Tournoux markers for the bounding box:
 - There are 12 sub-regions to be scaled (3 A-P x 2 I-S x 2 L-R)
 - * To enable this, the transformed +acpc dataset gets its own set of markers
 - Click on the [AC-PC Aligned] button to view our volume in ac-pc coordinates
 - Select the [Define Markers] control panel
 - A new set of six Talairach markers will appear and the user now sets the bounding box markers (see Appendix C for details):

- Once all the markers are set, and the quality tests passed. Pressing [Transform Data] will write new *header* containing the Talairach transformations (see Appendix C for details)

 — Recall: With AENI, spatial transformations are stored in the header of the output

-40-

Automatic Talairach Transformation with @auto_tlrc

- Is manual selection of AC-PC and Talairach markers bringing you down? You can now perform a TLRC transform *automatically* using an AFNI script called <code>@auto_tlrc</code>.
 - Differences from Manual Transformation:
 - Instead of setting ac-pc landmarks and volume boundaries by hand, the anatomical volume is warped (using 12-parameter affine transform) to a template volume in TLRC space.
 - Anterior Commisure (AC) center no longer at 0,0,0 and size of brain box is that of the template you use.
 - For various reasons, some good and some bad, templates adopted by the neuroimaging community are not all of the same size. Be mindful when using various atlases or comparing standard-space coordinates.
 - ♀ You, the user, can choose from various templates for reference but be consistent in your group analysis.
 - Easy, automatic. Just check final results to make sure nothing went seriously awry.
 AFNI is perfect but your data is not.

- Templates in @auto_tlrc that the user can choose from:
 - TT_N27+tlrc:
 - AKA "Colin brain". One subject (Colin) scanned 27 times and averaged. (www.loni.ucla.edu, www.bic.mni.mcgill.ca)
 - Has a full set of FreeSurfer (surfer.nmr.mgh.harvard.edu) surface models that can be used in SUMA (link).
 - Is the template for cytoarchitectonic atlases (www.fzjuelich.de/ime/spm_anatomy_toolbox)
 - For improved alignment with cytoarchitectonic atlases, I recommend using the TT_N27 template because the atlases were created for it. In the future, we might provide atlases registered to other templates.
 - TT_icbm452+tlrc
 - International Consortium for Brain Mapping template, average volume of 452 normal brains. (www.loni.ucla.edu, www.bic.mni.mcgill.ca)
 - TT_avg152T1+tlrc
 - Montreal Neurological Institute (www.bic.mni.mcgill.ca) template, average volume of 152 normal brains.
 - TT_EPI+tlrc:
 - EPI template from spm2, masked as TT_avg152T1. TT_avg152 and TT_EPI volumes are based on those in SPM's distribution. (www.fil.ion.ucl.ac.uk/spm/)
 - MNI152_T1_2009c+tlrc:
 - MNI's 152 nonlinear asymmetric template

Templates included with AFNI

TT_N27

TT_avg152T1

TT_avg152T2

 $MNI152_T1_2009c$

TT_EPI

MNI_avg152T1

- For warping a volume to a template (Usage mode 1):
 - 1. Pad the input data set to avoid clipping errors from shifts and rotations
 - 2. Strip skull (if needed)
 - 3. Resample to resolution and size of TLRC template
 - 4. Perform 12-parameter affine registration using 3dWarpDrive Many more steps are performed in actuality, to fix up various pesky little artifacts. Read the script if you are interested.
 - Typically this steps involves a high-res anatomical to an anatomical template
 - One could also warp an EPI volume to an EPI template.
 - If you are using an EPI time series as input. You must choose one sub-brick to input. The script will make a copy of that sub-brick and will create a warped version of that copy.

-44-

Applying a transform to follower datasets

- Say we have a collection of datasets that are in alignment with each other. One of these datasets is aligned to a template and the same transform is now to be applied to the other *follower* datasets
- For Talairach transforms there are a few methods:
 - Method 1: Manually using the AFNI interface (see Appendix C)
 - Method 2: With program adwarp

```
adwarp -apar anat+tlrc -dpar func+orig
```

- The result will be: func+tlrc.HEAD and func+tlrc.BRIK
- Method 3: With @auto_tlrc script in mode 2
 - ONLY when -apar dataset was created by @auto_tlrc

 - -input Subject_EPI+orig. -dxyz 3
 - (the output is named Subject_EPI_at+TLRC, by default)
- Why bother saving transformed datasets to disk anyway?
 - * Datasets without . BRIK files are of limited use, only for display of slice images

- Transforming the high-resolution anatomical:
 - (If you are also trying the manual transform on workshop data, start with a fresh directory with no +tlrc datasets)

 Transforming the function ("follower datasets"), setting the resolution at 2 mm:

 You could also use the icbm452 or the mni's avg152T1 template instead of N27 or any other template you like (see @auto_tlrc -help for a few good words on templates) @auto_tlrc Results are Comparable to Manual TLRC:

Standard Spaces

Why use a standard template space?

- Compare across subjects and groups easily for every voxel in the brain
- Standardize coordinates with others
- Know where a voxel is automatically from an atlas
- Mostly automated and no specific ROI drawing required

Why not use a standard template space?

- Inconsistency among subjects
- Inconsistency among groups elderly versus younger
- Use consistent anatomical ROIs with good anatomical knowledge
- Lower threshold for multiple comparison adjustments

Nonlinear alignment to template

Nonlinear alignment

Advantages:

- Great alignment better spatial correspondence across data
- Aligned data matches template

Disadvantages:

- Distortion of individual data
- Aligned data matches template. Choose template carefully
- End limits?
- Skullstripping must be done much more carefully
- Processing time much slower
- Not yet integrated into AFNI GUI for warp-on-demand

Comparing data

- How can I compare regions/voxels across subjects and groups? What works "best"?
 - @auto_tlrc affine registration method to align individual subjects to a template
 - * **auto_warp.py** nonlinear alignment to template better.
 - manual Talairach based on specific markers divides data up based on AC-PC line and brain enclosing boxes. Better for looking at medial structures.
 - 3dTagalign place markers on specific corresponding points among datasets and align with affine transformation
 - ROI creation draw ROI's (Draw Dataset plug-in) for each structure

Choosing a template

- Similar to subject group neonates, pediatric, young adults, elderly, macaque, rabbit...
- Same modality, similar coverage
- Relevant atlas segmentation
- Individual or group template
 - Group average or iterative
- Make your own template (and maybe an atlas too)
 - Haskins pediatric atlas research
 - $\ensuremath{\wp}$ affine group averages
 - $\ensuremath{\wp}$ finding the most "typical" individual in group
 - \wp nonlinear alignment to typical
 - ♀ iterative nonlinear alignment
 - ▲ @toMNI_Awarp, @toMNI_Qwarpar

-53-

Atlas/Template Spaces Differ In Size

MNI is larger than TLRC space.

Atlas/Template Spaces Differ In Origin

TLRC MNI MNI-Anat.

From Space To Space

TLRC MNI MNI-Anat.

- Going between TLRC and MNI:
 - Approximate equation
 - S used by whereami and 3dWarp
 - Manual TLRC transformation of MNI template to TLRC space
 - ♀ used by whereami (as precursor to MNI Anat.), based on N27 template
 - Multiple space coordinates reported in whereami output (AFNI_ATLAS_TEMPLATE_SPACE_LIST)
- Going between MNI and MNI Anatomical (Eickhoff et al. Neuroimage 25, 2005):
 - MNI + (0, 4, 5) = MNI Anat. (in RAI coordinate system)
- Going between TLRC and MNI Anatomical (as practiced in whereami):
 - ♦ Go from TLRC (TT_N27) to MNI via manual xform of N27 template
 - Add (0, 4, 5)

-56-

- There are 48 manners to specify XYZ coordinates
- Two most common are RAI/DICOM and LPI/SPM
- RAI means
 - X is Right-to-Left (from negative-to-positive)
 - Y is Anterior-to-Posterior (from negative-to-positive)
 - Z is Inferior-to-Superior (from negative-to-positive)
- LPI means
 - X is Left-to-Right (from negative-to-positive)
 - Y is Posterior-to-Inferior (from negative-to-positive)
 - Z is Inferior-to-Superior (from negative-to-positive)
- To go from RAI to LPI just flip the sign of the X and Y coordinates
 - Voxel -12, 24, 16 in RAI is the same as 12, -24, 16 in LPI
 - Voxel above would be in the Right, Posterior, Superior octant of the brain
- AFNI allows for all coordinate systems but default is RAI
 - Can use environment variable AFNI_ORIENT to change the default for AFNI AND other programs.
 - See whereami -help for more details.

Atlases Distributed With AFNI TT_Daemon

- TT_Daemon : Created by tracing Talairach and Tournoux brain illustrations.
 - Generously contributed by Jack Lancaster and Peter Fox of RIC UTHSCSA)

Atlases Distributed With AFNI Anatomy Toolbox: Prob. Maps, Max. Prob. Maps

- CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with some created from cytoarchitectonic studies of 10 human post-mortem brains
 - Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of IME, Julich, Germany

🔘 🔘 🖾 [A] AFNI: ziad/abin/TT_N27+tlrc & TT_N27_CA_EZ_PMaps+tlrc

-58-

Atlases Distributed With AFNI: Anatomy Toolbox: MacroLabels

- CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with some created from cytoarchitectonic studies of 10 human post-mortem brains
 - Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of IME, Julich, Germany

🔘 🖯 🕅 🔣 [A] AFNI: ziad/abin/TT_N27+tlrc & TT_N27_EZ_ML+tlrc

Quit
Atlas CA_ML_18_MNIA: Macro Labels (N27)
Focus point: Left SupraMarginal Gyrus
Within 4 mm: Left Superior Temporal Gyrus
Within 6 mm: Left Middle Temporal Gyrus
Atlas CA_MPM_18_MNIA: Cytoarch. Max. Prob. Maps
Focus point: IPC (PF)
Within 2 mm: IPC (PFm)
Within 3 mm: IPC (PFcm)
Within 5 mm: IPC (PGa)
Within 7 mm: TE 3
Atlas CA_PM_18_MNIA: Cytoarch. Probabilistic Maps
Focus point: IPC (PFm)
(p = 0.40)
-AND- IPC (PFcm)
(p = 0.20)
-AND- IPC (PF)
(p = 0.60)
Atlas CA_LR_18_MNIA: Left/Right (N27)
Focus point: Left Brain

-59-

Atlases Distributed With AFNI: Desai PMaps and MPMs

 Atlases generated with typical AFNI pipeline using @auto_tlrc and FreeSurfer segmentation across multiple subjects

-60-

Talairach Daemon (TT_Daemon) problem

-62-

• Some fun and useful things to do with +tlrc datasets are on the 2D slice viewer Right click to get menu: [OOOX[A]u AFNI: dglen/freesurft] OOO2

Colr

Index 🔺 🔻 🚺 15

Swap Norm c 🔻 🔺 b 💌 InstaCorr Set InstaCorr SeedJump Jumpback Jump to (xyz) Jump to (ijk) CO (MNI) -Go to atlas location -Atlas Colors Disp Sav1.jpg Mon Image display Edit Environment \diamond [Go to Atlas Location] Draw Ret 000 X menu bg =12 -Choose One----Brain Structure (from DD_Desai_MPM) ctx_lh_G_and_S_cingul-Mid-Ant [3,-13, 32] ctx_lh_G_and_S_cingul-Mid-Post [4, 15, 38] ctx_lh_G_cingul-Post-dorsal [2, 39, 28] Lets you jump to centroid of ctx_lh_G_cingul-Post-ventral [4, 45, 5] ctx_lh_G_cuneus [1, 81, 14] regions to current default atlas ctx_lh_G_front_inf-Opercular [49,-12, 13] ctx_lh_G_front_inf-Orbital [46,-28, -5] (set by ctx_lh_G_front_inf-Triangul [49,-30, 8] ctx_lh_G_front_middle [35,-31, 36] AFNI ATLAS COLORS) ctx_lh_G_Ins_lg_and_S_cent_ins [37, 8, 5] Works in +orig too ctx_lh_G_insular_short [36, -9, 0] ctx_lh_G_occipital_middle [38, 82, 9] ctx_lh_G_occipital_sup [12, 89, 27] ctx_lh_G_oc-temp_lat-fusifor [32, 43,-18] ctx_lh_G_oc-temp_med-Lingual [5, 68, -8] ctx_lh_G_oc-temp_med-Parahip [20, 12,-24] ctx_lh_G_orbital [27,-34,-12] ctx_lh_G_pariet_inf-Angular [43, 66, 35] ctx_lh_G_pariet_inf-Supramar [56, 37, 33] ctx_lh_G_parietal_sup [21, 63, 53] ctx_lh_G_postcentral [44, 28, 52] ctx_lh_G_precentral [41, 10, 49] ctx_1h_G_precuneus [3, 58, 36] ctx_lh_G_rectus [2,-38,-14] Set Quit Apply

Shows you where you are in various atlases and spaces

(works in +orig too, if you have a transformed parent)

For atlas installation, and much, much more, see help in command line version:

whereami -help

Quit

AFNI whereami

++++++ nearby Atlas structures ++++++ Original input data coordinates in TT_N27 space

Focus point (LPI)=

-54 mm [L], -43 mm [P], 25 mm [S] {TLRC}

-58 mm [L], -44 mm [P], 27 mm [S] {MNI} NeuroSynth SumsDB

-58 mm [L], -48 mm [P], 32 mm [S] {MNI_ANAT}

Atlas HaskinsPeds_NL_atlas1.0: session atlas

Focus point: ctx-lh-superiortemporal

Within 4 mm: ctx-lh-supramarginal

Within 5 mm: ctx-lh-bankssts

Within 7 mm: ctx-lh-inferiorparietal

Atlas TT_Daemon: Talairach-Tournoux Atlas Focus point: Left Inferior Parietal Lobule -AND- Left Brodmann area 40 Within 2mm: Left Supramarginal Gyrus

Within 3 mm: Left Brodmann area 13

Within 4 mm: Left Superior Temporal Gyrus

Within 5 mm: Left Brodmann area 22

Within 6 mm: Left Insula

whereami can provide the user with more detailed information regarding the output of 3dclust

 For instance, say you want more information regarding the center of mass voxels from each cluster (from the 3dclust output). I.e., where do they fall approximately within the atlases?

3dclust -dxyz=1 -1clip 9.5 1 1000 func_FullF+tlrc > clusts.1D whereami -coord_file clusts.1D'[1,2,3]-'__tab | less

++ Input coordinates orientation set by default rules to RAI ++ Input coordinates space set by default rules to TLRC ++++++ nearby Atlas structures +++++++		Ce col out	nter of mass output, umns 1,2,3, from 3dclust put
42 mm [R], -61 mm [P], -3 mm [I] {T-T Atlas} 43 mm [R], -63 mm [P], -7 mm [I] {MNI Brain} 45 mm [R], -69 mm [P], 2 mm [I] {MNI Anat.} Atlas Within Label TT_Daemon 3.0 Right Middle Occipital Gyrus TT_Daemon 3.0 Right Brodmann area 37 TT_Daemon 4.0 Right Inferior Temporal Gyrus TT_Daemon 4.0 Right Inferior Occipital Gyrus TT_Daemon 6.0 Right Inferior Occipital Gyrus TT_Daemon 6.0 Right Inferior Occipital Gyrus TT_Daemon 6.0 Right Inferior Occipital Gyrus TT_Daemon 7.0 Right Brodmann area 19 CA_N27_MPM 4.0 hOC5 (V5 / MT+) CA_N27_ML 0.0 Right Inferior Temporal Gyrus CA_N27_ML 1.0 Right Middle Temporal Gyrus CA_N27_ML 5.0 Right Inferior Occipital Gyrus CA_N27_ML 6.0 Right Middle Occipital Gyrus ******** Please use results with caution! ******** ********* Brain anatomy is quite variable! *********	Prob. MPM 	Code 33 113 29 35 28 96 110 90 86 54 52	Shown: Cluster #1's coordinates according to various atlases (TT, MNI, etc), as well as the name of the anatomical structure that is located at or near these coordinates (which may vary by atlas)

etc...

whereami can report on the overlap of ROIs with atlasdefined regions

whereami -omask anat roi+tlrc

```
++ Input coordinates orientation set by default rules to RAI
++ Input coordinates space set by default rules to TLRC
++ In ordered mode ...
++ Have 2 unique values of:
   Û.
     1
++ Skipping unique value of 0
++ Processing unique value of 1
     195 voxels in ROI
++
++
      195 voxels in atlas-resampled mask
Intersection of ROI (valued 1) with atlas TT_Daemon (sb0):
  89.2 % overlap with Middle Occipital Gyrus, code 33
  6.7 % overlap with Middle Temporal Gyrus, code 35
  95.9 % of cluster accounted for.
Intersection of ROI (valued 1) with atlas TT_Daemon (sb1):
  19.5 % overlap with Brodmann area 37, code 113
  1.5 % overlap with Brodmann area 19, code 96
   21.0 % of cluster accounted for.
      195 voxels in atlas-resampled mask
++
Intersection of ROI (valued 1) with atlas CA_N27_MPM (sb0):
  1.5 % overlap with hOC5 (V5 / MT+), code 110
  1.5 % of cluster accounted for.
++
      195 voxels in atlas-resampled mask
Intersection of ROI (valued 1) with atlas CA_N27_ML (sb0):
   61.0 % overlap with Right Middle Occipital Gyrus, code 52
  20.0 % overlap with Right Middle Temporal Gyrus, code 86
   ____
  81.0 % of cluster accounted for.
```

Atlas colors]

Lets you show atlas regions over your own data (works only in +tlrc).

-66-

Haskins Pediatric Atlas

- Pediatric brain atlas and templates (7-12 years old) – Peter Molfese, (formerly Haskins Labs, now at NIH - woohoo!)
- Manually corrected segmentation from Freesurfer.
- Probabilistic, MPM and template
- ~75 subjects -> 500 (ages 6-13)
- Affine, nonlinear averages, ideal/typical subjects, outliers

Haskins Pediatric Atlas - templates

🔿 🔿 🔿 🔀 [A]u AFNI: molfese 🔿 🔿 🖓 [A]u AFNI: molfese_peds/Affine 🔿 🔿 🐼 [A]u AFNI: molfese_ped. 124 96 74 _ isp Sav1.jpg Mont Done Rec [2%-98%] Disp Sav1.jpg Mont Done Rec e_board.png 🔿 🔿 🔿 🔀 [B]u AFNI: molfese 😝 🔿 🔿 🗙 [B]u AFNI: molfese_peds/iteral 🔿 🔿 🔿 🔀 [B]u AFNI: molfese_ped..

Affine Group

Nonlinear Group I – iterative

Atlases and Templates Available!

 Infant brain atlas and templates – neonate, 1-year, 2-year. Contributed by Feng Shi, UNC

UNC infant templates and atlases - neonate, 1 yr, 2 yr old

 Cerebellum atlas and templates – Jorn Diedrichsen,UCL,UK contribution

-69-

More Atlases and Templates Available!

Ventromedial Prefrontral Cortex (vmPFC, Scott Mackey)

Waxholm Rat Atlas - Papp, et al. Rat brain templates in Paxinos space – Karolinska Institute, Woo Hyun Shim MGH contributions All of these are user

BNST – Torrisi, NIMH

requests or contributions! What do you need?

-70-

Saleem macaque atlas – MRI, surfaces, connections, supplemental webpages

-71-

Saleem macaque atlas – MRI, surfaces, connections, supplemental webpages (in development)

-72-
15R 0:46v

Mapping the digital atlas onto different macaques MRI

D99 - Digital atlas

Reveley, Gruslys, Ye, Samaha, Glen, Saad, Seth, Leopold, and Saleem (in preparation)

12.25R 0:46v medium female

Spatial transformation of the atlas segmentation to each 12.75R 0:46v

12.05R 0:46v

V. small female

small female

NMT (NIH Macaque Template) – Group template from 31 macaques, surfaces, GM/WM/CSF segmentation

Jakob Seidlitz, Caleb Sponheim, et al., NeuroImage, April 2017

-74-

NIH Marmoset Template – Individual marmoset template - 150um resolution

Submitted - with Cirong Liu, Afonso Silva and others

-75-

Make your own template

ALTERNATIVE ATLAS CREATION TECHNIQUES: ITERATIVE AND TYPICAL METHODS

Iterative nonlinear alignment to affine template with progressively smaller patch sizes

"Typical" Brain

Make your own atlas!

- New atlases easy and fun. Make your own!
 - * make available in AFNI GUI and whereami and to other user

@AfniEnv -set AFNI SUPP ATLAS DIR ~/MyCustomAtlases/

Then:

```
@Atlasize -space MNI -dset atlas_for_all.nii \
-lab_file keys.txt 1 0 -atlas_type G
```

In ~/MyCustomAtlases/ you will now find atlas_for_all.nii along along with a modified CustomAtlases.niml file.

Haskins Pediatric Atlas

Upcoming atlases

- Eickhoff-Zilles 2.2 cytoarchitectonic atlases
- DTI fiber atlas Susumo Mori
- Princeton Visual Field Map, Kastner, et al.

Individual Subjects

FreeSurfer segmentation

Manual segmentation

@SUMA MakeSpecFS – atlasizes

Overlay panel shows structure name. Now FreeSurfer segmentation can also be used in whereami

NeuroSynth, LinkrBrain, BrainMap.org, Allen Brain, ...

set AFNI_WEBBY_WAMI to YES and AFNI_NEUROSYNTH to YES

-83-

Web-based atlases

O O O X [A]u AFNI: AFNI data6	afni/anat+tlrc & func_slim+tlrc		EL.
		csh — 111×33	E T
		Cluctore dglen@afni;~ tc tcsh	tcsh
[order: RAI=DICOM]			
X = 2.000 mm [L] $AC-PC$ Aligned	🔹 🚺 🚺 🔶 bkgd:ULay 💌	Clusterize ^{C/}	
y = -21,000 mm [5] 0 0 0	X menu	OOO X AFNI Cluster Result	is [A]
		Voxels survived clustering =170173	A 1997
	Quit	Voxels edited out = 8111	
Color green 🗖		NN clustering level = 1 [fac	es touch] Tasks
Query of coordinates	to linkrbrain.org correlations	- Healintannal mack from 200 Leathin 11:	
	Commolation		Krbrain cype benes
		#1 XYZ Peak II 3delust SaveTabl Clust	SaveMek HamT Dopo
gaze	0.01772		
Axial Image Graph decision	0.01565	Aux Deat From TALO TO TA 9999	Mean D Scat 1D Clear
Sagittal Image Graph conclust memory	0.00943		JCat. ID Clear
face area	0.00902	[No Aux Dataset chosen] [Scat.1D cleare	d]
Coronal Image Graph first language	0.00902	##:SizeXYZ	Alpha
navigation	0.00824	1+122780yox +33.0 +92.0 +15.0 jump	Lash Plot Save N/Csim
	0,00660	1112210000X 10010 10210 11010 00mp	
New Etc-> cognitive effort	0.00502	2:11762 vox -63.0 +12.0 -6.0 Jump	lash Plot Save N/Csim
BHelp done familiar objects	0.00485		
desire	0.00481	3: 3948 vox -5.0 +39.0 +66.0 Jump	flash Plot Save N/Csim
		0 + 24 0 lump	Elash Plot Save N/Csim
$0 0 0 \times [A] U AFNI: AFNI_d For more information,$			
	Quit	.0 +42.0 Jump	lash Plot Save N/Csim
	Query of coordinates to linkr	prain.org correlations .0 +60.0 Jump	flash Plot Save N/Csim
		0 +63 0 Jump	Elash Plot Save N/Csim
	Gene Com	relation .v .v.v vump	
	0.24 P721638	.0 +27.0 Jump	lash Plot Save N/Csim
	A 24 P945276	01694	
	A_24_P918473 0.0	01680 -0 +60,0 Jump	lash Plot Save N/Csim
	similar to deubiquitinating er	nzyme DUB2 0.01602	Lash Plot Save N/Csim
	A_24_P853124 0.0	01554	
	A 24 P706236 0.0	.0 +27.0 Jump	lash Plot Save N/Csim
pan pan	A_24_P7322 0.0	01491	
crop Disp Sav1.j	■ M A_32_P118731 0.0	01455 .0 +21.0 Jump	lash Plot Save N/Csim
	A_24_P499152 0.0	01440 01428 0 +34 0 lump	Lash Plot Save N/Csim
	A 32 P170564 0.0	01426	
Disp Sav1.jpg Mont Done Rec 🔽 🎵			Floop Plot Cours M/Colm
	For more information, please v	visit linkrbrain.org	
			a

In Development

- New templates and template spaces fully supported in AFNI
 - ♦ macaque
 - ♦ rat, mouse, human
 - ♦ pediatric, …
- On-the-fly transformations through all available template spaces
- Extra information about atlas structures
- HAWG standardized format atlases for everyone!

Atlas Conclusions and Questions

Charles Atlas