AFNI Start to Finish: FMRI Analysis with AFNI
Goal: run group analysis on single subject response magnitudes

- how do we get there?
 - create beta (response magnitude) maps for each subject
 - should be aligned, probably to a well known template
 - run group analysis program (e.g. 3dttest++, 3dMEMA, 3dANOVA*)
 - can use `uber_ttest.py` to run single group tests

- how do we create aligned beta maps?
 - write single subject processing script: pre-processing through regression
 - inputs: anat, EPI, stimulus timing
 - controls: processing decisions like blur size and alignment template
 - outputs: beta weights (and t-stats, contrasts, blur estimates, etc.)

- how do we write single subject processing scripts?
 - `afni_proc.py` can be used to generate processing scripts
 - an `afni_proc.py` command can be included in publication
 - along with the AFNI version (e.g. AFNI_17.2.09)
 - proc scripts are meant to be clear records of the processing
General suggestions

- picture this experiment as your own (i.e. feel responsibility)
 - decisions on processing were made by you (and your colleagues)
 - hopefully before acquiring any data
 - there is no single "correct" way to analyze data, just reasonable ways

- focus on understanding the processing steps
 - in light of your having chosen which steps to perform

- practice the good habit of reviewing results
 - do the initial images look good?
 - review each processing step along with data
 - are the EPI and anat well aligned by the end?
 - do the resulting statistical maps look reasonable?

- create scripts for any processing steps
 - they are records of how data was processed
 - they are easy to apply to any new subjects
 - they are easy to repeat
 - expect to re-analyze everything (mistake, new decision, etc.)
 - keep original data and all processing scripts
Review of stimulus conditions

- Speech Perception Task: Subjects were presented with audiovisual speech that was presented in a predominantly auditory or predominantly visual modality.

- A digital video system was used to capture auditory and visual speech from a female speaker.

(1) **Auditory-Reliable**

Example: Subjects can clearly hear the word “cat,” but the video of a woman mouthing the word is degraded.

(2) **Visual-Reliable**

Example: Subjects can clearly see the video of a woman mouthing the word “cat,” but the audio of the word is degraded.
Experiment Design:

- There were 3 runs in a scanning session.

- Each run consisted of 10 blocked trials:
 - 5 blocks contained Auditory-Reliable (A_{rel}) stimuli, and
 - 5 blocks contained Visual-Reliable (V_{rel}) stimuli.

- Each block contained 10 trials of A_{rel} stimuli OR 10 trials of V_{rel} stimuli.
 - Each block lasted for 20 seconds (1 second for stimulus presentation, followed by a 1-second inter-stimulus interval).

- Each baseline block consisted of a 10-second fixation point.

```
10 stims, 20sec + 10sec etc...
```
Data Collected:

- 2 Anatomical datasets for each subject, collected at 3 tesla.
 - 175 sagittal slices
 - voxel dimensions = 0.938 x 0.938 x 1.0 mm

- 3 Time Series (EPI) datasets for each subject.
 - 33 axial slices x 152 volumes = 5016 slices per run
 - TR = 2 sec; voxel dimensions = 2.75 x 2.75 x 3.0 mm

- Sample size, n = 10 (all right-handed subjects)
• What is `afni_proc.py`?
 - a program used to generate processing scripts for single subject analysis
 - a short command can generate a long processing script to:
 - copy inputs into new ‘results’ directory
 - process data (e.g. tshift/align/tlrc/volreg/blur/scale/regress)
 - leave results in place to allow review of processing
 - create `@ss_review_*` scripts, for quality control
 - many options for control over processing steps
 - many examples (in -help output) for getting started
 - generated scripts are in `tcsh` syntax
 - scripts are written to be easily read (good idea) and modified (bad idea)
 - preferable to run `afni_proc.py` (generating proc script) per subject
 - rather than running one (modified?) proc script across all subjects
 - graphical user interfaces exist (e.g. `uber_subject.py`), for those who prefer such things
Overview of remaining steps

- `cd AFNI_data6/FT_analysis`
 - review directory contents and note subject data under directory `FT`
 - review the `afni_proc.py` command in `s05.ap.uber`

- `tcsh s05.ap.uber`
 - runs `afni_proc.py` to generate proc script `proc.FT`
 - executes `proc.FT`, saving text output to `output.proc.FT`
 - processed results are under `results.FT` directory

- review proc script `proc.FT` while viewing processed data
 - `cd FT.results ; afni`

- run quality control review script, `@ss_review_driver`
 - `tcsh @ss_review_driver`

- run group analysis (`3dttest++`, `3dMEMA` or `3dANOVA2`)
 - from the `AFNI_data6/group_results` directory:
 - `tcsh s6.ttest.covary`
Note what is under **AFNI_data6/FT_analysis**

FT

- subject data directory

s01.ap.simple

- basic *afni_proc.py* script

s05.ap.uber

- more advanced script

s09.cleanup

- remove analysis results

s11.proc.FT

- result of **s01.ap.simple**

s15.proc.FT.uber

- result of **s05.ap.uber**

under **FT**

AV1_vis.txt

- visual reliable timing

AV2_aud.txt

- auditory reliable timing

FT_anat+orig.BRIK/HEAD

- anatomical dataset

FT_epi_r1+orig.BRIK/HEAD

- EPI run 1

FT_epi_r2+orig.BRIK/HEAD

- EPI run 2

FT_epi_r3+orig.BRIK/HEAD

- EPI run 3

AV1_vis.txt:

60 90 120 180 240
120 150 180 210 270
0 60 120 150 240
Single Subject Analysis: FT

- change to analysis directory and review `afni_proc.py` command
 - `cd AFNI_data6/FT_analysis`
 - `cat s05.ap.uber`

- execute that command, which also processes the data
 - `tcsh s05.ap.uber`

- review processing script and results
 - review the `proc.FT` script while looking at the results under `FT.results`
 - `afni_open -e proc.FT`
 - `cd FT.results`
 - `ls`
 - `afni`

- run automatically generated quality control review script
 - `tcsh @ss_review_driver`
 - considered a **minimal** data review (run for every subject)
 - for each step in the review:
 - read prompt text in each black window and follow instructions
 - close any windows newly opened by the script
 - click “OK” to move on to the next step
Group Analysis: paired t-test (Vrel-Arel)

- cd AFNI_data6/group_results

- review the 3dttest++ script and possibly the covariates file
 - cat s6.ttest.covary
 - cat covary.toe.gap.txt

- execute the 3dttest++ command script
 - tcsh s6.ttest.covary

- view the results, in all their glory
 - afni
 - set OverLay to stat.6.covary
 - set O Lay/Thr volumes to #0/#1, for Vrel-Arel and Tstat
 - threshold at p<0.005 (right-click on T-t above threshold slider)
 - set color range scale to 1.0
 - Clusterize (with defaults) and open Rpt (cluster report) window
 - jump to CMass (center of mass) locations
AFNI Start to Finish
(the horror continues...)

- To continue reviewing the data on your own, please see the corresponding tutorial that continues under the data directory:

 - AFNI_data6/FT_analysis/tutorial

- Alternatively, this can be viewed from the AFNI web site:

 http://afni.nimh.nih.gov/pub/dist/edu/data/CD.expanded/AFNI_data6/FT_analysis/tutorial

- or from the Help menu of uber_subject.py

 Help --> Browse --> web: tutorial-single subject analysis