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FMRI data analysis: The Big Picture
Four stages
● Experimental design & data collection
● Preprocessing & quality control
● Modeling

● Individual level
● Population level

● Result reporting
   

Modeling goals
● Statistical inference: relationship estimation

● Causal effects: task-based FMRI
● Correlations: resting state FMRI

● Prediction
   

Statistical inference goals
● Localization: task → regional BOLD responses
● Network level: cross-regional associations

● Remember: correlation does not imply causation



Overview
• Basics of linear models for data analysis
• FMRI data decomposition: three components

 Baseline + slow drift + effects of no interest; Effects of interest; 
Noise

 Effects of interest – understanding BOLD vs. stimulus
 IRF and HRF and HDR

• Three modeling strategies
 Fixed-shape HRF
 Variable HRF shape
 Fixed major HRF shape plus a little shape adjustment

• Other issues
 Multicollinearity
 Run catenation
 Percent signal change
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Basics of Linear Modeling
• Regression: finding a relationship between a response/outcome 

(dependent) variable and one or more explanatory (independent) 
variables (regressors)
 Also called linear model or linear regression

• Equations
  i=index of data = 0, 1, 2 … N-1 (total of N data points)
  xi=explanatory model (known value) for data point number i
  yi=data value for data point number i
  yi = β0 + β1xi + εi   or   yi ≈ β0 + β1xi 
  β0 and β1 are model fit parameters

  to be calculated from the xi and yi

 εi are the residuals
 what are left after the regression
 assumed to be random noise 4
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Modeling with Vectors and Matrices
• Write the model yi ≈ β0 + β1xi  out in columns (vectors)

• In vector-matrix form (bold letters for vectors and matrices)
   y ≈ X β        or with residual vector       y = X β + ε

• By writing it out this way, the equations become more compact and 
easier to look at and easier to understand

• Each column of X matrix is a regressor or model component
• We assume the columns of X are known (“the model”), and that data 

vector y is known (measured)
• Goal is to compute parameter vector β (and statistics about β)
• Most of this talk: where do we get X for FMRI task analysis? 6
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Solving a Linear Model
• Solution for linear regression y = Xβ + ε

 “Project” data y onto the space of explanatory variables (X)
 OLS formula for solution:
 Columns of X are the model for data vector y

• Meaning of coefficient: βk value is slope, marginal effect, or effect size 
associated with regressor number k [column k in X]

• βk value says how much of regressor number k is needed to fit the data 
“best” – in the Ordinary Least Squares sense
– That is, the sum of the squares of εi is made as small as possible

• If we don’t care about regressor number k, then we don’t care about the 
value of βk 
 But we included regressor number k in the model because it was needed to 

fit some part of the data
 Regressors of no interest make up the global Null Hypothesis in the 

model – in AFNI, we call these regressors the baseline model 7

Vector y is 
sum of 
matrix X 
times vector 
β plus 
residuals ε



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Regression modeling or GLM: 
 We state that:

  a time series y can be expressed as the sum of many 
components xi (AKA the regressors, terms, effects, …)

 bold quantities are time series (1D vectors; even a 
vector of 1s), and others are scalar (numbers)

 We choose (!) what those important features are
 some mathematical constraints apply on building a 

model
 Task-based FMRI and resting state/naturalistic FMRI 

focus on different model features
 estimate uncertainty can/should be included 

Linear regression sidenote



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Linear regression sidenote

regressors of 
no interest: 
useful time 
series (xi), 
but don’t 
care about 
their effect 
size (Bi)

regressors 
of interest: 
useful time 
series (xi), 
and yes we 
do care 
about their 
effect size 
(Bi)

“input” data: 
what we 
want to 
model, and 
study one or 
more 
features or 
components

residual (or 
“error”) time 
series:
everything “else” 
from y that is not 
explicitly 
modeled by 
components (xi), 
and sometimes 
used or ignored



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Linear regression sidenote

regressors of 
no interest: 
useful time 
series (xi), 
but don’t 
care about 
their effect 
size (Bi)

regressors 
of interest: 
useful time 
series (xi), 
and yes we 
do care 
about their 
effect size 
(Bi)

“input” data: 
what we 
want to 
model, and 
study one or 
more 
features or 
components

residual (or 
“error”) time 
series:
everything “else” 
from y that is not 
explicitly 
modeled by 
components (xi), 
and sometimes 
used or ignored baseline modeling and drift, via low freq sinusoids or polynoms

 time series of estimated subject motion (esp. catch spikes)
 time series from non-GM, to capture other motion aspects
 physiological regressors, from respiration and/or heart

e.g.



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Linear regression sidenote

regressors of 
no interest: 
useful time 
series (xi), 
but don’t 
care about 
their effect 
size (Bi)

regressors 
of interest: 
useful time 
series (xi), 
and yes we 
do care 
about their 
effect size 
(Bi)

“input” data: 
what we 
want to 
model, and 
study one or 
more 
features or 
components

residual (or 
“error”) time 
series:
everything “else” 
from y that is not 
explicitly 
modeled by 
components (xi), 
and sometimes 
used or ignored

NB:
In task FMRI: focus on regressors of interest and analyze their Bi 
(and uncertainties)
In rest/naturalistic FMRI: only model regressors are those of no 
interest, and we focus on the residuals for later analysis



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Linear regression sidenote

created by the 
researcher, as the 
“model” or “design 
matrix”, via theory, 
experience, 
experimental setup, 
literature, etc.
X = [1  x1 x2 x3 x4 ...]

to be estimated 
in modeling 
process, as 
“leftover” from 
input after 
modeling

known 
from the 
start

to be estimated 
via modeling 
(along with an 
uncertainty or 
standard error 
value)



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Linear regression sidenote

created by the 
researcher, as the 
“model” or “design 
matrix”, via theory, 
experience, 
experimental setup, 
literature, etc.
X = [1  x1 x2 x3 x4 ...]

to be estimated 
in modeling 
process, as 
“leftover” from 
input after 
modeling

known 
from the 
start

to be estimated 
via modeling 
(along with an 
uncertainty or 
standard error 
value)

Comment on estimates:
For each regressor, we get two important quantities:
 Bi: a coefficient, weight or effect size estimate for that term; it can have useful 

units, like BOLD % signal change, if y and the regressors are well-scaled
 ti: a t-statistic for the coefficient, which is related to the estimated standard 

error σi = Bi/ti; it provides uncertainty information for the estimate (and can be 
translated to significance, knowing the stat’s degrees of freedom)

^

^^



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Linear regression sidenote

created by the 
researcher, as the 
“model” or “design 
matrix”, via theory, 
experience, 
experimental setup, 
literature, etc.
X = [1  x1 x2 x3 x4 ...]

to be estimated 
in modeling 
process, as 
“leftover” from 
input after 
modeling

known 
from the 
start

to be estimated 
via modeling 
(along with an 
uncertainty or 
standard error 
value)

^

X-matrix considerations:
 In task FMRI, we want to avoid having regressors of interest too similar 

to any combination of each other or regressors of no interest 
(“collinearity”)
 If that happens, the effect estimate Bi is not valid or useful
 Several other design features impact quality of Bi estimation^



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Linear regression sidenote

created by the 
researcher, as the 
“model” or “design 
matrix”, via theory, 
experience, 
experimental setup, 
literature, etc.
X = [1  x1 x2 x3 x4 ...]

to be estimated 
in modeling 
process, as 
“leftover” from 
input after 
modeling

known 
from the 
start

to be estimated 
via modeling 
(along with an 
uncertainty or 
standard error 
value)

X-matrix considerations:
 In rest/naturalistic FMRI, we include as many effects and features as 

might be useful, but we pay by using up degrees of freedom (DFs)
 If y has N time points, then we start with N DFs
 Each regressor in the design matrix uses up 1 DF from the final 

number held by the residual:  fewer final DFs → greater uncertainty



y = B01 + B1x1 + B2x2 + B3x3 + B4x4 +… + ε 

Linear regression sidenote

The sum of the regressors and their estimated weights (so, the 
RHS excluding the residuals) is called the fit time series, which is 
also the modeled estimate of the input:

y = B01 + B1x1 + B2x2 + B3x3 + B4x4 + …^ ^ ^ ^ ^ ^

We can use the F-statistic or coefficient of determination R2 to 
estimate the relative variance of y that is explained within the 
model---that is, approximately how well our design matrix models 
the original input.

Then, by definition:
y = (fit time series) + (residual or error time series) 



Statistics in a Linear Model
• Various statistical tests carried out after solving for β vector
• Some examples, with particular null hypotheses H0 

Student t-test for each βi of interest
H0:  β3 = 0

Student t-test for linear combination of some βi values = general 
linear test (GLT)

H0:  β3 – β5 = 0
H0:  0.5*(β3 + β4) – β5 = 0 

F-test for composite null hypothesis
 H0:  β3 = β4 = β5

 H0:  β3 = β4 =  β5 = 0
Omnibus or Full F-test for the entire model

H0: all βi values of interest are 0 17



Linear Model with FMRI
• Time series regression: data vector y is time series = all 

values from one voxel throughout multiple image 
acquisitions (TRs)

• Regressors: idealized BOLD response curves
o We can only find what we’re looking for
o Regression will miss something if we do not look for it

oSo we must include regressors of no interest, so we 
can model things like baseline drifting up or down

o Regressor construction requires decisions
o Don’t want to over-fit or under-fit data

• Same model matrix X for all voxels in the brain
o Simultaneously solve all the models (1 for each voxel)
o Voxel-wise analysis = “massively univariate” method

18
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FMRI Experiment Terminology
• Experiment setup

Number of subjects
Number of conditions [tasks, stimulus (trial, event) 

types]: Factorial design?
Sample size (repetitions) per condition
Block, event-related, or mixed? 
 Inter-stimulus interval (ISI) – regular, random?

• Scanning parameters: TR, voxel size, data points 
(volumes), slice sequence (sequential or interleaved), 
slice thickness, removing first few TRs

• Scanning terms
Run: continuous scanning; a brief break between runs
Session: subjects come back after a long period of time
Experiment or study 19



Types of FMRI Experiments
• Two classical types of experiment design

 Block (boxcar) design
o Each stimulus block lasts for more than one TR (e.g., 4 to 20s)
o Each block is under one condition (e.g., watch a video clip), or a 

series of multiple trials (e.g., 10 consecutive blur images)
o BOLD response is often visible in time series
o SNR: noise magnitude about same as BOLD response

 Event-related design
o Each event or trial lasts for one TR or shorter
o Events are randomly spaced and/or sequenced in time
o BOLD response to stimulus tends to be weaker, since fewer 

nearby-in-time “activations” have overlapping signal changes
o SNR: data looks more like noise (to the pitiful human eye)

• Mixed designs
 Containing both events and blocks, e.g., cue + video watching

 Continuous stimulation (e.g., movie watching)
 Not covered here – more like resting state analysis 20



FMRI Data
• Data partition: Data = Signal + Noise

 Data = acquisition from scanner (voxel-wise time series)
 Signal = BOLD response to stimulus; effects of interest + no interest

o We don’t actually know the real signal shape to look for!!!
o Look for idealized task responses by assuming a fixed shape for BOLD 

effect (FMRI response) for each task trial
o Or search for signal shape via repeated trials and basis functions
o Of interest: effect size (response amplitude) for each task: beta
o Of no interest: baseline, slow drifts, head motion effects, …

 Noise = components in data that interfere with signal
o Practically: the part of the data we can’t explain with the model
o Will have to make some assumptions about its probability distribution 

– to be able to carry out the statistical tests
• Data = baseline + slow drift + other effects of no interest + 

response1 + … + responsek + noise
• How to construct the regressors of interest (responses)? 21



Block data of one run at a voxel

Block: 27 s “on” / 27 s “off”; TR=2.5 s; 130 time points

model fitted to data data

model regressor

Noise ~ same size as signal change

This is “best” voxel; most voxels are not fitted as well as this
Data drifts downwards – this effect is captured in the model 

fit by baseline drift regressors
If we did not model for drift, our fit would not be as good

Activation amplitude and shape vary across blocks
o Reasons why?  We can only guess
o Habituation? Attention? Noise? 22



Event-Related Data at 2 Voxels

correlation with ideal = 0.56

correlation with ideal = – 0.01

Lesson: ER-FMRI activation is not obvious via casual inspection

Voxel activated

Voxel not activated

23



BOLD Response
• Hemodynamic response (HDR)

Brain+FMRI response to stimulus/task/condition
Indirect measure of neural response: brain activation 

changes in blood oxygenchanges in FMRI signal
• Hemodynamic response function (HRF)

Mathematical formulation/idealization of HDR for one 
full stimulus interval

HRF bridges between neural response (what we like) 
and BOLD signal (what we measure)

• How to build the bridge?
Most simple: Assume a fixed-shape (idealized) HRF
Most complex: No assumption about HDR shape

 Basis function expansion of HRF shape and size
In the middle: 1 major fixed shape + a little space for 

shape adjustment 24



Fixed-Shape HRF – 1 s Stimulus
• Assume a fixed shape h(t) for HRF to an instantaneous (very 

short) stimulus: impulse response function (IRF)
 GAM(p,q):  h(t) = t 

p exp(t/q)   for power p and time q
oSample IRF: h(t) = t 8.6 exp(-t/0.547)   [MS Cohen, 1997]
oA variation: SPMG1 (undershoot is added in)

 Build HRF based on presumed IRF through convolution
o Combine IRF h(t) with stimulus timing S(t): 

Short
Stimulus

(≤ 1s)

25
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Fixed-Shape HRF – 5 s Stimulus
oCombine IRF h(t) with stimulus timing S(t): 

26

Copies of GAM
= h(t)   1 s apart

Sum of 5 copies of GAM

Cannot distinguish 
individual responses 

to nearby stimuli 
with FMRI



Fixed-Shape HRF – 10 s Stimulus
oCombine IRF h(t) with stimulus timing S(t): 

27

Sum of 10
copies of GAM

Stimulus duration
longer than 10 s is

Block Design



Fixed-Shape HRF – 10 s Stimulus
oWith the ‘BLOCK(10)’ function in AFNI 

28

HRF = BLOCK(10)
BLOCK(d) 
function is 

used to 
specify HRF 

for 
individual 

responses to 
stimuli with 
duration d



Fixed-Shape HRF for Block Design
• Assuming a fixed shape h(t) for IRF to an instantaneous  

(very short) stimulus
 For each block, h(t) is convolved with stimulus timing and 

duration (d) to get idealized response (temporal pattern) as an 
explanatory variable (regressor): HRF = BLOCK(d,p)
o Equivalent to adding up a series of consecutive events
o scale HRF to p=1 for easy interpretation of β 

Block: 20 s on and 10 s off; TR=2 s; 150 time points 29

HRF = BLOCK(20,1)

Start times 
for each 

block



Fixed-Shape HRF for Event-Related Design
• The BLOCK HRF shape is useful with event-related experiment designs
• Just use a short duration, such as 1 second
• Real experiments have more than 4 task repetitions!

HRF = BLOCK(1,1)Start times 
for each 1 s 

event
Sum of 4 
individual 
HRFs gives 

the 
regressor 

for this task



Linear Model with Fixed-Shape HRF
 FMRI data = baseline + drift + other effects of no interest + response1 + … 

+ responsek + noise
 ‘baseline’ = baseline + drift + other effects of no interest

o Drift: physiological effect, tiny motions, scanner fluctuations
o Data = ‘baseline‘ + effects of interest + noise
o Baseline condition (and drift) is treated in AFNI as baseline model, an 

additive effect, not an effect of interest (cf. SPM/FSL)
o Baseline+drift+… also need parameters in the model fit

 yi = α0 + α1 ti + α2 ti
2 + β1x1i +… + βkxki +…+ εi    [i = time]

  y = Xβ + ε, X = [1, t, t2, x1, x2, …, xk, …]        [vector format]
 In AFNI baseline + slow drift is modeled with polynomials

o A longer run needs a higher order of polynomials
 One polynomial order per 150 sec is the default in AFNI

o With m>1 runs, m sets of polynomials needed to allow for temporal 
discontinuities across runs

 m(p+1) columns for baseline+slow drift with p-order polynomials
Other effects of no interest: head movement estimates 31



Stimulus Correlated Motion 
= Bad

32

Activation map with image 
registration but without 

using movement estimates 
as regressors

Activation map when 
also using 

movement estimates 
as regressors



Design Matrix with Fixed-Shape HRF
• Voxel-wise (massively univariate) linear model: y = Xβ+ε

 X: explanatory variables (regressors) – same across voxels
 y: data (time series) at a voxel – different across voxels
 β: regression coefficients (effects) – different across voxels
 ε: anything we can’t account for – different across voxels

• Visualizing design matrix X = [1, t, x1, x2, …, xk, …] in grayscale image
baseline + drift  stimuli head motion

 6 drift effect regressors
     linear baseline
     3 runs x 2 

parameters/run
2 regressors of interest

 that is, relevant to 
brain activity

 6 head motion regressors
     3 rotations + 3 shifts

33

Black = bigger numbers
White = smaller numbers
Each column of X scaled separately



Design Matrix with Fixed-Shape HRF
• Visualizing same design matrix X = [1, t, x1, x2, …, xk, …] in graphs

34



Model Quality Check
• First thing to do!

 Unfortunately most users in FMRI simply jump to specific effects of interest, their 
contrasts and their significance. They simply don’t pay any attention (or lip service) 
to overall model performance at all!

• Approaches to judge your model
 Design matrix report from 3dDeconvolve

 Full F-statistic (automatically provided in AFNI); testing
o Data = ‘baseline‘ + effects of interest + noise versus 
    Data = ‘baseline‘ + noise

 or, Determination coefficient R2 at activated regions (-rout in 3dDeconvolve):
o Block design: ~50%
o Event-related experiments: 10-20%

 Modeled vs. not modeled: –fitts and –errts in 3dDeconvolve
o Fitted curve = ‘baseline‘ + effects of interest
o Residuals = noise = components we have no idea about 35

This message is 
usually due to 
setup mistakes



Statistical Testing
• Everything is about contrast!
• Effects (regression coefficients) of interest

 β: effect relative to baseline condition (by default in AFNI)
o βA = EffectA - βbase

 t-statistic: statistical significance of a β
• Pairwise comparisons (contrasts)

 Conditions βA vs. βB (e.g., house vs. face)
o βA – βB = (EffectA - βbase) – (EffectB - βbase) = EffectA - EffectB

 t-statistic: statistical significance of this difference
• General linear test – linear combination of multiple effects

 t-statistic of 0.5*happy + 0.5*sad – neutral
• Composite tests

 F-statistic for composite (multi-part) null hypotheses: happy = sad = 
neutral = 0 [3 parts]; or, happy = sad = neutral [2 parts]

36



Assessing Fixed-Shape HRF Approach
• Used 99% of time: Why is it popular?

 Assume brain responds with same shape across 4 levels: subjects, 
activated regions, stimulus conditions/tasks, trials
o Difference in magnitude β  in different conditions or different 

subjects (and its significance) is what we focus on
o Strong assumption about four levels of shape information?

 Easy to handle and think about: one value per effect/task
 Works relatively well

o Block design: shape usually not important due to accumulating 
effects (modeled via convolution) of consecutive events

 Really plateau? Same magnitude across blocks?
o Event-related experiment: OK most of time

 Linearity when responses overlap? Same effect across events?
• Not what you want if you

 Care/worry about shape difference across subjects, across regions, 
across conditions, and across trials

 Improved modeling
37



Alternative: No Constraint on HRF Shape
• TENT expansion of HRF

 Set multiple tents at various equally-spaced locations to cover 
the potential BOLD response period
o Each TENT is a basis function
o HRF is a sum of multiple basis functions, each with its own β 

 BOLD response measured by TENT heights (βs) at all locations
 TENTs are also known as ‘piecewise linear splines’

time

h

t = 0 t =TR t = 2TRt = 3TRt = 4TRt = 5TRCubic splines (CSPLIN)
are also available in AFNI

Formula for standardized 
TENT centered at x=0, 

width=±1

TENT with unit height
at location 3TR

38



Σ Tent Functions = Linear Interpolation
• 5 equally-spaced TENT functions = linear interpolation between “knots” 

with TENTzero(b,c,n) = TENTzero(0,12,7) 

• TENT parameters are easily interpreted as function values (e.g., L: TENT 
radius; β2 = response (TENT height) at time t = 2L after stimulus onset)

• Relationship of TENT spacing L and TR (L ≥ TR), e.g., with TR=2s, L=2, 4s
• In uber_subject.py or 3dDeconvolve with TENTzero(0, D, n), specify 

duration (D) of HRF and number (n): radius L = D/(n-1) with (n-2) full 
tents, each TENT overlaps half tent with two neighboring ones. 
– In above example, D=12s, then L=2s n=7; covering 12s; TENTzero(0,12,7)

time

β1

β2 β3

β4

L 2L 3L 4L 5L0

β5

6 intervals = 5 β weights

“knot” times

h

6L

stimulus onset

39



Tent Functions Create the HRF
• And then the HRF is repeated for all stimuli of 

the same type
• In the example on the last slide, the HRF has 5 

parameters (βs) to be estimated
• The βs determine the amplitude (percent signal 

change) and the shape of the HRF
• Each voxel in each subject gets a separate HRF 

shape now, not just a separate amplitude
– And if there are multiple types of tasks, each task gets 

a separate shape
• Stimulus times do not have to be exactly on 

the TR grid 40



Modeling with TENTs - Example
•  Event-related study (Beauchamp et al., J Cogn Neurosci 15:991-1001)

 10 runs, 136 time points per run, TR=2 s
 Two factors

o Object type: human       vs. tool
o Object form in videos: real image vs. points

 4 types (2x2 design) of stimuli (short videos)

o  Tools moving (e.g., a hammer pounding) - ToolMovie
o  People moving (e.g., jumping jacks) - HumanMovie
o  Points outlining tools moving (no objects, just points) - ToolPoint
o  Points outlining people moving - HumanPoint

  Goal: find brain area that distinguishes natural motions (HumanMovie 

and HumanPoint) from simpler rigid motions (ToolMovie and ToolPoint)

 
41



• Experiment: 2 x 2 design
  Human whole-body motion (HM)

Hypotheses to test:
•  Which areas are differentially activated by any of these stimuli (main effect)?

o point motion versus natural motion? (type of image)
o human-like versus tool-like motion? (type of motion)

•  Interaction effects?
o Point:  human-like versus tool-like? Natural:  human-like versus tool-like? 
o Human: point versus natural? Tool: point versus natural?

Tool motion (TM)

Human point motion (HP) Tool point motion (TP)
From Figure 1

Beauchamp et al. 2003



Tool motion (TM)

Human point motion (HP) Tool point motion (TP)
From Figure 1
Beauchamp et al. 03

Each video is only shown once (2 seconds)




Design Matrix with TENTzero(0,16,9)

Baseline + quadratic trend for 10 runs 7 tents per condition × 4 conditions head motion44



Results: Humans vs. Tools
•  Color 

overlay: 
Human 
vs Tool

(βHM+βHP−β
TM−βTP)

•  Blue 
(upper) : 
Human 

•  Red 
(lower) : 
Tool

45



No Constraint on HRF Shape = Deconvolution
• Deconvolution perspectives: inverse process of convolution

 HRF       stimulus = unit BOLD response
o Like multiplication, we have to know two and estimate the 3rd

 Fixed-shape approach: Convolution + regression
o Known: HRF shape, stimulus
o Use convolution to create regressors (hidden from user inside 

3dDeconvolve program)
o Response strength (β) estimated via linear model with programs 

3dDeconvolve or 3dREMLfit
 Shape estimation: Deconvolution + regression

 Known: stimulus + BOLD response; unknown: impulse response
 HRF       stimulus = BOLD response (note: HRF, not IRF)
 HDR estimated as a linear combination of multiple basis 

functions: TENTs
• Each TENT       stimulus = one regressor column
• Deconvolution: HRF = a set of βs estimated via regression

46



No Constraint on HRF Shape: Pros + Cons
• What is the approach good at?

 Usually for event-related experiments, but can be used for BLOCK
o Multiple basis functions for blocks: within-block attenuation with time

 Likely to have more accurate estimate on HDR shape across
o subject
o conditions/tasks
o brain regions

 Likely to have better model fit (the goal in the sample experiment)
 Likely to be statistically more powerful on test significance
 For block design, may detect within-block attenuation

o Cross-block attenuation?

• Why is the approach not popular?
 Difficult to summarize at group level [see the program 3dMVM]

Multiple parameters (βs) per task condition, instead of just one
 More regressors than alternatives: DoF’s per subject
 Risk of highly correlated regressors: Multicollinearity

o May need to reduce the number of basis functions
 Over-fitting: picking up something (head motion) unrelated to HDR 47



Intermediate Approach: SPMG1/2/3
• Use just a few basis functions

– Constrain the HDR shape with a principal basis function
• SPMG1 (similar to GAM in AFNI): e-t(a1tp1-a2tp2) where                          

a1 = 0.0083333333  p1 = 5  (main positive lobe) 
   a2 = 1.274527e-13   p2 = 15 (undershoot part) 

– 2 or 3 basis functions: parsimonious, economical
• SPMG1+SPMG2+SPMG3
• SPMG2: temporal derivative capturing differences in peak latency
• SPMG3: dispersion derivative capturing differences in peak width
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SPMG1/2/3
[Ready for their closeup, Mr. DeMille]
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• You can use these as basis 
functions in AFNI

• We don’t usually 
recommend this

• The next few talks show 
the details of how to 
choose the basis functions 
for the HRF



Multicollinearity
• Voxel-wise regression model: y = Xβ+ε

 Regressors in design matrix X = [1, t, t2, x1, x2, …, xk, …]
• Multicollinearity problem
  Two or more regressors highly correlated
  Difficult or impossible to distinguish the effects among these 

regressors (i.e., get reliable β estimates)
• Multicollearity scenarios
  Collinearity - xi= λxj = model specification error; e.g., 2 identical 

regressors (mistake in stimulus timing specifications)
  Exact multicollinearity: linear dependence among multiple 

regressors = faulty design (rare)
  High degree of correlation (+ or -) among regressors = design 

problem (e.g., cue + movie watching)
  Too many basis functions in response model

•  Diagnosis tools: ExamineXmat.R, timing_tool.py, xmat_tool.py
50



Serial Correlation in Residuals
• Why temporal correlation?

 In the residuals/noise (not the time series data)
 Short-term physiological effects (breathing, heartbeat)
 Other unknown reasons (scanner issues?)

• What is the impact of temporal correlation?
 With white noise assumption, βs are unbiased, but the statistics 

tend to be inflated
 Little impact on group analysis – if only using βs from subjects
 May affect group analysis if considering effect reliability, as in 

AFNI’s 3dMEMA program (where βs and ts are used)
• Approach in AFNI

 ARMA(1,1) noise model for residual time series correlation
 Slightly different from other packages:

  Serial correlation model is computed voxelwise, not globally
 Described in the Advanced Regression talk: 3dREMLfit 51



Dealing with Multiple Runs per Subject
• Possible approaches

 Analyze each run separately: AFNI, FSL
o Have to have enough task repetitions per run
o Can test cross-run difference (trend, habituation) at group level
o Usually need to summarize multiple β’s before group analysis

 Concatenate but analyze with separate regressors across runs 
for each condition type: AFNI, SPM
o Can test cross-run difference (trend, habituation, etc.) at both 

individual and group level
o Still need to summarize multiple β’s before group analysis

 Concatenate but analyze with same regressor across runs for 
each condition type: default in AFNI
o Assumes no attenuation across runs

• Cross-block (or cross-event) attenuation
o Method: IM or AM regression models
o cf. Advanced Regression talk
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Percent Signal Change
• Why conversion/scaling for %? Comparable across subjects

 MRI and BOLD data values don’t have any useful 
physical/physiological meaning

 Baseline is different across subjects (and possibly scaling)
 It’s the relative changes that can be compared across subjects

• AFNI approach
 Pre-processing: data scaled by voxelwise mean

o % signal change relative to mean, not exactly to baseline
o Difference is tiny: less than 5% (since BOLD effect is small)

 Tied with modeling baseline as additive effects in AFNI
o Sometimes baseline explicitly modeled: in SPM and FSL
o Global mean scaling (multiplicative) for whole brain drift
o Grand mean scaling for cross-subject comparison: not %
o Global and grand mean scaling, although not usually practiced, can 

be performed in AFNI if desired 53



Percent Signal Change
• Why not use scaled βs by real baseline???

No catenation: scale β per run by the run’s baseline
oSample size in each run could be low
oHave to summarize multiple βs before group analysis
oSimpler to convert to percent signal change at run level 

before summing over runs
oBe careful when motion parameters included in model

 Uber_subject.py automatically demeans the head 
motion regressors

Catenation: problematic 
oBaseline may be different across runs
oEffects are not comparable across runs
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Lackluster Performance in Modeling
 Essentially, all models are wrong, but some are useful 

(G.E.P. Box)
 Noisy data: too easy excuse!
 Regressors: idealized response model

o We find what we’re looking for
o We may miss something when we fail to look for it

 Lots of variability across trials (response and noise)
o Amplitude Modulation if behavioral data are available
o Model each trial separately (Individual Modulation)

 Linearity assumptions
o Data = baseline + drift + respone1 + resonse2 + … + noise
o When a trial is repeated, response is assumed same
o Response for a block = linearity (no attenuation)

 Poor understanding of BOLD mechanism 55



Summary
• Basics of linear model
• FMRI data decomposition: three components

 Baseline + slow drift; Effects of interest; Unknown
 Effects of interest - understanding BOLD vs. stimulus: IRF

• Modeling with fixed-shape IRF: GAM(p,q), BLOCK(d,p)
• Modeling with no assumption about IRF shape

 TENT(b,c,n)  or  CSPLIN(b,c,n)
• Modeling with one major IRF plus shape adjustment

 SPMG1/2/3
• Other issues

 Multicollinearity
 Catenation
 Percent signal change 56



References for further reading
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● Beta weights/effect estimates are important:
Chen G, Taylor PA, Cox RW (2017). Is the statistic value all we should care about in 
neuroimaging? Neuroimage. 147:952-959. doi:10.1016/j.neuroimage.2016.09.066 
https://pubmed.ncbi.nlm.nih.gov/27729277/ 

● AFNI’s 3dREMLfit has quite good performance for autocorrelation modeling:
Olszowy W, Aston J, Rua C, Williams GB (2019). Accurate autocorrelation modeling 
substantially improves fMRI reliability. Nature Communications 10, 1220. 
doi.org/10.1038/s41467-019-09230-w
https://www.nature.com/articles/s41467-019-09230-w

● Modeling a detailed HRF is likely very important:
Chen G, Taylor PA, Reynolds RC, Leibenluft E, Pine DS, Brotmas MA, Pagliaccio D, 
Haller SP (2023). BOLD response is more than just magnitude: improving detection 
sensitivity through capturing hemodynamic profiles. Neuroimage 277:120224.
https://pubmed.ncbi.nlm.nih.gov/37327955/

https://pubmed.ncbi.nlm.nih.gov/27729277/
https://www.nature.com/articles/s41467-019-09230-w
https://pubmed.ncbi.nlm.nih.gov/37327955/
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