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ABSTRACT: 

Brain connectivity investigations are becoming increasingly multimodal, and they present challenges 

for quantitatively characterizing and interactively visualizing data. Here we present a new set of 

network-based software tools for combining functional and anatomical connectivity from MRI data. 

The computational tools are available as part of FATCAT, a toolbox that interfaces with AFNI and 

SUMA for interactive queries and visualization. This includes a novel tractographic "mini-

probabilistic" approach to improve streamline tracking in networks. We show how one obtains more 

robust tracking results for determining white matter connections by utilizing the uncertainty of the 

estimated DTI parameters and a few Monte Carlo iterations. This allows for thresholding based on the 

number of connections between target pairs in order to reduce the presence of tracts likely due to noise. 

In order to assist users in combining data, we describe an interface for navigating and performing 

queries in 2D and 3D for data defined over voxel, surface, tract, and graph domains. These varied types 

of information can be visualized simultaneously and the queries performed interactively using SUMA 

and AFNI. The methods have been designed to increase the user's ability to visualize and combine 

FMRI and DTI modalities, particularly in the context of single-subject inferences (for example, in deep 

brain stimulation studies). Finally, we present a multivariate framework for statistically modeling 

network-based features in group analysis, which can be implemented for both functional and structural 

studies. 
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INTRODUCTION 

Magnetic resonance imaging (MRI) provides several techniques for investigating brain connectivity. In 

particular, functional MRI (FMRI) and diffusion tensor imaging (DTI) are common modalities for 

observing aspects of functional gray matter (GM) and structural white matter (WM) properties, 

respectively. Given the complementary nature of these methods, it is often desirable to combine them 

in studies, and this has been an increasing trend in both research [Staempfli et al., 2008; Damoiseaux 

and Grecius, 2009; Grecius et al. 2009; Bennett and Rypma, 2013; Horn et al., 2014; Sui et al., 2014; 

Zhu et al., 2014] and clinical applications [Kleiser et al, 2010; Pillai, 2010; Zhang et al., 2013; Preti et 

al., 2014].  

 The Functional And Tractographic Connectivity Analysis Toolbox (FATCAT) [Taylor and 

Saad, 2013] was initially designed to facilitate the integration of FMRI and diffusion-based imaging 

modalities. It contains tools for both task-based and resting state FMRI, as well as for both DTI and 

HARDI (high angular resolution diffusion imaging), data. FATCAT is publicly available as part of the 

open source AFNI package [Cox, 1996], and also interfaces directly with the three dimensional (3D) 

visualization tools of SUMA [Saad et al., 2004; Saad and Reynolds 2012]. While the toolbox can be 

used to calculate voxelwise quantities, such as various functional connectivity parameters, it also 

contains functionality to calculate and visualize nonlocal features such as functional correlation 

matrices, whole brain connectivity maps, tractographic maps and structural connectivity matrices. 

These network-based features quantify brain structure and function at the highest levels of 

organization. 

 Here, we present novel tools to facilitate multimodal, network-based analyses for both 

individuals and groups. First, we describe a novel "mini-probabilistic" tractography approach, which 

improves the robustness of streamline tract reconstructions by including DTI parameter uncertainty. 

Secondly, we discuss interactive visualization features using SUMA and AFNI, allowing the 

simultaneous display and investigation of DTI and FMRI data. Finally, we present a two-tiered 

multivariate modeling approach for combining either functional or structural network connectivity with 

group characteristic data using functions in AFNI and FATCAT.  Fig. 1 displays a compact schematic 

showing the potential roles of the new features (highlighted in bold) in an analysis pipeline that 

includes functional, diffusion-based structural and group characteristic data. 

 

MINI-PROBABILISTIC TRACKING METHODS AND RESULTS 

The human data shown in this work were acquired from a control subject of a larger study, which 

obtained participants from university campuses in Taipei. Participants were enrolled having provided 
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written, informed consent. The study was approved by the local ethics committee and conducted in 

accordance with the Declaration of Helsinki.  Details of the scanning and acquisition parameters are 

provided in Taylor and Saad (2013). 

 

Mini-probabilistic tracking 

Existing methods of DTI- (and HARDI-) based tractography techniques fall mainly into two categories: 

deterministic [e.g., Conturo et al., 1999; Mori et al., 1999; Basser et al., 2000] and probabilistic [e.g., 

Parker et al., 2003; Behrens et al., 2003] tracking. In the first case, tracts propagate outward from seed 

points until some stopping criterion is reached; propagation through a given voxel may, for example, be 

oriented parallel to the local principal eigenvector [e.g., Mori et al., 1999; Taylor et al., 2012] or to 

some weighted average of neighboring eigenvectors [e.g., Lazar et al., 2003]. The deterministic output 

is a set of tracts embedded within the brain volume—that is, a 1D sequence of points, each of which 

has 3 spatial coordinates and possibly attached properties such as DTI parameter values. While useful 

in many applications, these reconstruction methods either ignore the noise that is inherently present in 

the acquired data or introduce smoothing to try to reduce its impact. Noise introduces errors into DTI- 

or HARDI-model fits, and as a result tracts that are propagated purely deterministically become 

susceptible to a sizeable error accumulation (both false negatives and false positives). 

 In contrast to deterministic approaches, probabilistic methods typically perform Monte Carlo 

simulations of repeated tracking through distributions (e.g., estimated using Bayesian [Behrens et al., 

2007] or statistical resampling [Jones, 2003; Whitcher et al. 2008; Taylor and Saad, 2013] techniques) 

of voxel DTI parameter values. The end result of probabilistic tracking is an unordered set of voxels in 

3D space through which a large fraction of generated tracts have passed, and this region is interpreted 

as comprising the subvolume of the brain with the highest likelihood of containing WM connections of 

interest. While the probabilistic methods account for noise-induced diffusion model uncertainty, they 

are often relatively slow and impractical for interactive investigation. Moreover, the final voxel maps 

that are produced lack the ordered, sequential structure of the linear tract results, which are often useful 

for intersubject comparisons (e.g., see [Colby et al., 2012; Yeatman et al., 2012]). 

 Here, we propose a novel hybrid tractographic approach called "mini-probabilistic" tracking to 

combine benefits of both fully probabilistic and deterministic techniques. The new method makes use 

of the voxel-wise uncertainty of DTI parameters in the tracking process, performing a small number of 

Monte Carlo simulations through perturbed tensor estimates. The ordered tract structure remains intact, 

but more robust results are obtained by including the probabilistic distribution of tensor values during 

tract propagation. Similar to fully probabilistic approaches, the repeated tracking reinforces the more 
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likely locations of tract bundles1, while noise-driven outliers tend to be isolated.  However, the mini-

probabilistic method is significantly faster than the full approach, as it generally uses several orders of 

magnitude fewer tracking iterations. 

 A comparative example of approaches is shown in Fig. 2. Tracking was performed on a network 

of target regions (here, corresponding to an adult subject's default mode resting state network, from 

data available in the FATCAT demo2) using AND-logic with FATCAT's 3dTrackID function in three 

separate modes: (A) deterministic (DET), (B) mini-probabilistic (MINIP), and (C) (fully) probabilistic 

(PROB). The same basic tract propagation criteria were used in each case: FA>0.2, turning angle <60 

deg and tract length >20 mm. For DET and MINIP tracking, 8 seedpoints per voxel were used, and the 

latter was performed using five Monte Carlo repetitions. Parameters for PROB tracking were: 5 

seedpoints per voxel, 1000 Monte Carlo iterations, and a threshold fraction of 0.05 (so that 

5×1000×0.05 = 250 tracks/voxel were required to be included in the final WM ROIs). DTI parameter 

(FA and first eigenvector) uncertainty maps for MINIP and PROB tracking were calculated with 

FATCAT's 3dDWUncert using 300 iterations [Taylor and Saad, 2013]. While the overall locations of 

estimated WM ROIs are broadly similar, there are noteworthy differences across the methods. 

 Arrows in Fig. 2A highlight two deterministic tractographic bundles, each consisting of a single 

fiber. In Fig. 2B, the mini-probabilistic results show several similar fibers for the laterofrontal 

connection (yellow arrow) and no additional connections for the anteroposterior fiber (orange arrow) 

These results suggest that the first is likely to be a bundle connection (as small perturbations produced 

similar tracks) and the second, an artifact due to noise. A comparison with fully probabilistic volumes 

in Fig. 2C appears to verify these interpretations. It is worth noting that several of the other fiber 

bundles in Fig. 2B appear to be more robust than those in Fig. 2A, as well as in greater volumetric 

agreement with the fully probabilistic results. Additionally, while false positives (relative to PROB) are 

apparent in both the deterministic and mini-probabilistic results above, they are more visually apparent 

in the latter case. When performing DET and MINIP tracking with FATCAT's 3dTrackID, bundles 

between targets having a small number of tracts (as highlighted in Fig. 2) can be removed in order to 

filter connections that are likely the result of noise; this editing is done by selecting a minimum 

threshold for the number of tracts required to be found in any bundle. 

 The extents of the WM regions obtained using deterministic and mini-probabilistic approaches 
                                                
1 In FATCAT a "bundle" is defined as a collection of tracts through a single ROI (OR-logic) or those 
connecting a pair of ROIs (AND-logic). 
2 Available from http://afni.nimh.nih.gov/pub/dist/tgz/FATCAT_DEMO.tgz; download and install 
from a Unix terminal command line using the AFNI-supplied script "@Install_FATCAT_DEMO". 
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were quantitatively compared with fully probabilistic results using Dice coefficients [Dice, 1945]. 

Tracking was performed using the same basic parameters described above for the four networks 

available in the FATCAT Demo set (which includes the network shown in Fig. 2) using AND-logic. 

Volumetric masks of regions containing tracts were created for all tracking modes.  In MINIP mode, 

the number of additional perturbed repetitions was increased from zero to 24, and in DET mode the 

number of seeds per voxel was increased to maintain an equivalent number of total initiated tracts per 

voxel (e.g., while MINIP had one, two, and three repetitions, there were respectively 16, 24, and 32 

total seeds per voxel for DET).  In both MINIP and DET modes, tract bundles between two targets in 

the i-th repetition were removed if they contained fewer than 4i tracts, in order to filter out results 

likely due to noise.   

 The Dice coefficients of overlap with the fully probabilistic masks are shown in Fig. 3 for each 

of the four networks ("Network A" is the same as shown in Fig. 2).  In all cases, the Dice values for 

mini-probabilistic results rise quickly and have a peak greater than (or in one case approximately equal 

to) the deterministic ones. The DET results increase and reach a plateau, after which adding more seeds 

per voxel results in very little change in results. In the MINIP case, the addition of Monte Carlo 

repetitions increased the similarity to the fully probabilistic results quickly, with a peak Dice 

coefficient typically reached using 5-7 MINIP iterations.  The subsequent slow decrease of matching is 

due to the fact that the PROB method applies a stricter voxelwise thresholding criterion than the bundle 

threshold. While artifacts are expected to be present in some degree in all tractographic reconstructions 

[e.g., Thomas et al., 2014], the preceding examples show that the inclusion of tensor uncertainty 

information greatly increases the reliability and robustness of rendered results, and in the MINIP case 

with very little computational cost.  

 

VISUALIZATION AND INTERACTION 

Visualization and user-interaction when analyzing data are important for both research and clinical 

usage. Having multimodal data complicates these tasks, as there are necessarily several different types 

and formats of information to combine. Moreover, in modern brain research it is common to have 

several networks to analyze together even when using only a single modality, such as in resting state 

FMRI. The important question arises: how can one synthesize, view and explore the information 

efficiently? 

 FATCAT interfaces directly with the AFNI and SUMA viewers, which provide 2D and 3D 

representations, respectively. These viewers also communicate with each other (and with other 

programs), and together AFNI and SUMA render volumes, surfaces, tracts, outlines, and matrices. 
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SUMA and AFNI can also be controlled from the command line, making them suitable for navigating 

large amounts of data by scripting user interface tasks that are to be repeated for each new set of data. 

Here we highlight the more unique aspects of the software relating to network connectivity. 

 

Tract Navigation and InstaTract 

Tracts are rendered as segments between the sequential control points generated by 3dTrackID, and the 

SUMA interface allows for the selection of individual tracts with the mouse pointer. The selected 

location is automatically relayed to AFNI, causing it to update its own crosshair location. When 

viewing whole brain tractography results, it is often difficult to distinguish between certain tracts 

without pruning obstructing ones in order to highlight a feature of interest. In most DTI viewing 

software (e.g., DTI-Query [Sherbondy et al., 2005], TrackVis [Wang et al. 2007] and 3D Slicer 

(http://www.slicer.org)). the highlighting masks can be positioned on locations defined by cortical 

surface models or by voxel grids. Navigation of these masks within the voxel grid is usually 

constrained to displayed slices, which are determined by the scanner coordinate system, while 

navigation on surfaces is restricted to the cortical gray matter sheet, even though it is WM being 

investigated.  

 Similar highlighting modes exist in SUMA, termed “InstaTract”, in which multiple ROIs can be 

defined over volume or surface grids of arbitrary resolutions and orientations, but the ROIs can 

additionally be positioned and steered along the tracts themselves. This ability makes it possible for one 

to "walk" along a tract in 3D, instead of being confined to an arbitrary surface that is not geometrically 

related to the WM geometry. It also avoids a difficulty present in many software programs that are 

constrained to 2D slices, since the fibers cross through surfaces at various angles in any given scan, 

posing a challenge to follow the WM trajectories and to monitor along-tract intersections. The 

highlighting is carried out along each tract based on the outcome of the user-defined, arbitrary Boolean 

function of the ROIs, which themselves can currently be spheres or parallelepipeds (boxes). Thus, users 

may test AND- and OR- logic of connections between simple geometric volumes in InstaTract mode, 

navigating the shapes along the tracts themselves by clicking or dragging. While such geometrically-

defined masks can be interactively repositioned and resized, arbitrary ROI surfaces/masks are 

stationary, as they represent particular anatomical features. 

 Furthermore, FATCAT groups the tracts between a given target pair into bundles that can be 

rendered in different colors and identified with text (i.e., the names or labels of the targets themselves) 

when the user selects a location on a tract. These features are useful when viewing a complicated set of 

tracts, for example in the output of a connectome, which has several neighboring targets from whole 
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brain parcellation. The bundle viewing and selection features are shown in Fig. 4A, where the names of 

the targets that are connected by the selected bundle (i.e., the bundle in which the cross-hairs have been 

placed) are displayed at the top of the panel, along with the point location along the tract and the tract 

number designation.  The tracts themselves were created using AND-logic deterministic tracking 

within a connectome whose targets are cortical regions defined by FreeSurfer [Fischl et al., 2002; 

Fischl, 2012] parcellation (shown in Fig. 4B).  

The names of the volumetric ROIs, output by FreeSurfer (and formatted using 

@SUMA_Make_Spec_FS) for the data in Fig. 4, are stored as labels within the network data set, and 

label pairs are attached to each tract bundle. For ROI volumes without accompanying labels, there are 

AFNI tools (@MakeLabelTable or 3dROIMaker) to pair each integral ROI value with a user-defined 

string and to create a label table that can be attached to volumes and surface-based data sets. The labels 

are propagated from ROIs to their tractographic connections when using 3dTrackID, simplifying the 

visual interpretation and referencing of results in further AFNI and SUMA analyses.  The labels are 

also contained in the output files of structural and functional connectivity matrices, which can be 

loaded into SUMA (see below, and Fig. 5), as well as viewed and saved directly from the command 

line, as shown in Fig. 4C (see also Appendix). 

 

Connectivity Graphs 

Connectivity data (such as FMRI correlations from 3dNetCorr, structural WM properties from 

3dTrackID, connectivity estimates from structural equation modeling or Granger causality analysis 

from 1dSVAR) can be rendered as a 3D embedded graph or as a matrix. The dual modes can be 

rendered simultaneously in separate, linked viewers. In graph mode the connections (i.e., off-diagonal 

elements of the connectivity matrix or graph edges, equivalently) can be represented by straight line 

segments or by tract bundles whenever available and desired, as illustrated in the left and right panels, 

respectively, of Fig. 5. The representation is colored by the value of the connection/element, as per the 

settings of the data mapping interface.  

 A displayed connection can also be selected by clicking on it, as demonstrated by the white 

highlights in Fig. 5. In matrix mode a connection is represented as a colored cell element and can also 

be selected with a mouse click (again demonstrated in Fig. 5 by the element outlined in white), in order 

to display information about the connection such as magnitudes and names of the region pair. For 

dense connectivity graphs, it is useful to consider connections to or from a single node at a time. This 

operation is done interactively by selecting the target node, either by clicking on its graphical 

representation (e.g., a ball) or its names in both matrix and 3D graph rendering modes. We also note 
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that the interface can handle multiple values per connection, such as a time varying connectivity matrix 

or a set of matrices of different properties. 

 

Live Computations – Multimodal Data Surfing 

Navigating connectivity data is particularly challenging, since it essentially squares the number of 

values one has to display and select. We described in the previous sections how one could highlight (or, 

alternatively, prune) tracts, bundles and graph connectivity in order to digest the data for a few target 

regions at a single time. In this section, we present features for adding resting-state functional 

connectivity to results in a manner that allows one to perform interactive simultaneous anatomical and 

functional connectivity queries. The description also serves to illustrate other novel attributes of the 

software.  

 We begin by briefly describing InstaCorr, which allows one to perform interactive pattern 

matching (e.g., by using correlation) between a particular data source (seed) and the rest of the time 

series data set defined over the same domain (surface or volume). For instance, with the click (or click-

and-drag) of the pointer, a new correlation map is computed and displayed using the seed at the 

pointer’s location. The seed location can be set by clicking anywhere in either SUMA or AFNI: 

computed correlations are displayed in AFNI via InstaCorr and sent to SUMA for display on the 

surface models (see Fig. 6). The same seed location can be used to set the location of the tract-selecting 

ROI mask in InstaTract. In order view tracts within the surface, while still viewing the functional 

connectivity on the surface, one can pry apart the cortical surfaces. As illustrated in the lower part of 

Fig. 6, the surfaces retain their coloration and a record of their coordinates in "closed" space during 

further manipulations.  

 

GROUP LEVEL STATISTICAL ANALYSES 

Multivariate modeling of networks 

In this section we describe a two-tiered analysis for investigating the associations of either functional or 

structural data with predictors of interest across a group. FATCAT functions are used to combine MRI 

results with group descriptive data and to allow the user to define a model for AFNI's multivariate 

modeling program, 3dMVM [Chen et al., 2014].  

 The first stage of analysis takes place at the network level, where multivariate modeling is 

performed, since it is applicable for analyzing sets of non-independent measures. That is, a group of 

simultaneous, MRI-derived response variables at each spatial location (e.g., WM properties throughout 

a set of tracked ROIs, or GM correlations within a functional network) is modeled by multiple 
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explanatory variables (e.g., sex, age, behavioral measures, and clinical measures). This modeling can 

be performed independently for each separate response (data) variable such as (depending on the type 

of data available) Pearson correlation, fractional anisotropy, mean diffusivity, T1 relaxation time, 

proton density, tracked ROI volume, etc.  

Even though the conventional multivariate model precisely characterizes the above hypotheses, 

its power performance is lackluster in real practice. To address this, the 3dMVM function utilizes an 

approximation approach within the multivariate platform, which, in conjunction with a few auxiliary 

tests, can achieve a higher statistical power than conventional multivariate testing while still 

maintaining well-controlled false positives [Chen et al., in review]. This approach essentially looks for 

a significant effect at any single or any combination of network connections. Then, if significant effects 

are found at the network level, the second stage of analysis implements post hoc tests for each 

connection in order to determine, for example, which individual elements show the strongest relations 

driving the network effects. 

A practical example of this network analysis with 3dMVM is presented in Fig. 7 for the case of 

a WM study (N.B.: the following example could equivalently be of a GM study, using functional 

connectivity strength as the ‘between target’ quantity of interest).  The researchers may pose the 

question: are CASI (cognitive abilities screening assessment) score values in a particular population 

associated with WM properties, such as FA?  This relationship can be investigated while controlling for 

other explanatory variables, such as age, sex, years of education, etc.  First, the researchers generate the 

targets in each subject’s diffusion space for tracking, perhaps by mapping sets of functional GM ROIs.  

Then, tractography (e.g., mini- or fully-probabilistic) is performed to determine the most likely 

locations of WM associated with pairs of the targets, producing a set of WM ROIs throughout the 

network.  From each region, one can calculate a representative quantity, such as the mean FA, 

producing a set of simultaneous measures that represent the WM connections throughout the network.  

The first step of 3dMVM analysis includes the full set of response variables (i.e., all mean FA values), 

examining whether the network’s WM as a whole is related to CASI scores.  If there is a relation found 

at a nominal significance level (e.g., 0.05), 3dMVM’s second step of analysis investigates which 

region(s) has(ve) the strongest associations (i.e., most statistical significance), using a general linear 

model (GLM) for each mean FA with the same set of explanatory variables. 

 The general implementation of this process with FATCAT and AFNI’s 3dMVM for any 

functional or structural network properties is illustrated in Fig. 8. Starting with (A) a network of ROIs 

for FMRI/DTI analysis, then 3dNetCorr/3dTrackID can be used to calculate (B) functional/structural 

matrices for each subject in the group. In step (C) the set of connectivity matrices is then combined 
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with a descriptive "group table" that holds columns of quantitative or categorical variables such as age, 

sex, psychometric test scores, genetic factors, etc (e.g., a file exported from a spreadsheet, with one row 

of values per subject). The synthesis of the MRI-derived matrices and the group variables is made 

using fat_mvm_prep.py, which creates a single multivariate table for the group. This program also 

automatically selects only functional/structural matrix elements that are present for all subjects in the 

group, as the multivariate modeling software does not currently account for missing data in individuals. 

This selection procedure may be necessary in FMRI studies, for example, if subjects have different 

numbers of ROIs in a given network; or in DTI studies, where each region is typically not directly 

connected to all others and the patterns of estimated connections often exhibit variation across a group. 

 The user then specifies symbolically (D) a model with explanatory variables from the group 

table variables. The model may include both quantitative and categorical variables (the latter of which 

are tested with omnibus F-tests), such as age, sex, etc., as well as interactions between the variables. 

The model of interest is entered as a simple list to the function fat_mvm_scripter.py, which builds both 

the group model as well as the follow-up post hoc tests for each ROI in AFNI's 3dMVM command 

[Chen et al., 2014]. The result is a script to be executed, producing both (E) network-level and (F) 

individual connection-based results. This methodology has been demonstrated in a DTI study of infants 

with prenatal alcohol exposure [Taylor et al., 2015]. The two-tiered analysis was used to locate WM 

that showed significant association between alcohol exposure and structural properties, as well as to 

determine which diffusion parameters showed the greatest sensitivity to exposure. 

 

Creating latent variables from a group table 

Often in brain imaging studies, a variety of supplementary data have been collected for subjects in the 

group, such as psychometric tests, neurobehavioral scores, and other descriptive characteristics. Many 

of these factors are often not independent, while also being attributable to a small number of underlying 

features of interest, such as attention, working memory, emotional state, etc. They may have the 

additional practical limitation of possessing low individual contrast. In such a scenario, factor analysis 

can be used to derive a set of "latent variables" from the original, correlated group of factors, reducing 

the dimensionality of the data based on their covariance structure.  FATCAT now includes a command 

line factor analysis tool to estimate such latent variables from quantitative variables in a group table. 

 The FATCAT program fat_lat_csv.py implements the function factanal() in the package FAiR 

[Goodrich, 2014] of the open source language R [R Core Team, 2014]. In order to simplify the final 

variable structure, the loadings table is rotated using the varimax method [Kaiser, 1958]. To facilitate 

interpreting what features the output latent variables represent, the calculated Thompson scores 
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[Thompson, 1951] for each factor's variables are also reported. The number of latent variables (i.e., the 

dimensionality reduction) can be chosen by the user or by a data driven methodology using parallel 

analysis. The latter is implemented using the R function paran() in the package paran [Dinno, 2012], 

which utilizes Horn's method to evaluate factors [Horn, 1965]. By default in fat_lat_csv.py, Horn's 

method is run with a large number of Monte Carlo iterations (5000) and a high centile threshold (99%) 

in order to reduce bias in the chosen number of components [Glorfeld, 1995]. The estimated latent 

variables are then included in a new group table for use in the multivariate testing, as described above. 

 

DISCUSSION 

We have presented several new tools3 that are available in FATCAT, highlighting their integration with 

novel functionality and features in AFNI and SUMA. The methods have been designed to increase the 

user's ability to visualize and combine FMRI and DTI modalities, as well as to easily explore statistical 

relations in group studies. 

 Mini-probabilistic tractography has been introduced as an enhancement to purely deterministic 

tracking in networks. The uncertainty-based procedure improves the detection of connections, while 

bundle thresholding  reduces the likelihood of obtaining tracts sensitive to noise (as does the typical 

sparsity of target volumes in functional networks). Importantly, these benefits come at very little 

computational cost (unlike the full probabilistic tracking software) , and this method preserves the 

sequential organization of fiber bundle reconstructions for individual or group analyses. 

 Mini-probabilistic tracking has also been implemented in exploratory structural analyses, such 

as placing target ROIs within related WM [Taylor et al., 2015]. Such investigations highlight the utility 

of interactive data visualization, in particular with the combination of SUMA and AFNI. These 

visualization methods are directly applicable in a clinical realm to investigate estimated structural maps 

within the brain. For example, recent studies have utilized tractography reconstructions to guide the 

placement of electrodes for deep-brain stimulation [Rive-Posse et al., 2014]. The simultaneous viewing 

of FMRI and DTI data allows for a more detailed representation and exploration of complicated 

function-structure interactions within the brain. Being able to visually navigate through multi-modal 

data sets at the same time allows one to develop a deeper understanding of the potential, and the 

limitations, of the data at hand. This is a crucial exercise for enabling the discovery of otherwise un-

noticeable artifacts [Jo et al., 2010] or of striking features of the data [Gotts et al., 2013]. While the 

                                                
3 More detailed help documentation for AFNI, FATCAT, SUMA and their combination is available 
online, including further examples and illustrations: http://afni.nimh.nih.gov/pub/dist/doc/htmldoc/. 
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multimodal visualizations and explorations in this work have been focused on individual subjects, it 

should be noted that the InstaCorr interface in AFNI and SUMA can also be used to perform group 

level, seed-based correlation contrasts interactively, which is beyond the scope of the work presented 

herein [Cox, 2012; Saad and Reynolds, 2012]. 

 Finally, methods for implementing network-based statistical group analyses were described. 

FATCAT now contains command line programs for: performing factor analysis to estimate latent 

variables within a group characteristic table (fat_lat_csv.py); combining functional correlation and 

structural matrices from MRI analyses with group tables of subject data (fat_mvm_prep.py); and 

building a model for multivariate analysis with AFNI's 3dMVM (fat_mvm_scripter.py), calculating 

both the network- and ROI-based statistics. Each function is run with a simple set of options and 

parameter lists. There are typically several connectivity parameters calculated and output into a single 

file by FATCAT's 3dNetCorr (e.g., Pearson correlation, Fisher Z-score and partial correlations) and 

3dTrackID (e.g., WM volume, FA, MD, L1, RD and number of tracts). For efficient examination of 

these parameters simultaneously, the FATCAT programs apply the user-defined multivariate models to 

each individual parameter matrix in parallel and then output the results (both network and post hoc 

statistics) to a single file.  

 The presented techniques allow investigation of the network levels of brain functional and 

structural connectivity in an individual, which are often of interest in neuroimaging studies. In contrast 

to voxel-based methods, which often have tens of thousand voxels (or more, with the increasing 

resolution of modern scanning techniques), this approach has the advantage of not requiring such 

severe corrections for multiple comparisons. As a consequence, these multivariate methods can be used 

to explore comparisons of properties across networks or among the parameters themselves [Taylor et 

al., 2015]. The post hoc tests of each matrix element (i.e., target connection) then provide finer 

resolution for describing relative connectivity-predictor associations on a smaller, local scale. 

 Further development of FATCAT will include approaches for utilizing along-tract statistics in 

characterizing individuals' white matter properties. Also, in order to be able to account for missing data 

in group tables, future versions will utilize linear mixed effects (LME) modeling using AFNI's 3dLME 

[Chen et al. 2013]. It is also expected that, as has already happened since the initial FATCAT release, 

further analysis tools will be developed in response to users’ requests. 
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APPENDIX 

We highlight some of the additional tools and features that are newly available in FATCAT for the 

processing of DTI and FMRI data. Scripted examples of each are provided in the freely available 

FATCAT and FAT_MVM Demos4. Most of these features have been developed in order to increase the 

ease of processing and investigating data, which may have the important consequence of reducing 

processing mistakes as well as of aiding the understanding of results. 

 It should first be noted that the originally separate FATCAT functions for deterministic and 

probabilistic tracking have been combined into a single function (3dTrackID), which can now be 

operated in three separate modes: DET (deterministic), MINIP (mini-probabilistic; see the introduction 

in the main text) and PROB (fully probabilistic). Tracking can also now be performed on data sets with 

multiple propagation directions per voxel, as in high angular resolution diffusion imaging (HARDI) 

reconstructions. HARDI model fitting is not currently available within FATCAT or AFNI but instead 

can easily be estimated using other packages such as, e.g., DSI-Studio (http://dsi-studio.labsolver.org; 

an example processing script is included in the FATCAT Demo), Diffusion Toolkit (Wang et al., 2007) 

or Dipy [Garyfallidis et al., 2014]. While pre-processing functions for the correction of subject motion, 

eddy currents and EPI distortions are not available in FATCAT or AFNI, these may be found easily in 

other software, such as TORTOISE [Pierpaoli et al., 2010], which has an "AFNI format" output option. 

 The formatting of diffusion gradient information varies across software packages and 

applications, requiring various conversions between: rows and columns (e.g., when converting from 

DICOM); gradients and either row-first or diagonal-first tensors (e.g., when using TORTOISE); 

including b-values in a separate file or in the gradient file (e.g., if using DSI-Studio); including a row of 

zero-gradients or not (e.g., when using AFNI's 3dDWItoDT); etc. As DWI processing often requires 
                                                
4 See main text for FATCAT Demo download. The FAT_MVM Demo is available from 
http://afni.nimh.nih.gov/pub/dist/tgz/FAT_MVM_DEMO.tgz; download and install from terminal 
command line using "@Install_FAT_MVM_DEMO". 
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the use of several packages and functions, it is useful to have a flexible command line tool for 

converting among these formats. In FATCAT 1dDW_Grad_o_Mat is able to convert b-value and b-

vector information among the above-listed format options. Additionally, the signs of gradient 

components can be flipped in order to convert a given scanner coordinate convention to that of the 

chosen software tool. Due to the DT symmetry properties, this sign change does not affect scalar 

parameters, but it will cause rotations in the eigenvectors, whose effects are highly noticeable in 

tractography (see comparisons with various relative gradient flips in Fig. A1). For example, often data 

acquired using Siemens 3T scanners (Erlangen, Germany) require a sign change in the y-component 

(via the switch '-flip_y') before using FATCAT's 3dTrackID (though each center must check their own 

data, particularly when preprocessing with any given software package).  A FATCAT script file, 

@GradFlipTest, uses whole brain tracking to estimate an appropriate gradient flip for a data set, subject 

to visual verification. 

 The DWI data sets may also be processed simultaneously with, and using information contained 

in, the gradient table. 1dDW_Grad_o_Mat utilizes the b-value or -vector information to locate b0 

volumes in the DWI protocol and to average them together to create a single b0 reference with high 

signal-to-noise ratio (SNR) ('-proc_dset' option). Additionally, 1dDW_Grad_o_Mat can compress 

acquisitions with repeated sets of gradients by averaging those volumes and adjusting the gradient table 

to match ('-dwi_comp_fac' option). 

 For FMRI processing, 3dNetCorr has been updated to include several features. In addition to 

Pearson correlation and Fisher Z-transform connectivity matrices, partial correlation matrices can be 

calculated ('-part_corr'). Moreover, when calculating connectivity matrices, one can also 

simultaneously generate whole brain connectivity maps for the average time series of each ROI, either 

as Pearson correlation ('-ts_wb_corr') or Fisher Z-scores ('ts_wb_Z'). The output connectivity matrices 

may also contain ROI labels from a user-defined table (such as from anatomical parcellations). The 

functional matrices (as well as those output by 3dTrackID) may be viewed as connected graphs in 

SUMA with the edges colored by the element values (see Fig. 5 in the main text); additionally, these 

matrices may be viewed and saved in 2D using a new command line tool, fat_mat_sel.py, allowing for 

rapid selection and customization of the figures (Fig. 4C in the main text). 
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FIGURE 1: An example schematic for combining multimodal MRI data, i.e., functional (red) and 
diffusion-based structural (blue), with non-MRI group characteristic information (green) using AFNI, 
SUMA and FATCAT.  The novel tools described in this work are highlighted in bold text, and 
secondary colors reflect the combination of various types of data.  The pipeline incorporates command 
line tools and interactive user visualization, which are both important features of data analysis in MRI. 
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FIGURE 2: Comparison of tractography results of FATCAT's 3dTrackID in different modes: A) 
deterministic (DET), B) mini-probabilistic (MINIP) and C) fully probabilistic (PROB). AND-logic 
connections are shown for a network of targets (grey) using either tracts colored by local orientation (in 
A-B), or probabilistic volumes shown as green surfaces (in C). The yellow and orange arrows highlight 
single-fiber connections between pairs of targets using DET mode; in the MINIP results, the former 
appears to be reinforced by the repeated uncertainty-based tracking, while the latter remains an outlier. 
This is verified by comparison with the PROB results and suggests the increased robustness of the 
MINIP method compared to DET. 
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FIGURE 3:  Comparison of AND-logic deterministic (DET) and mini-probabilistic (MINIP) tracking 
with fully probabilistic (PROB) results.  Dice coefficients were calculated between regions containing 
tracts in each of the DET and MINIP modes with those in the PROB mode.  The number of Monte 
Carlo repetitions in the MINIP mode was increased to 24, and the number of seeds per voxel 
equivalently increased in DET mode.  MINIP results rise quickly and have a peak greater than (or equal 
to, in one case) those of DET, with a maximum occurring at approximately 5-7 repetitions in each of 
the networks. 
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FIGURE 4: Panel A shows tractographic connectome bundles among a set of anatomical cortical 
regions generated using FreeSurfer parcellation (data available in FATCAT Demo set).  Tracts are 
colored by bundle (i.e., the set of tracts connecting a particular pair of target ROIs), and in panel B the 
ROIs are shown in color as slices in a simultaneous AFNI viewer.  Connectome tractography results 
are readily generated with a single command line; the target ROIs and tractographic results in this 
figure can be obtained using the guided FATCAT Demo script 
"Do_11_RUNdti_Connectome_Examp.tcsh", and the presented results were generated in <30 seconds. 
An example of the labeled bundle selection is shown in panel A, for the location of the yellow cross-
hair.  Panel C shows labeled structural (FA) and functional (Pearson correlation) matrices for this 
connectome generated from a command line using fat_mat_sel.py (see the Appendix). 
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FIGURE 5: Rendering of connectivity matrices in SUMA. The first two panels show the 3D graph and 
matrix rendering modes of the data. In this mode off-diagonal matrix elements are rendered with 
straight-line edges whose colors reflect the feature's value in the matrix (middle panel), as per the 
user’s selected settings.  The panel on the right shows the same graph but with tractography bundles 
used to represent the connections, as opposed to segments, and the bundle coloring remains based on 
the connection value in the matrix. All views support selection of either an individual connection (the 
equivalent of one element of the matrix) or the set of connections to and from a single node (the 
equivalent of one row/column of the matrix). Also noted in the middle panel, one can interactively 
cycle through time-varying matrices or any stack of matrices with the same dimensions. The rendering 
of data in this figure can be obtained using the guided FATCAT Demo script 
"Do_09_VISdti_SUMA_visual_ex2.tcsh". 
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FIGURE 6: An illustration of the process for interactive, single-subject functional and anatomical 
connectivity queries. (Note that all displayed objects are loaded into the same AFNI and SUMA 
sessions, and subsets are shown at a time here for clarity.) The top row, left, illustrates whole brain 
tractography results computed with 3dTrackID and displayed over a single anatomical slice for 
reference. The top row, right, shows the FreeSurfer-generated cortical models. Users can then select a 
mask (white sphere) and restrict the displayed tracts to those passing through it (via InstaTract). That 
same mask can be used to set the seed location for automatically generating a functional connectivity 
correlation map (via InstaCorr), the results of which are shown in color on the cortical surface. As 
described in the text, the placement of the seed can be done in the 3D views of SUMA or in the 2D 
views of AFNI. The results of the anatomical and functional connectivity queries are rendered together 
in the middle of the figure. Since seeing through the cortical surface is difficult, even when 
transparency is enabled (not shown here), the user can pry the cortex open with the mouse pointer, 
better revealing the patterns of anatomical and functional connectivity (lower middle path). The user 
can then navigate the seed along the pried cortex, or along any other rendered structure, to update the 
seed placement and to trigger an update of both the anatomical and functional connectivity results 
(bottom row). The illustrated tasks can be recreated with the guided FATCAT Demo script 
"@Do_09_VISdti_SUMA_visual_ex3.tcsh". 
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FIGURE 7: An example case of combining 3dTrackID’s tractography and 3dMVM’s multivariate 
model testing to investigate the relations of WM properties (here, FA) and subject test scores (here, 
CASI values) while controlling for other factors.  The investigation is first made at the network level, 
and, if significant relations are observed, one follows up using post hoc GLMs for the same model for 
each ROI.  This procedure may equivalently be performed using 3dNetCorr’s functional connectivity 
estimates between pairs of targets in a network in place of tractography. 
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FIGURE 8: A schematic for integrating MRI-based connectivity and group characteristic data in 
network-based analyses using multivariate statistics with FATCAT and 3dMVM.  
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FIGURE A1: Effects of not correcting recorded gradient vectors by "flipping" the sign of an affected 
component. Whole brain tractographic reconstructions are shown (from the left) for corrected 
gradients, and gradients with alternately uncorrected x-, y- and z-components. Views in descending 
order: coronal from front, axial from above and the latter repeated with a spherical selection mask. 
 

 

 


