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Experimental designs and processing strategies for fMRI studies

involving overt verbal responses

Rasmus M. Birn,a,* Robert W. Cox,b and Peter A. Bandettinia

aLaboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892-1148, United States
bScientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD 20892-1148, United States

Received 17 February 2004; revised 24 June 2004; accepted 7 July 2004

Available online 27 September 2004
Event-related paradigms have been used increasingly in the past few

years for the localization of function in tasks involving overt speech.

These designs exploit the differences in the temporal characteristics

between the rapid motion-induced and the slower hemodynamic signal

changes. The optimization of these designs and the best way to analyze

the acquired data has not yet been fully explored. The purpose of this

study is to investigate various design and analysis strategies for

maximizing the detection of function while minimizing task-induced

motion artifacts. Both event-related and blocked paradigms can be

specifically designed to meet these goals. Various event-related and

blocked designs were compared both in simulation and in experiments

involving overt word reading in their ability to detect function and to

avoid speech-induced motion artifact. A blocked design with task and

control durations of 10 s and an event-related design with a minimum

stimulus duration (SD) of 5 s and an average interstimulus interval

(ISI) of 10 s were found to optimally detect blood oxygenation level-

dependent signal changes without significant motion artifact. Ignoring

images acquired during the speech can help recover function in areas

particularly affected by motion but substantially reduces the detection

power in other regions. Using the stimulus timing as an additional

regressor to model the motion offers little benefit in practice due to the

variability of the motion-induced signal change.
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Introduction

The ability for a subject to speak out loud during fMRI time

series collection is of significant utility in the study of brain

function. In addition to the study of brain systems subserving the

production of speech and processing of language, many studies
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would benefit from having the subject vocalize a response since

vocalization can provide substantially more precise and informa-

tion-rich feedback than button box responses in the context of

language tasks. Since there is no animal model that can adequately

represent the complex task of language production, the need for a

noninvasive imaging method, such as functional MRI, to assess

language production is clear. The difficulty with speaking in the

MR scanner in these tasks is that the repositioning of the head, jaw,

tongue, and facial muscles during speech lead to distortions and

misregistration in the time series MR images (Barch et al., 1999;

Binder, 1995; Birn et al., 1998, 1999a,b). These artifactual signal

changes can both mask and mimic the blood oxygenation level-

dependent (BOLD) signal changes associated with neuronal

activity, making detection and localization of speech-related brain

activation difficult.

A number of solutions have been proposed to overcome this

problem. The most common approach has been to eliminate the

motor component of speech in the tasks, relying instead on silent

word production (Binder, 1995; Buckner et al., 2000). Huang et al.

(2002) have found reduction of motion artifacts when subjects are

trained to reduce speech associated head movements prior to the

actual scan, and Small et al. (1996) have obtained reasonable

results when head movement was severely restricted by using a

bite bar.

Each of these techniques has its limitations in studies involving

overt speech. While silent word production certainly reduces the

occurrence of motion artifacts, overt word production could

certainly involve the activation of additional brain regions not

active during silent word processing (Barch et al., 1999; Huang et

al., 2002; Palmer et al., 2001). Additionally, the restriction on

speaking out loud may not be psychologically or behaviorally

appropriate for the particular task being studied, for example, if the

task requires the subject to receive feedback from the vocalization

of the words or when it is necessary to record the subject’s verbal

response. Postprocessing of images using rigid-body image

registration techniques cannot remove all of the image distortions

arising from speaking since the movement of the subject’s head,

jaw, tongue, and facial muscles also causes changes in the

magnetic field. These magnetic field changes cause a warping of
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the image in the phase encode direction (for echo-planar

acquisitions) or a blurring of the image (for spiral acquisitions).

This distortion can be significant, especially in slices in the inferior

region of the brain, leading to signal changes of anywhere from 5%

to 100% (Birn et al., 1998; Yetkin et al., 1996). Since this warping

is not necessarily uniform across the image, the dapparentT motion

cannot be corrected using rigid-body image registration routines.

Dynamic correction of magnetic field changes would require

continuous acquisition of magnetic field maps throughout the

imaging run. This requires a modification of existing imaging

sequences and is susceptible to physiologically induced phase

variations. Training of subjects prior to the scan can reduce, but not

completely eliminate, speech-related movement artifacts since the

movement of the jaw, tongue, and facial muscles are inherent to

word production.

More recently, studies have begun to use event-related fMRI

designs to separate the effects of motion from the neuronal-induced

BOLD signal changes (Barch et al., 1999; Birn et al., 1999a,b;

Burgund et al., 2003; Huang et al., 2002; Palmer et al., 2001;

Preibisch et al., 2003). The key to these methods is the difference

in the temporal dynamics of motion-induced and hemodynamic

signal changes arising from the difference in the physical

mechanisms producing these changes. The BOLD response is

delayed in onset by several seconds and increases to a peak value

5–6 s after the initiation of a task. In contrast, motion-induced

signal changes for tasks such as overt word production, jaw

clenching, tongue movement, or swallowing occur primarily

during the task performance. If the task is performed only briefly,

such as in an event-related paradigm, then the signal changes

resulting from motion occur prior to and have a much different

temporal shape than the delayed BOLD signal changes.

In the simplest case, overt speech can be performed for brief

periods, separated by periods of time sufficiently long to allow for

the full evolution of the hemodynamic response (Birn et al.,

1999a,b). The motion-induced signal changes appears as a rapid

increase or decrease in the MR signal, concomitant with the speech

production. These artifactual signal changes usually occur in less

than a second, much more rapidly than the slower hemodynamic

response. This difference in the temporal delay and shape between

the motion-induced and BOLD signal changes can then be

exploited either by ignoring the images occurring during the

motion or by modeling the signal as a sum of the stimulus timing

(representing the motion-induced changes) and the slower ideal

hemodynamic response. A predominant drawback with event-

related techniques using constant interstimulus intervals is that

tasks are limited to brief periods of word production, separated by

long rest periods, which may not be appropriate for all

psychological studies. Since the signals from brief stimuli are so

small, the task must be repeated numerous times to reach sufficient

functional contrast to noise, leading to long acquisition times if

long interstimulus intervals are required. The hemodynamic

response must also be sampled quickly enough to allow discrim-

ination against motion-induced signal changes, limiting the TR and

hence the number of slices that can be acquired.

Successful functional imaging during more rapid speech is

possible by employing an event-related design with a varying

interstimulus interval (ISI) (Birn et al., 1999a,b). The success of

this type of design was recently demonstrated by Palmer et al.

(2001) in a word stem completion task. In this study, localization

of function without significant motion artifacts was achieved

without explicitly modeling the motion in their analysis. The
effectiveness of this strategy is based on the fact that the model

hemodynamic responses of these designs have a low intrinsic

correlation with the motion-induced signal changes. As a result, a

linear fit of the model hemodynamic response to voxel time

series will contain only a very small component of the motion-

induced signal.

A key principle is that stimulus time courses can be specifically

designed to minimize the correlation between anticipated motion-

induced and BOLD signal changes. This minimization can also be

employed for a block design, where the duration of the task and

control periods can be designed such that the correlation between

the stimulus timing (which is quite similar in character to the

expected motion-induced signal change) is orthogonal to the

expected hemodynamic response. A question that therefore arises

is which stimulus design is optimal in the sense of reducing

sensitivity to task-related motion and maximizing detection of

BOLD signal changes. The purpose of this paper is to develop a

framework for designing optimal stimulus paradigms and evaluate

different analysis strategies to provide motion artifact-free func-

tional activation maps during task-induced motion, such as overt

speaking. Several different stimulus designs and analysis strategies

are presented and compared in terms of their sensitivity to motion

and detection power, first in simulation, and finally in experiments

involving overt word production.

In the first section of this paper, the effects of motion-induced

signal changes in fMRI using both blocked and event-related

stimulus designs with both constant and varied ISI are simulated.

Two quantities of interest are computed: (1) the correlation

between motion-induced and BOLD signal changes (leading to

false-positives in signal detection), and (2) the efficiency of the

design to detect BOLD signal changes both in the presence and in

the absence of motion-induced signal changes (an assessment of

the true-positives and false-negatives). The efficiency of the design

optimal for minimizing the detection of motion-induced signal

changes will be compared to the efficiency of the design optimal

for detection of function in the absence of motion artifacts; the

latter has been the subject of several recent studies (Birn et al.,

2002; Dale, 1999; Friston et al., 1999; Liu et al., 2001). In the

second part of this paper, experiments involving an overt word

generation task are performed using a blocked design and an event-

related design with either a constant or a varying ISI, and the

sensitivity to motion and detection power of BOLD activation are

compared.
Methods

Simulations

The effectiveness of various stimulus timing designs in

reducing the false-positives and increasing the correct detection

of BOLD signal changes was first tested by a series of simulations.

Three types of paradigms were assessed: (1) a blocked design with

equal task and control periods; (2) an event-related design with a

constant interstimulus interval (ISI) and stimulus duration (SD);

and (3) an event-related design with varying ISIs and varying SDs.

A task block was considered to consist of repeated task perform-

ances (one at each imaging repetition time; TR), analogous to

speaking several words. Task events always occurred at even

multiples of the TR. ATR of 1 s and a time course duration of 300

s was used for all simulations.
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A range of stimulus timing parameters (ISI and SD) were tested

for each paradigm, spanning values that would realistically be used

in an experimental design. In the blocked design, task and control

conditions (of equal durations) were varied between 2 and 63 s. In

the event-related design with a constant ISI, the ISI (defined as the

duration from the beginning of one stimulus to the beginning of the

next stimulus) was varied between 2 and 33 s. In the event-related

design with a varying ISI, stimuli were generated with exactly half

of the time points being in the task state and the other half in the

control state. This ratio of task-to-control has been shown to be

optimal for detecting functional signal changes (Birn et al., 2002;

Friston et al., 1999; Liu et al., 2001). The order of the task and

control states was completely randomized, resulting in a geometric

distribution for the interstimulus interval. As an additional

parameter, five different minimum stimulus durations were tested

(1, 3, 5, 7, and 9 s). The longer minimum stimulus durations cause

the random event-related designs to consist of longer blocks of task

and control, more closely resembling a blocked design. It has been

shown that these more blocked designs are more efficient at

detecting functional activation than more rapidly varying designs,

if a slow hemodynamic response is assumed in the detection (Birn

et al., 2002; Friston et al., 1999; Liu et al., 2001). Thirty-two

stimulus time courses were generated for each minimum stimulus

duration. The range of parameter values tested was found to be

sufficient to illustrate the dependence of the detection power and

motion sensitivity on the minimum stimulus duration. Minimum

stimulus durations longer than 9 s were not tested since these are

expected to be even more sensitive to motion-induced signal

changes.

Three types of signal changes are considered: (1) motion-

induced signal changes in the absence of BOLD signal changes; (2)

BOLD signal changes in the absence of motion-induced signal

changes; and (3) a combination of motion-induced and BOLD

signal changes. The first (purely motion-induced signal changes)

allows testing of the likelihood of false-positives, the second

(purely BOLD changes) can provide a measure of detection

efficiency, and the third (combined BOLD and motion-induced

signal changes) can provide an estimate of how much the detection

power is reduced by the presence of motion.

Time courses representing motion were simulated as large

spikes in the signal intensity at times coincident with the

performance of the task. The amplitude of this motion-induced

signal spike was a Gaussian random variable with a mean of 30%

and a standard deviation of 10% of the baseline signal intensity. In

other words, the motion-induced signal change varied for each task

performance, with an average deviation from baseline of 30% (six

times the maximal BOLD response in a blocked design). This level

and variability of the motion-induced signal change used in the

simulation was obtained in a separate experiment in one subject

who was instructed to speak a monosyllabic word every 5 s (see

Fig. 1). These values were used in the simulation as approximate

levels of motion that might be expected in a task involving overt

speech. The actual amount of movement observed is likely to be

subject and scanning session dependent. The motion-induced

signal change could therefore vary for each task performance

during the block, as it would if a series of different words were

spoken (see Fig. 2). One hundred and twenty-eight instances of

motion-induced signal changes were simulated for each time

course. Ideal BOLD signal changes were generated by convolving

the task timing with a gamma variate function, with parameters

according to Cohen (1997). This gamma variate rises to a peak of 5
s after a brief stimulus and returns to baseline after a further 6 s.

These functions were scaled to 5% of the baseline signal. Gaussian

white noise with a standard deviation equal to 0.5% of the baseline

signal was added to each time course.

The possibility for motion to be classified incorrectly as

functional activation in the different paradigms was tested by

fitting the ideal BOLD response for each task timing to time

courses representing signal changes purely due to motion. A high t

statistic indicates that the motion-induced signal change can easily

be mistaken as a BOLD signal change if no methods for dealing

with the motion are employed. The t statistic of (falsely) detecting

this simulated motion as functional activation (false-positive) was

computed as

t ¼ a=ra ð1Þ

where a is the amplitude of the fit of the ideal BOLD signal to the

simulated time series, and ra is the standard deviation of this

estimate. This standard deviation was computed as

ra ¼
ffip
RTR
� ��1

rg ð2Þ

where R is a matrix whose columns are the regressors in the

analysis, (RTR)�1 is the covariance matrix of the design, and rg is

the standard deviation of the residual signal after the fitted BOLD

response has been subtracted out. Since in this simulation no ideal

BOLD response was present, a large t statistic signals a large false-

positive rate.

It is also desirable to reduce the number of false-negatives in the

analysis technique. These can occur when the efficiency of the

design is low compared to the noise in the signal. In regions of the

brain where there are both motion-induced and BOLD signal

changes, detection is affected not only by the stimulus design, but

also by the presence of motion-induced signal changes. The

likelihood of false-negatives for the various paradigms was

assessed by generating ideal BOLD responses in either the absence

or presence of motion-induced signal changes and computing their

detection efficiencies according to Eq. 1. The motion-induced and

BOLD signal changes were generated as described above. For pure

BOLD signal changes in the absence of motion, this detection

efficiency is identical to that described in Birn et al. (2002).

Designs with higher t statistics are better able to distinguish BOLD

signal changes from noise; that is, a small t statistic in these

simulations indicates a large false-negative rate. In the presence of

motion, a low t statistic would indicate that the BOLD signals are

easily corrupted by motion and would be more difficult to detect.

Multiple instances of motion-induced signal changes were gen-

erated at each level of motion and the resulting correlation

coefficients were averaged.

The detection of BOLD signal changes in the presence of

motion can be improved by accounting for the motion in the

detection process. One of the simplest methods to accomplish this

is to ignore data at time points occurring during the motion. This

works particularly well for event-related designs where the slower

hemodynamic response is separated in time from the motion-

induced signal changes. In a blocked design, all the images during

the block are ignored, and the detection of function is based solely

on the return of the signal to baseline following cessation of the

task, a period of about 12 s. Detection efficiencies for the various

designs were recomputed with this additional correction. A second

approach is to incorporate a model of the motion-induced signal

changes in the detection. The simplest model for motion-induced



Fig. 1. Variability of motion-induced signal changes taken from a voxel near the edge of the brain in one subject when speaking one of the words bred,Q
byellow,Q bgreen,Q and bblueQ every 5 s.
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changes is the stimulus timing itself since movement-induced

signal changes occur primarily during the task. This model is not

exact since the amplitude of the motion-induced signal change can

vary for each task performance.

Experiments

In the second part of the study, a set of experiments were

performed to compare the various designs during an overt word

production task. A series of words were presented to the subject

at various timings using an LCD projector and a backprojection

screen viewed via a mirror. Each of the words was chosen from a

list of frequently used mono- and bisyllabic English words.

Subjects were instructed to speak the displayed word out loud

immediately after it was presented. Five task timings were

assessed: (1) a blocked-trial paradigm with 30 s periods of a word

presented and spoken every second alternated with 30 s periods

of rest (Fig. 3a); (2) a blocked-trial paradigm with 10 s periods of

repeated speaking (one word per second) alternated with 10 s

periods of rest (Fig. 3b); (3) an event-related paradigm with a

single word spoken every 15 s (Fig. 3c); (4) an event-related

paradigm with variable ISI (an average ISI of 2 s and an

minimum stimulus duration of 1 s; see Fig. 3d); and (5) an event-

related paradigm with a variable ISI and longer blocks of

activation and rest (an average ISI of 10 s and an minimum

stimulus duration of 5 s; see Fig. 3e). The latter two paradigms

were specifically designed to minimize sensitivity to motion and
Fig. 2. Simulated BOLD signal changes and task-related motion-induced signa

performances, each of which produces the same BOLD response but different am
maximize the detection power of BOLD signal changes within

the constraints of the stimulus generation parameters (ISI and

minimum stimulus duration). This was done by selecting the

stimulus time course in the simulation with a t statistic of falsely

detecting motion less than 0.5 and the highest detection efficiency

for a 1-s minimum stimulus duration (Fig. 3d) or for all minimum

stimulus durations (Fig. 3e).

During these tasks, a series of 310 axial T2*-weighted echo

planar images (EPI) was acquired on a 3-T GE Signa MR scanner

(Waukesha, WI, USA) (TR: 1 s; TE: 30 ms; field of view: 24 cm;

slice thickness: 5 mm; matrix size: 64 � 64). A brain-specific

quadrature Medical Advances RF coil was used (Wauwautosa,

WI, USA). A limited coverage of 8–12 slices was used, allowing

a TR of 1 s in order to improve sampling of the hemodynamic

response.

Data were analyzed by fitting the ideal hemodynamic BOLD

response to each pixel’s entire signal intensity time course. This

multiple linear regression analysis was performed using Analysis

of Functional NeuroImages (AFNI) software, including a

regressor to model linear trends, or drifts, in the data (Cox,

1996). Rigid-body registration was performed to provide a

measure of the amount of rigid-body motion, but the analysis

was done primarily on the unregistered data in order to compare

the effectiveness of different paradigm designs in reducing task-

related motion. Signal time courses in the event-related paradigms

were additionally deconvolved to estimate each voxel’s impulse

response function. These impulse response functions served as an
l changes for a blocked design. A task block consists of repeated task

ounts of motion.



Fig. 3. Simulated task time courses (gray) and ideal BOLD responses (black) for various task timings: (a) blocked design with 30 s task periods; (b) blocked

design with 10 s task periods; (c) event-related design with a constant interstimulus interval (ISI) of 15 s (one word spoken every 15 s); (d) event-related design

with a varying ISI, a minimum stimulus duration (SD) of 1 s, and an average ISI of 2 s; and (e) an event-related design with a varying ISI, a minimum SD of 5

s, and an average ISI of 10 s. Stimuli d and e were designed such that motion-induced and BOLD signal changes were minimally correlated.
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additional aid to visually discern motion-induced and BOLD

signal changes and to validate the choice for the ideal BOLD

response.

A quantitative measure of each paradigm’s sensitivity to motion

was obtained by computing the average of the absolute value of the

t statistic of signals correlated with the ideal hemodynamic

response at the edge and outside the brain. More specifically, a

mask was created by thresholding the baseline signal intensity at

45% of the maximum signal (see Fig. 4). In order to avoid the

possibility of Nyquist-ghosted activation contributing to a measure

of task-related motion artifact, signal changes in the Nyquist ghost
Fig. 4. An example of image masks used to quantify the detection of function vs. th

represent bfunctionQ consisted of areas inside the brain correlated with the ideal BO

Areas outside the brain that were correlated with the ideal BOLD response were c

value of the t statistics was averaged over the defined regions.
regions of the brain image (anterior and posterior to the brain) were

also ignored. Voxels outside this bbrain + ghostQ mask that are

correlated with the ideal hemodynamic response are considered to

be purely the consequence of motion. The mean t statistic in this

region can therefore be used to compare the amount of artifact

between the various paradigms. The efficiency of each design to

detect BOLD signal changes was obtained by computing the

average t statistic in regions in the brain significantly correlated

with the ideal response (t N 2.5) in all five paradigms. The

assumption made here is that the area of activation stays constant

across stimulus paradigms whereas the location of the artifact
e false detection of motion. Regions where signal changes are considered to

LD response (as measured by a t statistic) across all paradigms in a subject.

onsidered the results of task-related bmotion.Q For quantitation, the absolute
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(inside the brain) varies. Visual inspection of the functional masks

for all subjects confirmed that the regions primarily encompassed

motor, visual, and language areas.
Results

Simulations

Of particular interest is the minimization of false-positives

while maximizing the detection efficiency. Fig. 5 shows the

detection efficiency of various designs in the absence of motion on

the horizontal axis plotted against the t statistic of detecting purely

motion-induced signal changes as BOLD signal changes. Blocked

designs with long task and control periods have a high detection

efficiency but also show the greatest likelihood of false-positives,

as indicated by the high t statistic of detecting purely motion-

induced signal changes. The likelihood of false-positives depends

on the duration of the stimulus (task) and control periods. At a

stimulus duration of 10 s (an on–off cycle duration of 20 s), the

hemodynamic response is delayed by the amount for it to be

approximately orthogonal to the motion-induced signal changes

(see Fig. 3b). At an on–off cycle duration of 10 s (a stimulus

duration of 5 s), the hemodynamic response is anticorrelated with

the motion-induced signal change, with peaks in the response

occurring during the control periods, and troughs of the response

occurring during the task period. This results in a negative t

statistic, and again a larger likelihood of being falsely classified as

functional activation, if negative activations are included.

An event-related fMRI design with a constant ISI shows a slight

negative t statistic in the (false) detection of purely motion-induced

signal changes. This is due to the fact that spikes in the signal

caused by motion occurred during the trough of the functional

response. Event-related designs with a varying ISI offer a greater

detection efficiency, in agreement with earlier studies (Birn et al.,

2002; Burock and Dale, 2000; Burock et al., 1998; Dale, 1999; Liu

et al., 2001). The response to stimulus designs with short block
Fig. 5. The detection power of BOLD activation (true-positives) compared to th

simulations. Circles (o) represent event-related designs with varying ISI and differ

related design with a constant ISI of 15 s; and the crosses (�) represent blocked des

computed by correlating either the BOLD response + noise or simulated motion +

time points, TR = 1 s, 5% maximum BOLD activation, 0.5% white Gaussian noi

detection of BOLD.
durations (b5 s), parameterized in this simulation by the minimum

stimulus duration, generally have a low correlation with expected

motion-induced signal changes. At greater minimum stimulus

durations, the detection of BOLD signal changes in the absence of

motion is improved but the likelihood of false-positives increases

rapidly. An event-related design with a varying ISI (all varying in a

geometric distribution) and a minimum stimulus duration of 5 s

offers the best tradeoff in detection efficiency and reduction of

false-positives. An example of such a design is shown in (Fig. 3e).

In the case that both task-related motion-induced and BOLD

signal changes are present in a voxel, the rate of false-negatives

depends on the sign of the motion-induced signal change. If the

motion-induced signal change is positive, then the detection of

BOLD signal changes with a blocked design is least affected. In

this case, the motion-induced signal changes closely resemble the

expected BOLD signal changes. If the motion-induced signal

changes are negative, then the detection of BOLD signal changes

in a blocked design depends on the extent to which the motion-

induced signal change cancels out the positive BOLD signal. Due

to their lower functional contrast, event-related designs are slightly

more sensitive to task-related motion, the presence of which

decreases the ability to detect function. Event-related designs with

a varying ISI are generally less susceptible to motion than designs

with a constant ISI (see Fig. 5).

Fig. 6 also examines the detection efficiency when time points

during the motion are ignored. The loss of several data points

results in a loss of detection efficiency for signals not contaminated

by motion (Fig. 6b) but can improve the detection of BOLD signal

changes in the presence of motion and reduce the number of false-

positive detections of purely motion-induced signal changes (Fig.

6a). In all cases, false-positive detection of motion was minimal

when time points during which the motion occurred were ignored.

This is not surprising since no motion-induced signal changes

remain in these simulated signal time courses. The efficiency of

event-related designs with a constant ISI at detecting purely BOLD

signal changes is least affected. The detection efficiency of event-

related designs with a varying ISI was reduced more significantly
e detection of motion (false-positives) for various designs as computed by

ent minimum stimulus durations (min SD); the plus (+) represents an event-

igns with different block durations (2, 4, 6,. . ., 64 s). Detection powers were
noise with the ideal BOLD response, expressed here using a t statistic (300

se). The optimal design has a detection of motion near zero and a maximal
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(since more data points were ignored), but it was still higher than

the efficiency of designs with a constant ISI. Similarly for blocked

designs, the efficiency of detecting function in the absence of task-
related motion is substantially reduced due to the large number of

ignored data points. Note that detection of activation is still

possible even when all the data during the performance of the task

is ignored since the hemodynamic BOLD response is delayed and

slowly returns to baseline over a period of 10–14 s after cessation

of the stimulus. Fig. 6 also examines the detection efficiency when

the stimulus timing is used as an additional regressor to model the

motion-induced signal changes. The detection of BOLD signal

changes in the absence of motion is less affected than ignoring the

data points during the motion, as described above, since the

addition of one regressor results in the loss of only one degree of

freedom. The success of this approach in improving the detection

of BOLD signal changes in the presence of task-related motion,

however, depends on the variation of the motion-induced signal,

that is, how well the additional regressor (the stimulus timing) fits

the motion-induced changes. If the motion associated with speak-

ing the words out loud varies during the run, then the stimulus

timing does not accurately model the motion-induced signal

changes, and using this as an additional regressor is less effective.

The t statistic of the BOLD fit can also be lower after including an

additional regressor to model the motion, even though the

combined fit (motion and BOLD) is improved. This is because

the high similarity of motion and BOLD signals can result in an

erroneous overprediction of the BOLD amplitude if the motion is

not modeled. Since the t statistic is equal to the amplitude divided

by the standard deviation of the amplitude estimate (t = a / ra), the

presence of motion could increase the t statistic. This explains the

decrease in t statistic for the blocked design in the combined

motion and BOLD signal when both motion and BOLD signal

changes are modeled.
Experiments

Functional images obtained from the blocked-trial paradigm

with 30 s task and rest periods contained significant artifacts,

most prominently at the edge of the brain. These artifacts were

reduced substantially when the block duration was shortened to

10 s. Artifacts were also reduced for all three event-related

techniques. In the blocked-trial paradigm with 30 s task and rest

periods, the signal intensity time course of a pixel near an edge is

similar to the signal time course of a pixel in the motor cortex

(see Fig. 7). These two time courses appear quite different in the
Fig. 6. Simulation results showing (a) the (false) detection of task-related

motion, and (b and c) the detection of BOLD activation in the presence and

in the absence of task-related motion, respectively, as computed by

simulation (300 time points, TR = 1 s, 5% maximum BOLD activation,

0.5% white Gaussian noise). Detection power is measured by the mean of

the absolute value of the t statistic when an ideal BOLD response is fit to

the BOLD + noise + motion, or BOLD + noise. Three analysis strategies are

compared: no corrections for motion (white), ignoring time points during

the motion (gray), or modeling the motion using the task timing as an

additional regressor (black). The likelihood of falsely classifying task-

related motion as function is reduced when the motion is modeled or time

points during the motion are ignores, particularly in the blocked design. In

the absence of task-related motion, detection power is substantially reduced,

particularly in blocked designs, when time points during motion are

ignored. In contrast, ignoring time points during the motion improves

detection of true function when the signal time course is a sum of both

BOLD signal changes and task-related motion changes.



Fig. 7. Activation maps (left) and time courses (right) for speaking words out loud either in blocks of 30 s (top) or at varying intervals in an event-related

paradigm (on average one word every 2 s). Blocked designs lead to significant motion artifacts evident at the edge of the brain image. A voxel at the edge of the

brain shows signal intensity changes correlated with the expected BOLD response (indicated in gray). In contrast, in the event-related paradigm, a voxel at the

edge shows a large spike in the signal at the time coincident with the spoken word, while a voxel in the motor cortex shows the expected hemodynamic

response.
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event-related paradigms, as can visually be easily appreciated

from the average time courses in the event-related paradigm with

a varying ISI (Fig. 7).

In regions significantly activated for all paradigms, the blocked

design with long task and rest periods showed the greatest

detection power of function, as evidenced by its high mean t

statistic (t = 15.2) (see Fig. 8b). The blocked design with a 10-s

block duration had a slightly smaller detection power (t = 14.4).

This is similar to the reduction seen for the more blocked event-

related technique (with varying ISI and a minimum stimulus

duration of 5 s). Event-related designs with a varying ISI had a

slightly lower detection power, on average by a factor of 1.8

compared to the blocked design, and an event-related design with a

constant ISI resulted in the lowest detection power. Rigid-body

registration indicated movements typically less than 1 mm and 18
rotation, which did not significantly affect these t statistic values.

Ignoring the time points during the overt speaking task resulted

the greatest reduction of motion-induced signal changes at the edge

of the brain for the blocked design. The average t statistic of false

detections of motion (averaged over the entire region outside the

brain and its Nyquist ghost) was reduced from 0.83 to 0.56 (see

Fig. 8a). Less improvement is seen in the event-related designs
since these designs are already minimally sensitive to motion

artifacts. This analysis, however, decreased statistical power to

detect function by a factor of 1.9 in the blocked design with 30 s

task periods (see Fig. 8b).

When the stimulus timing was used as an additional regressor in

order to approximate the motion-induced signal changes, motion-

induced signal changes at the edge of the brain were reduced

slightly but not eliminated. This is likely due to the fact that the

motion-induced signal change varied for different words that were

spoken, or for different parts of the run, and was therefore not

accurately modeled by the stimulus timing. The greatest improve-

ment is again seen in the blocked design.
Discussion

As demonstrated by both simulations and experimental results,

the sensitivity to motion caused by overt speech can be

significantly reduced by properly designing the stimulus paradigm.

All of these designs work by exploiting the difference in the

temporal properties (i.e., the delay and duration) of rapid motion-

induced signal changes and the more sluggish hemodynamic



Fig. 8. Correlation of the ideal BOLD response (a) in regions outside the

brain (likely the result of task-related motion) and (b) in regions commonly

activated by all task paradigms, as measured by the mean of the absolute

value of the t statistic in the respective areas. Three analysis strategies are

compared: no corrections for motion (white), ignoring time points during

the motion (gray), or modeling the motion using the task timing as an

additional regressor (black). While false detection of task-related motion is

reduced when time points during the motion are ignored, the efficiency of

detecting function is also reduced, particularly in blocked designs. Using

the task timing to model the motion offers some benefit in reducing task-

induced motion artifacts in the blocked design, but little benefit in other

designs. Blocked designs with a short block duration of 10 s and an event-

related design with longer blocks (5 s minimum block size) offer the best

detection of BOLD activation while keeping false detection of motion at a

minimum.
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BOLD response. In previous studies, this strategy was imple-

mented in an event-related paradigm with long constant ISIs

(Barch et al., 1999; Birn et al., 1999a,b; Preibisch et al., 2003) or

varying ISIs (Palmer et al., 2001). As seen from the simulations

performed here, the BOLD response of most rapidly varying event-
related paradigms (with minimum stimulus durations below 3 s) is

orthogonal to motion-induced signal changes, explaining the

success of previous studies using these designs (Palmer et al.,

2001). Furthermore, the simulations and experiments presented

here show that there are large range of designs that meet the

criterion of reduced sensitivity to task-related motion. We can

therefore start to ask which of these designs is optimal in detecting

BOLD activation while still maintaining a low sensitivity to task-

related motion. Our simulations showed, for example, that a design

with a varying ISI but longer block durations (of 5 s) would still

provide low correlation with task-induced motion while improving

detection power substantially (see Figs. 5 and 6). Our experiments

confirmed this prediction (see Fig. 8). Reduction of task-related

motion artifact can also be achieved simply by reducing the

stimulus and control durations of a conventional blocked design.

This large range of available designs can help investigators choose

a design that is maximally sensitive to BOLD signal changes,

minimally sensitive to task-induced motion, and appropriate for

their particular neuropsychological test.

Most of the observed motion-induced signal changes, resulting

from either bulkhead motion or image warping from associated

magnetic field changes, occur at the edges of the brain and

therefore do not overlap significantly with BOLD signal changes.

This is confirmed by the deconvolved responses from the event-

related designs that show a large spike in the signal intensity at the

edge of the brain compared to a slower response in regions of the

motor cortex (see Fig. 7). Since task-related motion-induced signal

changes are minimally correlated with the BOLD signal changes in

event-related paradigms with varying ISIs, functional activation

maps free from task-induced motion artifacts can be obtained by

simply correlating each pixel time course with the ideal BOLD

response.

In cases where motion-induced signal changes do occur in the

same voxel as the BOLD signal change, the detection of the BOLD

signal change is slightly reduced if this motion is not taken into

account in the detection procedure. Ignoring the time points

occurring during the motion or modeling the motion by an

additional regressor, such as the stimulus timing, can improve

the detection of these BOLD signal changes obscured by task-

related motion. Ignoring time points during a task that contains

motion is particularly simple and reduces the number of false-

positives by not including any time points that might be corrupted

by task-related motion. As seen from Fig. 9, activation is still

detectable in a blocked design, even when all the images during the

task block are ignored. This may at first seem surprising, but it

relies on the delay of the BOLD response; the detection is based

purely on the decrease of the response to baseline after the task

block. This return of the BOLD signal to baseline from the

activated state takes approximately 10–14 s. For a 10-s block (20 s

on–off cycle duration), the signal closely resembles a sine wave,

and entire control period is used for the signal to return to baseline.

This entire transition period is used in the regression analysis. For

block durations longer than 12 s, the detection efficiency is slightly

reduced since the design is unbalanced with more time spent

sampling the control (baseline) state. At block durations shorter

than 10 s, the signal does not fully return to baseline, and the

detection efficiency is significantly reduced. The detection

efficiency of event-related designs with a constant ISI is least

affected since only one out of every 15 points is ignored.

There is an inherent tradeoff when data points acquired during

the task are ignored in the analysis. The possible influence of task-



Fig. 9. One axial brain slice at the level of the motor cortex in a representative volunteer showing the t statistic maps of correlating an ideal BOLD response for

five different designs. Three analysis strategies are shown: left: no explicit correction for task-related motion (aside from rigid-body registration); middle:

ignoring time points during the task; right: using the task timing to model the motion-induced signal change. The blocked design with long block durations (30

s) shows the most artifact. Blocked designs with shorter block durations (10 s) and more blocked event-related designs (5 s minimum stimulus duration; min.

SD) show the clearest activation with little motion artifact.
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related movement is removed, reducing the number of false-

positives, but the detection power of true function (for voxels not

corrupted by motion) is reduced. The point at which ignoring these

time points hinders rather than aids the detection of function

depends on the amplitude of the motion-induced signal change

relative to the expected BOLD signal change, the contrast-to-noise

of the BOLD signal, the total number of time points in the imaging

run, the number of time points during the task, and the stimulus

design. For example, the simulations presented here (Fig. 6) show

that for a blocked design with a 30-s block duration, ignoring data

points during the task block reduces the t value of artifactual task-

correlated motion from 15 to 0.9, but also reduces the t value for

true functional changes from 82 (with 300 degrees of freedom) to

37 (with 150 degrees of freedom). For robust activation, such as
the 5% signal changes considered in the simulation or for the visual

stimulation studied here, this loss of detection power may not be a

problem. If smaller signal changes are expected, a power analysis

should be performed to judge whether this reduction in detection

power is acceptable. For example, in this simulation the smallest

BOLD signal change detectable at P b 10�7 (uncorrected) (i.e.,

where the mean t value for purely BOLD signal changes

corresponds to a P b 10�7) is increased from 0.35% to 0.75%

when the data are ignored. The factor by which the detection power

is reduced varies for different stimulus designs, as indicated in Fig.

6. Note that while false-positives resulting from task-correlated

motion can be reduced by raising the statistical threshold (e.g., to a

value greater than 15 in the above example), smaller activations are

more likely to be missed. From the experimental results for the
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blocked design (with 30 s block duration), it was found that simply

raising the statistical threshold was not the most effective strategy

of eliminating the effects of task-correlated motion since the

number of bactivatedQ voxels (in the motor cortex region) was

reduced while large signal changes near the edge of the brain

remained.

Modeling the task-related motion-induced signal changes can

be more advantageous in designs with a large number of task

periods since ignoring time points during the motion results in a

large amount of data being discarded. Modeling the motion with an

additional regressor would only result in the loss of one degree of

freedom. The accuracy of this technique is of course limited to the

accuracy to which the motion-induced signal change can be

modeled. Motion artifacts during overt speech generally manifest

themselves as increases or decreases in signal intensity near the

edges of the brain during the task performance. For a brief

movement occurring within a TR, the stimulus timing can therefore

be used as a first approximation to the movement time course. It is

only approximate because it makes the assumption that an equal

deviation in the signal occurred for each movement. An additional

complicating factor is that if the movement is very brief, then a

signal change may only occur during the acquisition of one slice in

the volume. In a particular slice, therefore, a motion-induced signal

change may not appear for each task performance. This signal time

course will thus only partially resemble the stimulus timing used as

a model for the motion. This likely explains the lack of significant

improvement in the reduction of artifact when the stimulus timing

was used as an additional regressor to model the motion.

As an alternative, the time course representing the task-related

motion may be obtained from voxels at the edge of the brain or by

observing the NMR phase of the signal. The latter is possible since

both head movement and motion-induced magnetic field changes

cause changes in the NMR phase. Combining multiple voxels

showing motionlike behavior is not trivial since signal changes

from motion often show increases in one part of the brain and

decreases in another, confounding simple averaging. A principle

component or independent component analysis of these voxels

influenced by motion may extract the characteristics of interest.

Data were analyzed in this study using multiple linear

regression assuming a specific shape for the expected hemody-

namic response. Deconvolution is an alternative analysis com-

monly used in event-related designs. This analysis considers

regions of the brain as dactiveT when the signal changes are time-

locked to the stimulus regardless of the shape of the impulse

response function. The results of such an analysis performed on

tasks with associated motion, such as overt speech, must be

interpreted with caution since the motion-induced signal changes

are also time-locked to the task. Motion-induced and BOLD signal

changes must therefore be subsequently distinguished based on

their different temporal shape. An added difficulty with deconvo-

lution is that the motion-induced signal change is not necessarily

the same for each task performance. This variability leads to

increased noise in the estimate of the impulse response function.

An alternative analysis strategy that may provide separation of

BOLD and motion-induced signal changes is independent compo-

nent analysis (ICA), although again a subsequent discrimination of

which component is considered to be BOLD activation and which

is related to motion is necessary (Moritz et al., 2003; Quigley et al.,

2002).

An alternative method that has been used successfully in the

study of overt speech incorporates the use of bsparse samplingQ or
bclustered volume acquisitionQ (Edmister et al., 1999; Hall et al.,

1999). In this technique, slices within a volume are acquired as

rapidly as possible rather than evenly spaced throughout the TR

interval. A primary motivation for this method is that it allows for

silent periods (if the TR is longer than the acquisition time of a

single volume), which can improve the presentation of sounds and

monitoring of subject responses. Motion artifacts can be reduced

by having overt speech occur in the silent period after the volume

is acquired. When duration of the silent interval is equal to the time

required for the acquisition of one volume, then this method is

similar to acquiring the data continuously as rapidly as possible

and discarding the images during the motion. The key difference is

that the longer TR of the clustered acquisition will allow for more

recovery of longitudinal magnetization and therefore greater signal,

particularly at TRs of 1 s or less. This advantage will likely be less

pronounced compared to continuous imaging at longer TRs.

Conversely, at rapid scan rates (short TRs), a continuous design

where only volumes during speech are ignored allows for finer

sampling of the signal dynamics during periods not affected by

motion, such as the falling edge of the response in a blocked design

following the cessation of the speech task.

Recently developed algorithms, based on adaptive filtering, can

remove the gradient acoustic noise from audio recordings of

subject responses, allowing for clearer intelligibility and extraction

of reaction times (Nelles et al., 2003). At present, these algorithms

still take too long for real-time feedback, and therefore clustered

acquisitions are preferred when auditory feedback or a clear

perception of sounds is required.

The clustered acquisition design also suggests a variation on the

blocked design presented in these simulations and experiments.

Brief periods of speech could be blocked together, similar to a

blocked design, but with gaps where data uncorrupted by motion

artifacts can be obtained. A clustered design would scan only

during these periods, while a continuous design would scan

continuously and ignore the time points during the motion. If the

duration of the speech task and control periods are equal during the

block, this would result in a BOLD response one half the amplitude

of a blocked design where the speech is performed continuously

throughout the block. The detection power of this design is

therefore lower if no motion exists and no images are ignored, but

it can be comparable or better than a blocked design when images

during the motion are ignored.

While a blocked design with a stimulus duration of 10 s was

found to be minimally sensitive to task-induced motion artifacts if

the ideal hemodynamic response is used as a regressor, this

strategy of minimizing the motion artifact relies solely on the

difference in latency between the motion-induced and BOLD

signal changes. Because of this, the design may not be optimal for

experiments focused on estimating delays or where the response

latency is an additional variable in the regression analysis. In

contrast, event-related designs with a varying ISI rely on the

difference in both delay and shape of the signal to discriminate

motion and BOLD signals and may therefore be more appropriate.

Another confound of blocked designs with shorter block

durations is that the stimulation frequency may overlap more with

frequencies of physiological noise, particularly respiration. In the

robust motor activation studies illustrated here, the effect of

respiration is likely minimal, but it may become significant when

attempting to detect smaller activations. Using a variable ISI

distributes the power of the design across multiple frequencies and

is therefore less susceptible to these effects.
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The minimum stimulus duration is only one of many ways to

parameterize a stimulus with a varying ISI but generally larger

blocks. The key to the increased detection power of these designs

lies in the fact that these designs have more energy at low temporal

frequencies, which is less affected by the smoothing of the

hemodynamic response (Birn et al., 2002). Desirable stimulus

timings can be obtained by generating multiple random stimuli and

selecting the one with maximum detection efficiency and minimum

correlation with motion as the experimental timing design. Two

underlying assumptions to this method are that the head returns to

its original position between brief movements, and that the image

distortions are small if the motion-induced signal changes are not

removed or modeled in the analysis. If movements are large

enough to displace or distort the region of activation imaged

significantly during the task, then the signal acquired during this

time becomes unusable. If the latter is a significant problem in a

study, then designs with longer rest periods can be implemented,

allowing for more samples of the hemodynamic response

uncorrupted by motion.

A significant motion in the slice direction can also change the

effective TR that an area of the brain experiences. This can

potentially corrupt the image time points both during and

immediately after the motion when the brain has returned to its

original position. A design with a longer ISI will also allow for

more uncorrupted data not during or immediately after a task. The

effect of varying TRs should also be reduced at a longer TR. Care

should also be taken to secure the head in order to restrict bulk

motion, particularly in the slice direction. Even perfect immobi-

lization of the subject’s head does not prevent all speech-related

motion artifacts due to the contraction of muscles at the side of the

head during jaw clenching, and changes in the magnetic field as the

jaw, tongue, and facial muscles are moved (Birn et al., 1998). This

may in fact be the dominant source of the observed task-induced

motion artifacts as suggested by the lack of any significant bulk

head motion detected by image registration. In addition, most of

the motion artifact was found at the edge of the brain rather than in

regions with long T1s, such as CSF, suggesting that the varying T1

saturation caused by varying effective TRs may play a minimal

role, at least in our study.

This technique is not limited to the study of speech but can in

principle be used in any experiment that involves movement

correlated with the task. The studies that to date have benefited the

most from this design are those that involve motion of the head

itself or motion of tissues near the head, such as in studies of

swallowing, or facial muscle movement (Birn et al., 1999a,b;

Gosain et al., 2001; Kern et al., 2001; Martin et al., 2001). It could

also be used for studies with other task-related movements, for

example, the motion of a stimulation device that might cause field

distortions and resultant signal changes during the task. The key of

this method is the delay and slow rise and fall of the BOLD

response compared to the more rapid task-related motion-induced

signal changes.

A repetition time (TR) of 1 s was used to obtain a good

sampling of the hemodynamic response function. At a longer TR,

the hemodynamic response is nonzero at only a few points and

may therefore appear more similar to motion-induced signal

changes. Ignoring time points during the motion results in a

substantial amount of the sampled signal being discarded. The

analysis could in principle be modified to ignore only the slices

corrupted by motion. Including regressors to model the effects of

motion in this case also requires each slice to be modeled
separately since brief motion is likely to occur during the

acquisition of only a few slices in a volume. A shorter TR, which

improves the distinction between BOLD and motion-induced

signal changes, limits the number of slices that can be acquired

and may preclude whole-brain imaging on many scanners. As

shown by Preibisch et al. (2003), a TR of 3 s is still sufficient to

obtain artifact-free images during speech production. Measurement

of the hemodynamic response and separating it from motion could

also be improved at long TRs by incrementing the offset between

the stimulus and the acquisition (e.g., performing the task every 14

s for a TR of 3 s). Each point in the resulting (averaged) response

function is sampled less frequently, but at finer intervals.

Nonlinearities of the BOLD response would change these

results slightly. If the response from a brief stimulus is larger than

would be expected given the response from a longer stimulus,

event-related paradigms may have higher functional contrast-to-

noise ratios than indicated by this linear model. This rather simple

description of nonlinearities in the BOLD response may not

necessarily hold in more rapid event-related designs with a varying

ISI, where the dynamics are governed by both adaptation during

stimulation and a refractory period during stimulus doffT periods
(Birn and Bandettini, 2001).

Ultimately, the limit of this technique is the knowledge of

neuronal activity being investigated. For example, the movements

involved in continuous speech production can be thought of as a

rapid event-related design with a varying ISI. What is relevant to

BOLD-fMRI is the timing of the neuronal activity underlying this

movement, not the task or stimulus timing. Therefore, while the

motor cortex activity may very well be detected during continuous

speech using this technique by using the task timing, other areas

may be active more continuously during the entire speaking

process, or vary in rate of neuronal firing different from the rate of

actual production of words, and may therefore be unknown. The

BOLD activity resulting from the neuronal activity of interest may

therefore not be perfectly orthogonal to the stimulus timing. The

general robustness of rapid event-related designs with a range of

interstimulus intervals and stimulus durations, however, suggests

that these designs may be favorable in these instances.
Conclusions

There are a number of paradigm design strategies for reducing

the influence of task-induced motion. For blocked designs with

equal task and control period durations, a block duration of 10 s

offsets the hemodynamic response by precisely a quarter cycle

relative to the task timing. While this strategy exploits primarily the

temporal delay of the BOLD response and is therefore susceptible

to variations in the onset delay, it is a simple modification for many

fMRI studies. Across all subjects studied, consistently the best

activation maps were obtained using event-related designs with a

varying ISI. These paradigms were specifically designed such that

the correlation between the rapid motion-induced signal changes

and the slower BOLD signal changes are uncorrelated. Because of

this, a simple regression analysis without explicitly accounting for

the motion is generally sufficient. If movement artifacts remain, or

if activation is expected near an edge where the motion artifact

could potentially mask true function, the artifacts can be reduced

either by ignoring the time points during the motion or modeling

the motion using an additional regressor. Ignoring the time points

is best at removing the motion but can result in a significant loss of
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detection power, whereas modeling the movement relies on the

accuracy with which the motion-induced signal change can be

modeled.

Following the introduction of rapid event-related designs to

fMRI (Burock et al., 1998), recent efforts have focused on

optimizing these designs for the detection of BOLD activation or

the estimation of the hemodynamic response function. In a similar

manner, by understanding the underlying properties and differ-

ences of artifactual and BOLD signal changes resulting from overt

speech, stimuli can be specifically optimized to minimize the

sensitivity to motion while maximizing the sensitivity to BOLD

activation.
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