/***************************************************************************** Major portions of this software are copyrighted by the Medical College of Wisconsin, 1994-2000, and are released under the Gnu General Public License, Version 2. See the file README.Copyright for details. ******************************************************************************/ #include "mrilib.h" #include "betafit.c" #undef SINGLET typedef struct { int bot , top ; float pval ; } spanfit ; typedef struct { int ndim ; float * cmat , * cfac , * mvec ; } covmat ; #define IFREE(x) do{if((x)!=NULL)free(x);}while(0) #define FREE_COVMAT(cc) \ do{ if(cc != NULL){ \ IFREE(cc->cmat); IFREE(cc->cfac); \ IFREE(cc->mvec); free(cc); } } while(0) #define CM(i,j) cmat[(i)+(j)*ndim] #define CH(i,j) cfac[(i)+(j)*ndim] /*-----------------------------------------------------------------*/ void forward_solve_inplace( covmat * cv , float * vec ) { register int ndim=cv->ndim , ii,jj ; register float * cfac=cv->cfac , sum ; for( ii=0 ; ii < ndim ; ii++ ){ sum = vec[ii] ; for( jj=0 ; jj < ii ; jj++ ) sum -= CH(ii,jj) * vec[jj] ; vec[ii] = sum / CH(ii,ii) ; } return ; } #if 0 /* not needed in this program */ /*-----------------------------------------------------------------*/ void backward_solve_inplace( covmat * cv , float * vec ) { register int ndim=cv->ndim , ii,jj ; register float * cfac=cv->cfac , sum ; for( ii=ndim-1 ; ii >= 0 ; ii-- ){ sum = vec[ii] ; for( jj=ii+1 ; jj < ndim ; jj++ ) sum -= CH(jj,ii) * vec[jj] ; vec[ii] = sum / CH(ii,ii) ; } return ; } #endif /*-----------------------------------------------------------------*/ void compute_choleski( covmat * cv ) { register int ndim=cv->ndim , ii,jj,kk ; register float * cmat=cv->cmat , * cfac , sum ; if( ndim < 2 || cmat == NULL ) return ; if( cv->cfac == NULL ) cv->cfac = (float *) malloc(sizeof(float)*ndim*ndim) ; cfac = cv->cfac ; for( ii=0 ; ii < ndim ; ii++ ){ for( jj=0 ; jj < ii ; jj++ ){ sum = CM(ii,jj) ; for( kk=0 ; kk < jj ; kk++ ) sum -= CH(ii,kk) * CH(jj,kk) ; CH(ii,jj) = sum / CH(jj,jj) ; } sum = CM(ii,ii) ; for( kk=0 ; kk < ii ; kk++ ) sum -= CH(ii,kk) * CH(ii,kk) ; if( sum <= 0.0 ){ free(cv->cfac); cv->cfac = NULL; return; } CH(ii,ii) = sqrt(sum) ; for( jj=ii+1 ; jj < ndim ; jj++ ) CH(ii,jj) = 0.0 ; } return ; } /*-----------------------------------------------------------------*/ #define CCUT 3.5 #define EPS 1.e-4 covmat * robust_covar( int ndim , int nvec , float ** vec ) { covmat * cv ; float *nmat, *cmat , fnvec,fndim,cnorm,csum , *tv , *vv , *mv , *wv ; int ii , jj , kk , nite ; float bcut , cwt ; #ifdef SINGLET fprintf(stderr,"Enter robust_covar: ndim=%d nvec=%d\n",ndim,nvec) ; #endif if( ndim < 2 || nvec < ndim || vec == NULL ) return NULL ; cv = (covmat *) malloc(sizeof(covmat)) ; cv->ndim = ndim ; cv->cmat = NULL ; cv->cfac = NULL ; cv->mvec = NULL ; nmat = (float *) malloc(sizeof(float)*ndim*ndim) ; /* matrix */ tv = (float *) malloc(sizeof(float)*ndim) ; /* temp vector */ mv = (float *) malloc(sizeof(float)*ndim) ; /* mean vector */ wv = (float *) malloc(sizeof(float)*nvec) ; /* weight vector */ fnvec = 1.0/nvec ; fndim = 1.0/ndim ; bcut = 1.0 + CCUT*sqrt(fndim) ; /* compute initial mean & covariance matrix with all weights = 1 */ for( jj=0 ; jj < ndim ; jj++ ) mv[jj] = 0.0 ; for( kk=0 ; kk < nvec ; kk++ ){ /* mean vector sum */ vv = vec[kk] ; for( jj=0 ; jj < ndim ; jj++ ) mv[jj] += vv[jj] ; } for( jj=0 ; jj < ndim ; jj++ ) mv[jj] *= fnvec ; /* scale mean vector */ for( jj=0 ; jj < ndim ; jj++ ) for( ii=0 ; ii < ndim ; ii++ ) nmat[ii+jj*ndim] = 0.0 ; for( kk=0 ; kk < nvec ; kk++ ){ /* covariance matrix sum */ vv = vec[kk] ; for( jj=0 ; jj < ndim ; jj++ ){ for( ii=0 ; ii <= jj ; ii++ ) nmat[ii+jj*ndim] += (vv[ii]-mv[ii])*(vv[jj]-mv[jj]) ; } } for( jj=0 ; jj < ndim ; jj++ ){ /* scale covariance matrix */ for( ii=0 ; ii < jj ; ii++ ) nmat[jj+ii*ndim] = (nmat[ii+jj*ndim] *= fnvec) ; nmat[jj+jj*ndim] *= fnvec ; } /* now iterate until convergence, or something */ nite = 0 ; while(1){ nite++ ; #ifdef SINGLET fprintf(stderr,"\niteration %2d:\n",nite) ; #endif cmat = cv->cmat = nmat ; /* put old matrix into cv */ cv->mvec = mv ; /* and old mean vector */ compute_choleski(cv) ; /* decompose matrix */ if( cv->cfac == NULL ){ free(cv->cmat); free(cv->mvec); free(cv); free(tv); free(wv); return NULL ; } nmat = (float *) malloc(sizeof(float)*ndim*ndim) ; /* new matrix */ mv = (float *) malloc(sizeof(float)*ndim) ; /* new mean vector */ for( jj=0 ; jj < ndim ; jj++ ){ /* initialize new things to zero */ mv[jj] = 0.0 ; for( ii=0 ; ii < ndim ; ii++ ) nmat[ii+jj*ndim] = 0.0 ; } /* update mean */ csum = 0.0 ; for( kk=0 ; kk < nvec ; kk++ ){ vv = vec[kk] ; /* -1/2 */ /* compute tv = [cmat] (vv-mvec) */ for( jj=0 ; jj < ndim ; jj++ ) tv[jj] = vv[jj] - cv->mvec[jj] ; forward_solve_inplace(cv,tv) ; /* compute norm of tv, then weighting factor for this vector */ cnorm = 0.0 ; for( ii=0 ; ii < ndim ; ii++ ) cnorm += tv[ii]*tv[ii] ; cnorm = cnorm*fndim ; cnorm = (cnorm <= bcut) ? 1.0 : bcut/cnorm ; wv[kk] = cnorm ; csum += cnorm ; /* add vv into accumulating mean, with weight cnorm */ for( jj=0 ; jj < ndim ; jj++ ) mv[jj] += cnorm*vv[jj] ; } csum = 1.0 / csum ; cwt = nvec*csum ; for( jj=0 ; jj < ndim ; jj++ ) mv[jj] *= csum ; /* scale new mean */ /* update covariance */ for( kk=0 ; kk < nvec ; kk++ ){ vv = vec[kk] ; cnorm = wv[kk] ; for( jj=0 ; jj < ndim ; jj++ ){ for( ii=0 ; ii <= jj ; ii++ ) nmat[ii+jj*ndim] += cnorm*(vv[ii]-cv->mvec[ii])*(vv[jj]-cv->mvec[jj]) ; } } #define DDD csum for( jj=0 ; jj < ndim ; jj++ ){ for( ii=0 ; ii < jj ; ii++ ) nmat[jj+ii*ndim] = (nmat[ii+jj*ndim] *= DDD) ; nmat[jj+jj*ndim] *= DDD ; } /* check for convergence - L1 norm */ cnorm = csum = 0.0 ; for( jj=0 ; jj < ndim ; jj++ ){ for( ii=0 ; ii <= jj ; ii++ ){ cnorm += fabs( nmat[ii+jj*ndim] - cmat[ii+jj*ndim] ) ; csum += fabs( nmat[ii+jj*ndim] ) ; } } #ifdef SINGLET fprintf(stderr," |dif|=%12.4g |mat|=%12.4g cwt=%12.4g\n",cnorm,csum,cwt) ; fprintf(stderr," matrix:\n") ; for( ii=0 ; ii < ndim ; ii++ ){ fprintf(stderr," Row%2d: %12.4g ",ii,mv[ii]) ; for( jj=0 ; jj < ndim ; jj++ ) fprintf(stderr," %12.4g", (jj<=ii) ? nmat[ii+jj*ndim] : nmat[ii+jj*ndim]/sqrt(nmat[ii+ii*ndim]*nmat[jj+jj*ndim]) ); fprintf(stderr,"\n") ; } #endif free(cv->cmat) ; free(cv->mvec) ; if( cnorm <= EPS*csum || nite > 3*ndim ){ cv->cmat = nmat; cv->mvec = mv; break; /* exit loop */ } } free(wv) ; free(tv) ; compute_choleski(cv) ; return cv ; } /*********************************************************************/ #if 0 /* the old way, which doesn't work so well */ /*-------------------------------------------------------------------*/ float evaluate_span( int ndim, int nvec, int bot , int top , float * cvec , float ** bvec ) { int kk , ibot=bot,itop=top , nneg,npos ; float cbar, *qvec , cdot ; register int ii ; register float sum ; static float * bsum=NULL , * cnorm=NULL ; static int nbsum=0 , ncnorm=0 ; if( nvec > nbsum ){ if( bsum != NULL ) free(bsum) ; bsum = (float *) malloc(sizeof(float)*nvec) ; nbsum = nvec ; } else if( nvec <= 0 ){ if( bsum != NULL ){ free(bsum) ; bsum = NULL; nbsum = 0; } if( cnorm != NULL ){ free(cnorm); cnorm = NULL; ncnorm = 0; } return 0.0 ; } if( ndim > ncnorm ){ if( cnorm != NULL ) free(cnorm) ; cnorm = (float *) malloc(sizeof(float)*ndim) ; ncnorm = ndim ; } /* compute cnorm = cvec-cbar */ sum = 0.0 ; for( ii=ibot ; ii <= itop ; ii++ ) sum += cvec[ii] ; cbar = sum/(itop-ibot+1) ; sum = 0.0 ; for( ii=ibot ; ii <= itop ; ii++ ){ cnorm[ii] = cvec[ii] - cbar ; sum += cnorm[ii]*cnorm[ii] ; } if( sum <= 0.0 ) return 0.5 ; /* [cvec-cbar]=0 is perfect */ #if 0 sum = 1.0 / sum ; for( ii=ibot ; ii <= itop ; ii++ ) cnorm[ii] *= sum ; #endif /* project each bvec onto cnorm */ for( kk=0 ; kk < nvec ; kk++ ){ qvec = bvec[kk] ; sum = 0.0 ; for( ii=ibot ; ii <= itop ; ii++ ) sum += qvec[ii] * cnorm[ii] ; bsum[kk] = sum ; } /* find number of bsums less than 0 */ for( nneg=ii=0 ; ii < nvec ; ii++ ) if( bsum[ii] <= 0.0 ) nneg++ ; npos = nvec - nneg ; if( npos < nneg ){ ii = nneg ; nneg = npos ; npos = ii ; } #if 0 sum=cdot=0.0 ; for( ii=ibot ; ii <= itop ; ii++ ) cdot += cvec[ii] * cnorm[ii] ; for( kk=0 ; kk < nvec ; kk++ ) sum += bsum[ii] * bsum[ii] ; sum = sqrt(sum/nvec) ; fprintf(stderr,"cbar = %12.4g cdot = %12.4g bsig = %12.4g\n",cbar,cdot,sum) ; qsort_float( nvec , bsum ) ; for( ii=0 ; ii < nvec ; ii++ ){ fprintf(stderr,"%12.4g ",bsum[ii]) ; if( ii%5 == 4 || ii == nvec-1 ) fprintf(stderr,"\n") ; } #endif /* return value is fraction of negative bsum values */ sum = (float)nneg / (float)nvec ; return sum ; } #else /* the new way, which I hope works better */ /*-------------------------------------------------------------------*/ float evaluate_span( int ndim, int nvec, int bot , int top , float * cvec , float ** bvec ) { int ii,kk , npt=top-bot+1 , nbd ; float ** svec , *ee,*xx,s,t,xd,tinv , bd ; covmat * cv ; /* make pointers to subvectors */ svec = (float **) malloc(sizeof(float *)*nvec) ; for( kk=0 ; kk < nvec ; kk++ ) svec[kk] = bvec[kk] + bot ; /* estimate covariance of subvectors */ cv = robust_covar( npt , nvec , svec ) ; free(svec) ; if( cv == NULL ) return 0.0 ; /* shouldn't happen */ /* compute normalized cvec and e into xx, ee */ ee = (float *) malloc(sizeof(float)*npt) ; xx = (float *) malloc(sizeof(float)*npt) ; for( ii=0 ; ii < npt ; ii++ ){ ee[ii] = 1.0 ; /* e = vector of all 1s */ xx[ii] = cvec[ii+bot] ; } forward_solve_inplace( cv , ee ) ; /* normalization */ forward_solve_inplace( cv , xx ) ; /* compute optimal s, then xx-s*ee */ s = t = 0.0 ; for( ii=0 ; ii < npt ; ii++ ){ s += ee[ii] * xx[ii] ; t += ee[ii] * ee[ii] ; } if( t == 0.0 ){ free(ee); free(xx); FREE_COVMAT(cv); return 0.0; } /* err */ s = s / t ; for( ii=0 ; ii < npt ; ii++ ) xx[ii] -= s * ee[ii] ; /* normalize each bvec, then compute dot product with xx; negative values are bvec's on the other side of the line s*ee */ nbd = 0 ; for( kk=0 ; kk < nvec ; kk++ ){ memcpy( ee , bvec[kk]+bot , sizeof(float)*npt ) ; /* bvec */ forward_solve_inplace( cv , ee ) ; /* normalized */ bd = 0.0 ; for( ii=0 ; ii < npt ; ii++ ) bd += ee[ii] * xx[ii] ; if( bd <= 0.0 ) nbd++ ; #if 0 fprintf(stderr," %12.4g",bd); #endif } s = (float)nbd / (float)nvec ; #if 0 fprintf(stderr," => nbd=%d\n",nbd) ; #endif free(ee); free(xx); FREE_COVMAT(cv) ; return s ; } #endif /*-------------------------------------------------------------------*/ spanfit find_best_span( int ndim , int nvec , int minspan , float * cvec , float ** bvec ) { spanfit result = {0,0,0.0} ; int ii,kk , bot,top , bot_best,top_best ; float val , val_best ; if( minspan < 3 || ndim < minspan || nvec < 100 ) return result ; if( cvec == NULL || bvec == NULL ) return result ; val_best = -1.0 ; for( bot=0 ; bot < ndim+1-minspan ; bot++ ){ for( top=0 ; top < bot+minspan-1 ; top++ ) printf(" 0") ; for( top=bot+minspan-1 ; top < ndim ; top++ ){ val = evaluate_span( ndim,nvec , bot,top , cvec,bvec ) ; printf(" %g",val) ; if( val > val_best ){ val_best = val ; bot_best = bot ; top_best = top ; } #if 1 if( val >= 0.10 ) fprintf(stderr,"bot=%2d top=%2d: %.4f\n",bot,top,val) ; #endif } printf("\n") ; } evaluate_span( 0,0,0,0,NULL,NULL ) ; result.bot = bot_best; result.top = top_best; result.pval = val_best; return result ; } /*-----------------------------------------------------------------------*/ static int nran=1000 ; static float abot= 0.5 , atop= 4.0 ; static float bbot=10.0 , btop=200.0 ; static float pbot=50.0 , ptop= 80.0 ; static double pthr=1.e-4 ; static int sqr=0 ; #define OUT_THR 1 #define OUT_BBB 2 #define OUT_AAA 3 static int outmode = OUT_THR ; /*-----------------------------------------------------------------------*/ float process_sample( float pcut , BFIT_data * bfd ) { BFIT_result * bfr ; double xth ; static double aold,bold ; static BFIT_data * bfdold=NULL ; #if 1 if( bfd == bfdold ){ beta_init( aold , bold ) ; nran = 400 ; abot = aold*0.5 ; atop = aold*2.0 ; if( abot <= 0.1 ) abot = 0.101 ; bbot = bold*0.5 ; btop = bold*2.0 ; if( bbot <= 9.9 ) bbot = 9.999 ; } else { beta_init( 0.0 , 0.0 ) ; bfdold = bfd ; nran = 1000 ; abot = 0.5 ; atop = 4.0 ; bbot = 10.0 ; btop =200.0 ; } #endif bfr = BFIT_compute( bfd , pcut , abot,atop , bbot,btop , nran,0 ) ; if( bfr == NULL ){ fprintf(stderr,"*** Can't compute betafit at pcut=%f\n",pcut) ; exit(1) ; } aold = bfr->a ; bold = bfr->b ; switch( outmode ){ default: case OUT_THR: /* use the threshold as the output parameter */ xth = beta_p2t( pthr , bfr->a,bfr->b ) ; if( sqr ) xth = sqrt(xth) ; break ; case OUT_BBB: xth = bold ; break ; case OUT_AAA: xth = aold ; break ; } BFIT_free_result(bfr) ; return (float) xth ; } /*-----------------------------------------------------------------------*/ int main( int argc , char * argv[] ) { BFIT_data * bfd , * nfd ; float * bf_tvec , ** boot_tvec ; int ndim , nvec ; int nvals,ival , nvox , nbin , miv ; float pcut , eps,eps1 ; float *bval , *cval ; double aa,bb,xc,xth ; int mcount,mgood , ii , jj , kk , ibot,itop ; int narg=1 ; int nboot=0 ; double aboot,bboot,tboot , pthr=1.e-4 ; float asig , bsig , tsig , abcor ; THD_3dim_dataset * input_dset , * mask_dset=NULL ; float mask_bot=666.0 , mask_top=-666.0 ; byte * mmm=NULL ; if( argc < 2 || strcmp(argv[1],"-help") == 0 ){ fprintf(stderr,"Usage: 3dbetafit2 [options] dataset\n" "Fits a beta distribution to the values in a brick.\n" "\n" "Options:\n" " -arange abot atop = Sets the search range for parameter\n" " 'a' to abot..atop.\n" " [default is 0.5 .. 4.0]\n" "\n" " -brange bbot btop = Sets the search range for parameter\n" " 'b' to bbot..btop\n" " [default is 10 .. 200]\n" "\n" " -prange pbot ptop = Will evaluate for percent cutoffs\n" " from pbot to ptop (steps of 1%%)\n" " [default is 50 .. 80]\n" "\n" " -bootstrap N = Does N bootstrap evaluations\n" "\n" " -mask mset = A mask dataset to indicate which\n" " voxels are to be used\n" " -mrange b t = Use only mask values in range from\n" " 'b' to 't' (inclusive)\n" "\n" " -sqr = Flag to square the data from the dataset\n" " -pthr p = Sets p-value of cutoff for threshold evaluation\n" " [default = 1.e-4]\n" " -bout = Use 'b' for the output, instead of thr\n" " -aout = Use 'a' for the output, instead of thr\n" ) ; PRINT_COMPILE_DATE ; exit(0) ; } /* scan command-line args */ while( narg < argc && argv[narg][0] == '-' ){ if( strcmp(argv[narg],"-aout") == 0 ){ outmode = OUT_AAA ; narg++ ; continue ; } if( strcmp(argv[narg],"-bout") == 0 ){ outmode = OUT_BBB ; narg++ ; continue ; } if( strcmp(argv[narg],"-pthr") == 0 ){ pthr = strtod(argv[++narg],NULL) ; if( pthr <= 0.0 || pthr >= 1.0 ){ fprintf(stderr,"*** Illegal value after -pthr!\n");exit(1); } narg++ ; continue; } if( strcmp(argv[narg],"-sqr") == 0 ){ sqr = 1 ; narg++ ; continue; } if( strcmp(argv[narg],"-arange") == 0 ){ abot = strtod(argv[++narg],NULL) ; atop = strtod(argv[++narg],NULL) ; if( abot < 0.1 || abot > atop ){ fprintf(stderr,"*** Illegal value after -arange!\n");exit(1); } narg++ ; continue; } if( strcmp(argv[narg],"-brange") == 0 ){ bbot = strtod(argv[++narg],NULL) ; btop = strtod(argv[++narg],NULL) ; if( bbot < 0.1 || bbot > btop ){ fprintf(stderr,"*** Illegal value after -brange!\n");exit(1); } narg++ ; continue; } if( strcmp(argv[narg],"-prange") == 0 ){ pbot = (int) strtod(argv[++narg],NULL) ; ptop = (int) strtod(argv[++narg],NULL) ; if( pbot < 30.0 || pbot > ptop || ptop > 99.0 ){ fprintf(stderr,"*** Illegal value after -prange!\n");exit(1); } narg++ ; continue; } if( strcmp(argv[narg],"-bootstrap") == 0 ){ nboot = (int) strtod(argv[++narg],NULL) ; if( nboot < 100 ){ fprintf(stderr,"*** Illegal value after -bootstrap!\n");exit(1); } narg++ ; continue; } if( strncmp(argv[narg],"-mask",5) == 0 ){ if( mask_dset != NULL ){ fprintf(stderr,"*** Cannot have two -mask options!\n") ; exit(1) ; } if( narg+1 >= argc ){ fprintf(stderr,"*** -mask option requires a following argument!\n"); exit(1) ; } mask_dset = THD_open_dataset( argv[++narg] ) ; if( mask_dset == NULL ){ fprintf(stderr,"*** Cannot open mask dataset!\n") ; exit(1) ; } if( DSET_BRICK_TYPE(mask_dset,0) == MRI_complex ){ fprintf(stderr,"*** Cannot deal with complex-valued mask dataset!\n"); exit(1) ; } narg++ ; continue ; } if( strncmp(argv[narg],"-mrange",5) == 0 ){ if( narg+2 >= argc ){ fprintf(stderr,"*** -mrange option requires 2 following arguments!\n") ; exit(1) ; } mask_bot = strtod( argv[++narg] , NULL ) ; mask_top = strtod( argv[++narg] , NULL ) ; if( mask_top < mask_top ){ fprintf(stderr,"*** -mrange inputs are illegal!\n") ; exit(1) ; } narg++ ; continue ; } fprintf(stderr,"*** Illegal option: %s\n",argv[narg]) ; exit(1) ; } if( nboot < 100 ){ fprintf(stderr,"*** Must use -bootstrap 'option'!\n"); exit(1); } if( narg >= argc ){ fprintf(stderr,"*** No dataset argument on command line!?\n"); exit(1); } input_dset = THD_open_dataset( argv[narg] ) ; if( input_dset == NULL ){ fprintf(stderr,"*** Can't open dataset %s\n",argv[narg]); exit(1); } nvox = DSET_NVOX(input_dset) ; /* load data from dataset */ DSET_load(input_dset) ; CHECK_LOAD_ERROR(input_dset) ; if( DSET_BRICK_STATCODE(input_dset,0) == FUNC_COR_TYPE ) sqr = 1 ; bfd = BFIT_prepare_dataset( input_dset , 0 , sqr , mask_dset , 0 , mask_bot , mask_top ) ; if( bfd == NULL ){ fprintf(stderr,"*** Couldn't prepare data from input dataset!\n"); exit(1) ; } DSET_delete(mask_dset) ; DSET_delete(input_dset) ; /*--*/ fprintf(stderr,"Computing bootstrap") ; ndim = ptop - pbot + 1.0 ; bf_tvec = (float *) malloc(sizeof(float)*ndim) ; for( pcut=pbot ; pcut <= ptop ; pcut += 1.0 ) bf_tvec[(int)(pcut-pbot)] = process_sample( pcut , bfd ) ; nvec = nboot ; boot_tvec = (float **) malloc(sizeof(float *)*nvec) ; for( jj=0 ; jj < nboot ; jj++ ){ boot_tvec[jj] = (float *) malloc(sizeof(float)*ndim) ; nfd = BFIT_bootstrap_sample( bfd ) ; for( pcut=pbot ; pcut <= ptop ; pcut += 1.0 ) boot_tvec[jj][(int)(pcut-pbot)] = process_sample( pcut , nfd ) ; BFIT_free_data(nfd) ; if( jj%10 == 0 ) fprintf(stderr,".") ; } fprintf(stderr,"\n") ; BFIT_free_data(bfd) ; #ifdef SINGLET while(1){ fprintf(stderr,"Enter ibot itop [ndim=%d]: ",ndim) ; ibot = itop = 0 ; fscanf(stdin,"%d%d",&ibot,&itop) ; if( itop < 0 || itop-ibot+1 < 3 || itop >= ndim ) break ; eps = evaluate_span( ndim,nvec , ibot,itop , bf_tvec , boot_tvec ) ; fprintf(stderr,"Evaluate = %f\n\n",eps) ; } #else { spanfit sf = find_best_span( ndim,nvec , 10 , bf_tvec,boot_tvec ) ; float tbar = 0.0 ; for( ii=sf.bot ; ii <= sf.top ; ii++ ) tbar += bf_tvec[ii] ; tbar /= (sf.top-sf.bot+1.0) ; fprintf(stderr,"\nBEST bot=%2d top=%2d: %.4f %12.4g\n",sf.bot,sf.top,sf.pval,tbar) ; } #endif #if 1 { float xx,ss ; for( pcut=pbot ; pcut <= ptop ; pcut += 1.0 ){ kk = (int)(pcut-pbot) ; xx = bf_tvec[kk] ; ss = 0.0 ; for( jj=0 ; jj < nboot ; jj++ ) ss += SQR((boot_tvec[jj][kk]-xx)) ; ss = sqrt(ss/nboot) ; printf("%.1f %12.4g %12.4g\n",pcut,xx,ss) ; } } #endif exit(0) ; }