#include "cdflib.h" void dstzr(double *zxlo,double *zxhi,double *zabstl,double *zreltl) /* ********************************************************************** void dstzr(double *zxlo,double *zxhi,double *zabstl,double *zreltl) Double precision SeT ZeRo finder - Reverse communication version Function Sets quantities needed by ZROR. The function of ZROR and the quantities set is given here. Concise Description - Given a function F find XLO such that F(XLO) = 0. More Precise Description - Input condition. F is a double precision function of a single double precision argument and XLO and XHI are such that F(XLO)*F(XHI) .LE. 0.0 If the input condition is met, QRZERO returns .TRUE. and output values of XLO and XHI satisfy the following F(XLO)*F(XHI) .LE. 0. ABS(F(XLO) .LE. ABS(F(XHI) ABS(XLO-XHI) .LE. TOL(X) where TOL(X) = MAX(ABSTOL,RELTOL*ABS(X)) If this algorithm does not find XLO and XHI satisfying these conditions then QRZERO returns .FALSE. This implies that the input condition was not met. Arguments XLO --> The left endpoint of the interval to be searched for a solution. XLO is DOUBLE PRECISION XHI --> The right endpoint of the interval to be for a solution. XHI is DOUBLE PRECISION ABSTOL, RELTOL --> Two numbers that determine the accuracy of the solution. See function for a precise definition. ABSTOL is DOUBLE PRECISION RELTOL is DOUBLE PRECISION Method Algorithm R of the paper 'Two Efficient Algorithms with Guaranteed Convergence for Finding a Zero of a Function' by J. C. P. Bus and T. J. Dekker in ACM Transactions on Mathematical Software, Volume 1, no. 4 page 330 (Dec. '75) is employed to find the zero of F(X)-Y. ********************************************************************** */ { E0001(1,NULL,NULL,NULL,NULL,NULL,NULL,NULL,zabstl,zreltl,zxhi,zxlo); } /* END */