/* htribk.f -- translated by f2c (version 19961017). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int htribk_(integer *nm, integer *n, doublereal *ar, doublereal *ai, doublereal *tau, integer *m, doublereal *zr, doublereal *zi) { /* System generated locals */ integer ar_dim1, ar_offset, ai_dim1, ai_offset, zr_dim1, zr_offset, zi_dim1, zi_offset, i__1, i__2, i__3; /* Local variables */ static doublereal h__; static integer i__, j, k, l; static doublereal s, si; /* THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF */ /* THE ALGOL PROCEDURE TRBAK1, NUM. MATH. 11, 181-195(1968) */ /* BY MARTIN, REINSCH, AND WILKINSON. */ /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). */ /* THIS SUBROUTINE FORMS THE EIGENVECTORS OF A COMPLEX HERMITIAN */ /* MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING */ /* REAL SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY HTRIDI. */ /* ON INPUT */ /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */ /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */ /* DIMENSION STATEMENT. */ /* N IS THE ORDER OF THE MATRIX. */ /* AR AND AI CONTAIN INFORMATION ABOUT THE UNITARY TRANS- */ /* FORMATIONS USED IN THE REDUCTION BY HTRIDI IN THEIR */ /* FULL LOWER TRIANGLES EXCEPT FOR THE DIAGONAL OF AR. */ /* TAU CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS. */ /* M IS THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED. */ /* ZR CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED */ /* IN ITS FIRST M COLUMNS. */ /* ON OUTPUT */ /* ZR AND ZI CONTAIN THE REAL AND IMAGINARY PARTS, */ /* RESPECTIVELY, OF THE TRANSFORMED EIGENVECTORS */ /* IN THEIR FIRST M COLUMNS. */ /* NOTE THAT THE LAST COMPONENT OF EACH RETURNED VECTOR */ /* IS REAL AND THAT VECTOR EUCLIDEAN NORMS ARE PRESERVED. */ /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */ /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY */ /* THIS VERSION DATED AUGUST 1983. */ /* ------------------------------------------------------------------ */ /* Parameter adjustments */ tau -= 3; ai_dim1 = *nm; ai_offset = ai_dim1 + 1; ai -= ai_offset; ar_dim1 = *nm; ar_offset = ar_dim1 + 1; ar -= ar_offset; zi_dim1 = *nm; zi_offset = zi_dim1 + 1; zi -= zi_offset; zr_dim1 = *nm; zr_offset = zr_dim1 + 1; zr -= zr_offset; /* Function Body */ if (*m == 0) { goto L200; } /* .......... TRANSFORM THE EIGENVECTORS OF THE REAL SYMMETRIC */ /* TRIDIAGONAL MATRIX TO THOSE OF THE HERMITIAN */ /* TRIDIAGONAL MATRIX. .......... */ i__1 = *n; for (k = 1; k <= i__1; ++k) { i__2 = *m; for (j = 1; j <= i__2; ++j) { zi[k + j * zi_dim1] = -zr[k + j * zr_dim1] * tau[(k << 1) + 2]; zr[k + j * zr_dim1] *= tau[(k << 1) + 1]; /* L50: */ } } if (*n == 1) { goto L200; } /* .......... RECOVER AND APPLY THE HOUSEHOLDER MATRICES .......... */ i__2 = *n; for (i__ = 2; i__ <= i__2; ++i__) { l = i__ - 1; h__ = ai[i__ + i__ * ai_dim1]; if (h__ == 0.) { goto L140; } i__1 = *m; for (j = 1; j <= i__1; ++j) { s = 0.; si = 0.; i__3 = l; for (k = 1; k <= i__3; ++k) { s = s + ar[i__ + k * ar_dim1] * zr[k + j * zr_dim1] - ai[i__ + k * ai_dim1] * zi[k + j * zi_dim1]; si = si + ar[i__ + k * ar_dim1] * zi[k + j * zi_dim1] + ai[ i__ + k * ai_dim1] * zr[k + j * zr_dim1]; /* L110: */ } /* .......... DOUBLE DIVISIONS AVOID POSSIBLE UNDERFLOW ...... .... */ s = s / h__ / h__; si = si / h__ / h__; i__3 = l; for (k = 1; k <= i__3; ++k) { zr[k + j * zr_dim1] = zr[k + j * zr_dim1] - s * ar[i__ + k * ar_dim1] - si * ai[i__ + k * ai_dim1]; zi[k + j * zi_dim1] = zi[k + j * zi_dim1] - si * ar[i__ + k * ar_dim1] + s * ai[i__ + k * ai_dim1]; /* L120: */ } /* L130: */ } L140: ; } L200: return 0; } /* htribk_ */