/* orthes.f -- translated by f2c (version 19961017). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int orthes_(integer *nm, integer *n, integer *low, integer * igh, doublereal *a, doublereal *ort) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Builtin functions */ double sqrt(doublereal), d_sign(doublereal *, doublereal *); /* Local variables */ static doublereal f, g, h__; static integer i__, j, m; static doublereal scale; static integer la, ii, jj, mp, kp1; /* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ORTHES, */ /* NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON. */ /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). */ /* GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE */ /* REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS */ /* LOW THROUGH IGH TO UPPER HESSENBERG FORM BY */ /* ORTHOGONAL SIMILARITY TRANSFORMATIONS. */ /* ON INPUT */ /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */ /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */ /* DIMENSION STATEMENT. */ /* N IS THE ORDER OF THE MATRIX. */ /* LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */ /* SUBROUTINE BALANC. IF BALANC HAS NOT BEEN USED, */ /* SET LOW=1, IGH=N. */ /* A CONTAINS THE INPUT MATRIX. */ /* ON OUTPUT */ /* A CONTAINS THE HESSENBERG MATRIX. INFORMATION ABOUT */ /* THE ORTHOGONAL TRANSFORMATIONS USED IN THE REDUCTION */ /* IS STORED IN THE REMAINING TRIANGLE UNDER THE */ /* HESSENBERG MATRIX. */ /* ORT CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS. */ /* ONLY ELEMENTS LOW THROUGH IGH ARE USED. */ /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */ /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY */ /* THIS VERSION DATED AUGUST 1983. */ /* ------------------------------------------------------------------ */ /* Parameter adjustments */ a_dim1 = *nm; a_offset = a_dim1 + 1; a -= a_offset; --ort; /* Function Body */ la = *igh - 1; kp1 = *low + 1; if (la < kp1) { goto L200; } i__1 = la; for (m = kp1; m <= i__1; ++m) { h__ = 0.; ort[m] = 0.; scale = 0.; /* .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) .......... */ i__2 = *igh; for (i__ = m; i__ <= i__2; ++i__) { /* L90: */ scale += (d__1 = a[i__ + (m - 1) * a_dim1], abs(d__1)); } if (scale == 0.) { goto L180; } mp = m + *igh; /* .......... FOR I=IGH STEP -1 UNTIL M DO -- .......... */ i__2 = *igh; for (ii = m; ii <= i__2; ++ii) { i__ = mp - ii; ort[i__] = a[i__ + (m - 1) * a_dim1] / scale; h__ += ort[i__] * ort[i__]; /* L100: */ } d__1 = sqrt(h__); g = -d_sign(&d__1, &ort[m]); h__ -= ort[m] * g; ort[m] -= g; /* .......... FORM (I-(U*UT)/H) * A .......... */ i__2 = *n; for (j = m; j <= i__2; ++j) { f = 0.; /* .......... FOR I=IGH STEP -1 UNTIL M DO -- .......... */ i__3 = *igh; for (ii = m; ii <= i__3; ++ii) { i__ = mp - ii; f += ort[i__] * a[i__ + j * a_dim1]; /* L110: */ } f /= h__; i__3 = *igh; for (i__ = m; i__ <= i__3; ++i__) { /* L120: */ a[i__ + j * a_dim1] -= f * ort[i__]; } /* L130: */ } /* .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) .......... */ i__2 = *igh; for (i__ = 1; i__ <= i__2; ++i__) { f = 0.; /* .......... FOR J=IGH STEP -1 UNTIL M DO -- .......... */ i__3 = *igh; for (jj = m; jj <= i__3; ++jj) { j = mp - jj; f += ort[j] * a[i__ + j * a_dim1]; /* L140: */ } f /= h__; i__3 = *igh; for (j = m; j <= i__3; ++j) { /* L150: */ a[i__ + j * a_dim1] -= f * ort[j]; } /* L160: */ } ort[m] = scale * ort[m]; a[m + (m - 1) * a_dim1] = scale * g; L180: ; } L200: return 0; } /* orthes_ */