/* rgg.f -- translated by f2c (version 19961017). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static doublereal c_b5 = 0.; /* Subroutine */ int rgg_(integer *nm, integer *n, doublereal *a, doublereal * b, doublereal *alfr, doublereal *alfi, doublereal *beta, integer * matz, doublereal *z__, integer *ierr) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset; /* Local variables */ extern /* Subroutine */ int qzit_(integer *, integer *, doublereal *, doublereal *, doublereal *, logical *, doublereal *, integer *), qzvec_(integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), qzhes_( integer *, integer *, doublereal *, doublereal *, logical *, doublereal *), qzval_(integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, logical *, doublereal *); static logical tf; /* THIS SUBROUTINE CALLS THE RECOMMENDED SEQUENCE OF */ /* SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE (EISPACK) */ /* TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED) */ /* FOR THE REAL GENERAL GENERALIZED EIGENPROBLEM AX = (LAMBDA)BX. */ /* ON INPUT */ /* NM MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL */ /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */ /* DIMENSION STATEMENT. */ /* N IS THE ORDER OF THE MATRICES A AND B. */ /* A CONTAINS A REAL GENERAL MATRIX. */ /* B CONTAINS A REAL GENERAL MATRIX. */ /* MATZ IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF */ /* ONLY EIGENVALUES ARE DESIRED. OTHERWISE IT IS SET TO */ /* ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGENVECTORS. */ /* ON OUTPUT */ /* ALFR AND ALFI CONTAIN THE REAL AND IMAGINARY PARTS, */ /* RESPECTIVELY, OF THE NUMERATORS OF THE EIGENVALUES. */ /* BETA CONTAINS THE DENOMINATORS OF THE EIGENVALUES, */ /* WHICH ARE THUS GIVEN BY THE RATIOS (ALFR+I*ALFI)/BETA. */ /* COMPLEX CONJUGATE PAIRS OF EIGENVALUES APPEAR CONSECUTIVELY */ /* WITH THE EIGENVALUE HAVING THE POSITIVE IMAGINARY PART FIRST. */ /* Z CONTAINS THE REAL AND IMAGINARY PARTS OF THE EIGENVECTORS */ /* IF MATZ IS NOT ZERO. IF THE J-TH EIGENVALUE IS REAL, THE */ /* J-TH COLUMN OF Z CONTAINS ITS EIGENVECTOR. IF THE J-TH */ /* EIGENVALUE IS COMPLEX WITH POSITIVE IMAGINARY PART, THE */ /* J-TH AND (J+1)-TH COLUMNS OF Z CONTAIN THE REAL AND */ /* IMAGINARY PARTS OF ITS EIGENVECTOR. THE CONJUGATE OF THIS */ /* VECTOR IS THE EIGENVECTOR FOR THE CONJUGATE EIGENVALUE. */ /* IERR IS AN INTEGER OUTPUT VARIABLE SET EQUAL TO AN ERROR */ /* COMPLETION CODE DESCRIBED IN THE DOCUMENTATION FOR QZIT. */ /* THE NORMAL COMPLETION CODE IS ZERO. */ /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */ /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY */ /* THIS VERSION DATED AUGUST 1983. */ /* ------------------------------------------------------------------ */ /* Parameter adjustments */ z_dim1 = *nm; z_offset = z_dim1 + 1; z__ -= z_offset; --beta; --alfi; --alfr; b_dim1 = *nm; b_offset = b_dim1 + 1; b -= b_offset; a_dim1 = *nm; a_offset = a_dim1 + 1; a -= a_offset; /* Function Body */ if (*n <= *nm) { goto L10; } *ierr = *n * 10; goto L50; L10: if (*matz != 0) { goto L20; } /* .......... FIND EIGENVALUES ONLY .......... */ tf = FALSE_; qzhes_(nm, n, &a[a_offset], &b[b_offset], &tf, &z__[z_offset]); qzit_(nm, n, &a[a_offset], &b[b_offset], &c_b5, &tf, &z__[z_offset], ierr) ; qzval_(nm, n, &a[a_offset], &b[b_offset], &alfr[1], &alfi[1], &beta[1], & tf, &z__[z_offset]); goto L50; /* .......... FIND BOTH EIGENVALUES AND EIGENVECTORS .......... */ L20: tf = TRUE_; qzhes_(nm, n, &a[a_offset], &b[b_offset], &tf, &z__[z_offset]); qzit_(nm, n, &a[a_offset], &b[b_offset], &c_b5, &tf, &z__[z_offset], ierr) ; qzval_(nm, n, &a[a_offset], &b[b_offset], &alfr[1], &alfi[1], &beta[1], & tf, &z__[z_offset]); if (*ierr != 0) { goto L50; } qzvec_(nm, n, &a[a_offset], &b[b_offset], &alfr[1], &alfi[1], &beta[1], & z__[z_offset]); L50: return 0; } /* rgg_ */