/* tqlrat.f -- translated by f2c (version 19961017). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static doublereal c_b11 = 1.; /* Subroutine */ int tqlrat_(integer *n, doublereal *d__, doublereal *e2, integer *ierr) { /* System generated locals */ integer i__1, i__2; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal), d_sign(doublereal *, doublereal *); /* Local variables */ static doublereal b, c__, f, g, h__; static integer i__, j, l, m; static doublereal p, r__, s, t; static integer l1, ii; extern doublereal pythag_(doublereal *, doublereal *), epslon_(doublereal *); static integer mml; /* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT, */ /* ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH. */ /* THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC */ /* TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD. */ /* ON INPUT */ /* N IS THE ORDER OF THE MATRIX. */ /* D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX. */ /* E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE */ /* INPUT MATRIX IN ITS LAST N-1 POSITIONS. E2(1) IS ARBITRARY. */ /* ON OUTPUT */ /* D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN */ /* ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND */ /* ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE */ /* THE SMALLEST EIGENVALUES. */ /* E2 HAS BEEN DESTROYED. */ /* IERR IS SET TO */ /* ZERO FOR NORMAL RETURN, */ /* J IF THE J-TH EIGENVALUE HAS NOT BEEN */ /* DETERMINED AFTER 30 ITERATIONS. */ /* CALLS PYTHAG FOR DSQRT(A*A + B*B) . */ /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */ /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY */ /* THIS VERSION DATED AUGUST 1983. */ /* ------------------------------------------------------------------ */ /* Parameter adjustments */ --e2; --d__; /* Function Body */ *ierr = 0; if (*n == 1) { goto L1001; } i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { /* L100: */ e2[i__ - 1] = e2[i__]; } f = 0.; t = 0.; e2[*n] = 0.; i__1 = *n; for (l = 1; l <= i__1; ++l) { j = 0; h__ = (d__1 = d__[l], abs(d__1)) + sqrt(e2[l]); if (t > h__) { goto L105; } t = h__; b = epslon_(&t); c__ = b * b; /* .......... LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT ........ .. */ L105: i__2 = *n; for (m = l; m <= i__2; ++m) { if (e2[m] <= c__) { goto L120; } /* .......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT */ /* THROUGH THE BOTTOM OF THE LOOP .......... */ /* L110: */ } L120: if (m == l) { goto L210; } L130: if (j == 30) { goto L1000; } ++j; /* .......... FORM SHIFT .......... */ l1 = l + 1; s = sqrt(e2[l]); g = d__[l]; p = (d__[l1] - g) / (s * 2.); r__ = pythag_(&p, &c_b11); d__[l] = s / (p + d_sign(&r__, &p)); h__ = g - d__[l]; i__2 = *n; for (i__ = l1; i__ <= i__2; ++i__) { /* L140: */ d__[i__] -= h__; } f += h__; /* .......... RATIONAL QL TRANSFORMATION .......... */ g = d__[m]; if (g == 0.) { g = b; } h__ = g; s = 0.; mml = m - l; /* .......... FOR I=M-1 STEP -1 UNTIL L DO -- .......... */ i__2 = mml; for (ii = 1; ii <= i__2; ++ii) { i__ = m - ii; p = g * h__; r__ = p + e2[i__]; e2[i__ + 1] = s * r__; s = e2[i__] / r__; d__[i__ + 1] = h__ + s * (h__ + d__[i__]); g = d__[i__] - e2[i__] / g; if (g == 0.) { g = b; } h__ = g * p / r__; /* L200: */ } e2[l] = s * g; d__[l] = h__; /* .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST ........ .. */ if (h__ == 0.) { goto L210; } if ((d__1 = e2[l], abs(d__1)) <= (d__2 = c__ / h__, abs(d__2))) { goto L210; } e2[l] = h__ * e2[l]; if (e2[l] != 0.) { goto L130; } L210: p = d__[l] + f; /* .......... ORDER EIGENVALUES .......... */ if (l == 1) { goto L250; } /* .......... FOR I=L STEP -1 UNTIL 2 DO -- .......... */ i__2 = l; for (ii = 2; ii <= i__2; ++ii) { i__ = l + 2 - ii; if (p >= d__[i__ - 1]) { goto L270; } d__[i__] = d__[i__ - 1]; /* L230: */ } L250: i__ = 1; L270: d__[i__] = p; /* L290: */ } goto L1001; /* .......... SET ERROR -- NO CONVERGENCE TO AN */ /* EIGENVALUE AFTER 30 ITERATIONS .......... */ L1000: *ierr = l; L1001: return 0; } /* tqlrat_ */