Differentiation of Vasculopathy from Normal Pulmonary Vasculature Using Hyperpolarized Helium-3 MRI in Humans

D. Lipson1, J. Yu2, S. Rajaei1, K. Esmaili2, S. Kadlecek2, M. Ishii2, J. MacDuffie Woodburn2, F. Hammond3, V. Vahdat2, W. Gefter2, R. R. Rizi2

1Department of Pulmonology, University of Pennsylvania, Philadelphia, PA, United States, 2Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States, 3Johns Hopkins University, Baltimore, MD, United States

Introduction
Many lung pathologies manifest themselves as alterations in the pulmonary vasculature bed. We hypothesized that by determining regional lung oxygen concentrations and regional ventilation and perfusion ratios using hyperpolarized helium-3 MRI, we could non-invasively differentiate pulmonary disease caused by vasculopathy, from normal subjects. We chose patients with sickle cell disease (SCD) as our vasculopathy model group. Sickle cell disease is a disorder characterized by red blood cell hemolysis, and vaso-occlusion. Over time, recurrent red blood cell occlusive episodes in the lung lead to lung injury, restrictive lung disease, hypoxemia, pulmonary hypertension, and vasculopathy. We demonstrate that hyperpolarized helium-3 MRI can be used to non-invasively differentiate patients with vasculopathy from normal subjects.

Methods
Work was performed under an approved FDA IND and IRB protocol. Subjects were imaged in a 1.5 T MRI scanner (GE Signa, Milwaukee, WI) configured for broadband operation for imaging. The subjects inhaled 500 cc of a mixture of 80% HP 3He gas (9 mmol/L) and N2, and 20% O2. Hyperpolarized 3He gas was prepared through spin exchange collisions with optically pumped rubidium atoms using a commercial prototype noble gas hyperpolarization system (GE, Fairfield, CT). The hyperpolarized 3He gas was polarized for approximately 14 hours to achieve an average polarization of 38%. A double tuned (proton, 3He) coil was used for MR image acquisition. TR: 7.5 msec; TE: 1.9 msec; matrix size: 256x128; FOV 26 cm x 26 cm; slice thickness 2 cm; Flip angle 4˚. Measurements of regional alveolar oxygen pressure were performed using a double pulse acquisition technique. The MR images were analyzed by first calculating PAO2 and then deriving the VA/Q ratio for 32 ROIs over the entire lung volume. Regional PAO2 information is then used to derive regional VA/Q ratios by using accepted gas exchange equations.

Results and Discussion
Helium gas was homogeneously distributed throughout the lungs of normal subjects (n=6) and those with vasculopathy (n=2). Table 1 reveals mean blood values, pulmonary function values, regional oxygen values and regional VA/Q values in the normal subjects and those with vasculopathy. In the normal subjects regional PAO2 averaged 100.15 mbar. The mean VA/Q ratio was 0.969. In patients with known vasculopathy the mean PAO2 was 127 mbar. The mean VA/Q ratio was 3.9. Figure 1 demonstrates regional PAO2 (mbar), and regional VA/Q ratios in a healthy human subject and in a patient with SCD. Figure 2 reveals the data in histogram form.

Table 1: Selected mean values in the subjects.

<table>
<thead>
<tr>
<th>Subject</th>
<th>HGB</th>
<th>FEV1</th>
<th>DLCO</th>
<th>TLC</th>
<th>PAO2</th>
<th>VA/Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>14.06</td>
<td>105 %</td>
<td>105 %</td>
<td>105 %</td>
<td>100.15</td>
<td>0.969</td>
</tr>
<tr>
<td>SCD</td>
<td>9.65</td>
<td>68 %</td>
<td>59.5 %</td>
<td>72.5 %</td>
<td>127</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Figure 1: 3He MR, regional PAO2 (mbar), and regional VA/Q ratios in a healthy human and in a patient with vasculopathy.

Conclusions
Hyperpolarized helium-3 MRI may be used to non-invasively differentiate normal subjects from those with vasculopathy based on differences in regional oxygen concentrations and regional ventilation and perfusion relationships. Patients with vasculopathy have higher alveolar oxygen concentrations than normal subjects because of decreased uptake of oxygen from the alveolar space. Elevations in regional VA/Q values represent an increased number of lung units with high ventilation to perfusion ratios due to vascular destruction.

Acknowledgments
This work was supported by NIH K23 HL04486 (DAL) and RO1 HL64741 (RRR).

References