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Introduction 

In vivo 1H magnetic resonance spectroscopic imaging (MRSI) can provide regional characterization and quantification of molecular markers in 
tissue, and has been widely used for improving diagnosis and treatment monitoring of a variety of neuro-pathologies, most notably brain cancers (1).  In 
clinical settings, because of limitation in scanning time for data averaging, the average MRSI voxel size is about 1 cc in order to achieve reasonable signal-to-
noise ratio.  Due to the heterogeneous nature of the tumor tissue, the relatively large voxel may encompass a mixture of normal brain tissue and infiltrating 
tumor tissue (partial volume effect).  This often leads to significant variability in spectral pattern and limits diagnostic potential of MRSI for brain tumors, 
such as tumor grading and determination of tumor spatial expansion. 

Previously, Sajda et al. (2) proposed an algorithm called constrained non-negative matrix factorization (NMF) that extracts constituent spectra 
associated with different tissue types by simultaneously analyzing all voxel spectra.  In principle this method solves the partial volume effect as it determines 
also the proportion with which each constituent spectrum contributes to an individual voxel spectrum.  In this preliminary study, this spectral separation 
algorithm was applied to the clinical MRSI data of brain gliomas.  The goal was to validate this MRSI data analysis method by correlating the analysis results 
with pathologically proven tumor grades. 
Methods 
  IRB waiver was obtained to retrospectively analyze the clinical proton MRSI data and examine the medical records of 14 patients who had 
pathologically proven brain gliomas.  Among them, 7 had grade I/II and 7 had grade III/IV.  Based on clinical standards, grade I/II glioma is categorized as 
low grade glioma (LGG), while grade III/IV glioma is categorized as high grade glioma (HGG). 
 As part of a clinical brain tumor MRI/MRS protocol, the 3D MRSI scans were performed on a GE 1.5T LX or Excite scanner using the commercial 
PRESS sequence, with TE = 144 ms, TR = 1000 ms, FOV = 8 cm, 1 cm slice thickness, and 8x8x8 phase encoding matrix size, resulting in 8.5 min scanning 
time and 1 cc nominal voxel size.  Prior to MRSI acquisition, FLAIR scout images were collected for prescribing MRSI acquisition.  Raw time-domain MRSI 
data and FLAIR images were imported into a home-built program (3) that incorporates the NMF algorithm.  The program performed the general spectroscopic 
processing procedures such as Fourier transformation, baseline and phase corrections, frequency alignment, etc. and generated conventional MRSI spectra.  
These multi-voxel spectra were then overlaid onto the FLAIR images and the results were validated with those obtained using GE’s Functool software for 
MRSI data processing. 
 Following the validation, all voxel spectra were submitted to the NMF algorithm for spectral separation analysis.  In this study, for each patient’s 
MRSI data set, the algorithm represented each voxel’s spectrum as a linear combination of spectra from tumor tissue, normal brain tissue, and residual 
baseline activity.  The constituent spectra were consistent across all the MRSI voxels, while the coefficients of the linear relationship were different for each 
voxel, representing the abundance of each constituent tissue.   
Results 

Fig. 1 demonstrates the typical process of the MRSI data analysis.  The left panel shows the conventionally processed MRSI multi-voxel spectra 
overlaid onto a FLAIR image with areas of hyperintensity indicating the tumor region (this patient had high grade fibrillary astrocytoma).  The white box 
represents the region of RF excitation, which was smaller than the FOV of MRSI acquisition.  The center panel shows the results of NMF analysis: the 
constituent spectra of the normal tissue, tumor tissue, and residuals.  The constituent tumor spectrum revealed typical pattern of high choline-compounds 
(Cho) level but low N-acetylaspartate (NAA) level.   The right panel shows the tumor/normal tissue abundance map overlaid onto the FLAIR image: the 
redder the area, the more abundant the tumor tissue; the bluer the area, the more abundant the normal tissue. 

Fig. 2a shows the Cho versus NAA plot in arbitrary units of the data points from all the patients, taken from the individual MRSI voxels located in 
the regions of FLAIR hyperintensity and surrounding normal appearing areas before the NMF analysis.  As shown in the plot, there is significant overlap in 
voxel spectral pattern between the HGG, LGG, and the normal appearing regions due to partial volume effect, making diagnosis difficult.  Fig. 2b shows the 
same type of plot of the constituent tumor and normal tissue spectra from all 14 patients following the NMF analysis.  The Cho-NAA patterns of the normal 
spectra were well separated from those of the tumor spectra.  Cho levels were significantly (p < 0.007, r = -0.69) correlated with NAA levels with the HGGs 
generally showing higher Cho and lower NAA levels than the LGGs. 
Discussion 
 In this preliminary study, the spectral patterns (Cho level versus NAA level) of the constituent tumor spectra generated by the NMF algorithm 
analyses of the clinical 3D MRSI data are consistent with the grades of brain gliomas, suggesting this method has the potential for clinical applications.  By 
resolving the partial volume effect, the NMF analysis reduces variability of in vivo spectra.  Furthermore, by measuring regional abundance of tumor and 
normal tissue, this algorithm can be particularly useful in defining tumor margins, treatment planning of radiation therapy (4), and surgical decisions. 
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